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Abstract

This paper presents a framework for support-

ing the optimization of Java programs using at-

tributes in Java class �les. We show how class

�le attributes may be used to convey both opti-

mization opportunities and pro�le information

to a variety of Java virtual machines including

ahead-of-time compilers and just-in-time com-

pilers.

We present our work in the context of Soot,

a framework that supports the analysis and

transformation of Java bytecode (class �les)[21,

25, 26]. We demonstrate the framework with

attributes for elimination of array bounds and

null pointer checks, and we provide experimen-

tal results for the Ka�e just-in-time compiler,

and IBM's High Performance Compiler for Java

ahead-of-time compiler.

1 Introduction

Java is a portable, object-oriented language

that is gaining widespread acceptance. The

target language for Java compilers is Java byte-

code which is a platform-independent, stack-

based intermediate representation. The byte-

code is stored in Java class �les, and these �les

can be be executed by Java virtual machines

(JVMs) such as interpreters, just-in-time (JIT)

compilers, or adaptive engines that may com-

bine interpretation and compilation techniques,

or they can be compiled to native code by

ahead-of-time compilers.

The widespread availability of JVMs means

that Java class �les (bytecode) have become a

popular intermediate form, and there now ex-

ists a wide variety of compilers for other lan-

guages that generate Java class �les as their

output.

One of the key challenges over the last

few years has been the eÆcient execu-

tion/compilation of Java class �les. Most of

the work in this area has focused on providing

better JVMs and the best performing JVMs

now include relatively sophisticated static and

dynamic optimization techniques that are per-

formed on the 
y, at runtime. However, an-

other source of performance improvement is

to optimize the class �les before they are ex-

ecuted/compiled. This approach is attractive

for the following reasons:

� Class �les are the target for many compil-

ers, and class �les are portable across all

JVMs and ahead-of-time compilers. Thus,

by optimizing class �les, there is potential

for a common optimizer that can give per-

formance improvement over a wide variety

of source language and target VM combi-

nations.



� Class �le optimization can be performed

statically and only needs to be performed

once. By performing the class �le opti-

mization statically we can potentially re-

duce the burden on JIT optimizers, and

can allow for more expensive optimizations

than can be reasonably performed at run-

time. In general, one would want the com-

bined e�ect of class �le optimization and

on-the-
y optimization.

Although optimizing class �les is bene�cial,

there are limits to what can be expressed in

bytecode instructions. Some bytecode instruc-

tions are relatively high-level, thus they hide

details that may be optimizable at lower-level

representations. For example, an access into

an array is expressed as one bytecode instruc-

tion, but at run-time the array reference must

be checked to ensure it is not null, the array

bounds must be checked to ensure the index is

in range, and appropriate exceptions must be

raised if these checks fail. Clearly, one would

like to avoid generating native code for the

checks if a static analysis can guarantee that

they are not needed.

1.1 Attributes for Optimization

Information

We have developed a general mechanism for us-

ing class �le attributes to encode optimization

information that can be determined by static

analysis of bytecode, but cannot be expressed

directly in bytecode. The basic idea is that a

static analysis of Java bytecode is used to de-

termine some program property (such as the

fact that an array index expression is in range),

and this information is encoded using class �le

attributes. Any JVM/compiler that is aware

of these attributes can use the information to

produce better native code. In addition to ar-

ray bound checks, such optimization attributes

could be used for:

Register Allocation: For each method, reg-

ister allocation can be abstracted and

computed statically. This is de�nitely a

promising avenue for attributes and has al-

ready been show e�ective by two research

groups [1, 14].

Null Pointer Checks: The Java language

mandates that each object reference be

determined non-null before it is derefer-

enced. Although this is often achieved

by hardware traps which incur no runtime

performance overhead, some bytecode in-

structions cannot be handled completely

in this fashion, and some architectures

cannot make use of hardware traps. In

this paper we will demonstrate a use for

null pointer checks.

Stack Allocation of Objects: In bytecode

there is only one instruction for allocat-

ing memory for objects, and the memory

is always allocated on the heap. However

certain static analyses such as escape anal-

ysis can determine that some objects can

be safely allocated on the stack, thus po-

tentially reducing some memory manage-

ment runtime overhead [7].

Runtime Static Method Binding: Virtual

call sites that cannot be safely resolved

statically often can be resolved dynami-

cally if certain conditions hold. These con-

ditions could be supplied as annotations.

Parallel Computations: In a method, if two

regions of code, or method calls are

deemed to be independent then this could

be annotated and the JVM would be given

a chance to execute them in parallel.

Exception Handling as Control Flow:

Some applications use exception handling

intensively as a control 
ow mechanism.

Providing such a hint could allow a JVM to

potentially use a di�erent exception han-

dling mechanism tailored to this type of

situation. The expected target of an ex-

ception handler could be speci�ed, and

given certain constraints, the exception

handler could be called directly from the

catch clause.

1.2 Attributes for Pro�le Infor-

mation

Attributes can also be used to convey pro-

�le information. Currently, advanced JVMs

use on-the-
y pro�ling to detect hot methods,



which may be optimized or recompiled on the


y. However, ahead-of-time compilers cannot

necessarily make use of such dynamic informa-

tion, and even for dynamic JVMs it may also

be bene�cial to use static information. For

example, one could gather pro�le information

from many executions, use information gath-

ered from trace-based studies, or estimate pro-

�le information using static analysis. In these

cases, the pro�le information could be conveyed

via attributes. Some potential uses for such

pro�le-based attributes are:

Hot Methods: Methods could be given a hot-

ness rating. This could provide useful

hints for JITs in helping them decide

which methods to compile/optimize.

Persistent Objects: Allocation sites could

be given a persistence rating based on the

expected lifetime of an allocated object.

This could provide a useful hint to high-

performance garbage collectors on how to

eÆciently manage object allocation.

Garbage Collection (GC):

There is no garbage collector that is opti-

mal for all programs. For some programs

a generational garbage collection is a big

plus, while for others it is overkill or the

generational allocation assumption simply

does not hold. Based on pro�ling, annota-

tions could be produced to specify which

type of GC would be best for a program.

A JVM could then use this hint to select

an appropriate GC at runtime.

Branch Prediction Annotation:

Annotating which bytecode branches are

most frequently taken could help a JVM

produce more eÆcient native code.

Hot Data: Based on pro�ling, if certain ob-

jects are often accessed as a group, this in-

formation could be conveyed to the JVM

for better memory allocation and data lo-

cality. This attribute could provide a vir-

tual memory map for the JVM.

1.3 Paper Roadmap

In this paper we provide on overview of our gen-

eral approach to supporting attributes in the

Soot framework. We provide an infrastructure

to support a very general notion of attributes

that could be used for both optimization at-

tributes and pro�le-based attributes. The pa-

per is organized as follows. In Section 2, we

brie
y summarize the Soot framework, and

outline our support for attributes. To demon-

strate our approach we show how we applied

it to the problem of eliminating array bounds

checks, and we show how these attributes are

expressed in our framework in Section 3. In

order to take advantage of the optimization at-

tributes, the JVM/compiler processing the at-

tributed class �les must be aware of the at-

tributes. We have modi�ed both the Ka�e JIT

and the IBM HPCJ (High Performance Com-

piler for Java) ahead-of-time compiler to take

advantage of the array bound attributes, and

we report experimental results for these two

systems in Section 4. A discussion of related

work is given in Section 5, and conclusions and

future work are given in Section 6.

2 Attributes and Soot

Our work has been done in the context of the

Soot optimizing framework[21, 25, 26]. Soot

is a general and extensible framework to in-

spect, optimize and transform Java bytecode.

It exposes a powerful API that lets users eas-

ily implement high-level program analyses and

whole program transformations. At its core are

three intermediate representations that enable

one to perform code transformations at vari-

ous abstraction levels, from stack code to typed

three-address code. In Figure 1 we show the

general overview of Soot. Any compiler can be

used to generate the Java class �les, and the

Soot framework reads these as input and pro-

duces optimized class �les as output.

The Soot framework has been successfully

used to implement many well known analy-

ses and optimizations on Java bytecode such

as common subexpression elimination, virtual

method resolution and inlining[23]. All of

these transformations can be performed stat-

ically and expressed directly in optimized Java

bytecode. Until recently, the scope of these

transformations was limited by the semantics

and expressiveness of the bytecodes themselves.



Hence, optimizations such as register allocation

and array bounds check elimination could not

be performed. The objective of the work in

this paper was to extend the framework to sup-

port the embedding of custom, user-de�ned at-

tributes in class �les.

source
Java

source
SML

source
Scheme

source
Eiffel

class files

javac MLJ KAWA SmallEiffel

Interpreter JIT Adaptive Engine Ahead-of-Time
    Compiler

SOOT

Optimized class files with attributes

Figure 1: General Overview

2.1 Class File Attributes

The de facto �le format for Java bytecode is the

class �le format [18]. Built into this format is

the notion of attributes that allows one to asso-

ciate information with certain class �le struc-

tures. Some attributes are de�ned as part of

the Java Virtual Machine Speci�cation and are

essential to the correct interpretation of class

�les. In fact, all of a class's bytecode is con-

tained in attributes. Attributes can also be

user-de�ned and Java virtual machine imple-

mentations are required to silently ignore at-

tributes they do not recognize.

The format of class �le attributes is very sim-

ple and 
exible: attributes consist of a name

and arbitrary data. As shown in Figure 2,

attribute name index is a 2 byte unsigned in-

teger value corresponding to the index of the

attribute's name in the class �le's Constant

Pool, attribute length is 4 byte unsigned in-

teger specifying the length of the attribute's

data and info is an array of attribute length

bytes that contains the actual uninterpreted

raw attribute data. This simplistic model con-

veys great freedom and 
exibility to those that

wish to create custom attributes as they are

unhindered by format constraints. The only

binding requirement is for a custom attribute's

name not to clash with those of standard at-

tributes de�ned by the Java Virtual Machine

Speci�cation.

attribute_info {

u2 attribute_name_index;

u4 attribute_length;
u1 info[attribute_length];

}

Figure 2: Class File Attribute Data Structure

Attributes can be associated with four dif-

ferent structures within a class �le. In partic-

ular class �les have one class info structure

as well as method info and field info struc-

tures for each of the class' methods and �elds

respectively. Each of these three structures

contain an attribute table which can hold an ar-

bitrary number of attribute info structures.

Each non-native, non-abstract method's at-

tribute table contains a unique Code attribute

to hold the method's bytecode. This Code at-

tribute has an attribute table of its own, which

can contain standard attributes used by debug-

gers and arbitrary custom attributes.

2.2 Adding Attributes to Soot

2.2.1 An Overview

Figure 3 provides a high-level view of the in-

ternal structure of Soot, with support for at-

tributes. The �rst phase of Soot is used to

convert the input class �les into a typed three-

address intermediate code called Jimple[6, 25].

In Jimple, each class is represented as a

SootClass, and within each SootClass there

is a collection of SootFields and SootMethods.

Each method has a method body which is rep-

resented as a collection of instructions, with

each instruction represented as a Unit.

Jimple was designed to be a very convenient

intermediate form for compiler analyses, and

the second phase of Soot, as shown in Figure 3,

is to analyze and transform the Jimple interme-

diate representation. There already exist many
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Figure 3: Internal Structure of Soot

analyses in the Soot framework, but a compiler

writer can also add new analyses to capture

information that will be eventually output as

class �le attributes. Soot includes an infras-

tructure for intraprocedural 
ow-sensitive anal-

yses, and implementing new analyses is quite

straightforward. In Section 3 we discuss our

example analysis for array bounds elimination.

After the analysis has been completed, anal-

ysis information has been computed, but one

requires some method of transferring that in-

formation to attributes. In our approach this

is done by attaching tags to the Jimple repre-

sentation (third phase in Figure 3).

After tagging Jimple, the fourth phase of

Soot automatically translates the tagged Jim-

ple back to bytecode. During this phase the

tags may be aggregated using an aggregation

method speci�ed by the compiler writer. Our

system does not directly produce class �les, but

rather it produces a form of assembly code used

by the Jasmin bytecode assembler[12]. We have

modi�ed the Jasmin assembler language so that

during this phase Jimple tags are converted to

Jasmin attribute directives.

Finally, the �fth phase is a modi�ed Jasmin

assembler that can read the attribute directives

and produce binary class �les with attributes.

2.2.2 Hosts, Tags and Attributes

Attribute support in Soot has been achieved

by adding two key interfaces: Host and Tag.

Hosts are objects that can hold Tags; con-

versely, Tags are objects that can be attached

to Hosts. These interfaces are listed in Fig-

ure 4. There are �ve Soot classes that imple-

ment the Host interface; these are SootClass,

SootField, SootMethod, Body and Unit, the

latter of which is Soot's abstract notion of a

bytecode instruction.

public interface Host
{ /** Get a list of tags associated with

the current object. */

public List getTags();

/** Returns tag with the given name. */

public Tag getTag(String aName);

public void addTag(Tag t);

/** Remove tag with the given name. */

public void removeTag(String name);

/** Returns true if this host has a tag

with the given name. */

public boolean hasTag(String aName);
}

public interface Tag
{ public String getName();

public byte[] getValue();

}

Figure 4: The Host and Tag Interfaces

Tags are meant to be a generic mechanism

to associate name-value pairs to Host objects

in Soot; they are not necessarily mapped into

class �le attributes. For this purpose, we have

introduced the Attribute interface, which ex-

tends the Tag interface. Soot objects that are

subtypes of Attribute are meant to be mapped

into class �le attributes; however, because the

Soot framework uses the Jasmin tool to output



bytecode, an Attribute object must actually be

an instance of JasminAttribute for the trans-

lation to take place (see Section 2.2.4 for more

information).

Compiler implementors can create applica-

tion-speci�c subclasses of JasminAttribute

and attach these to Hosts. There is a natu-

ral mapping between the aforementioned Soot

classes that implement the Host interface and

the attribute architecture present in class �les

as described in Section 2.1. JasminAttributes

attached to a SootClass will be compiled into

an entry in the attribute table of the corre-

sponding class. SootMethod and SootField at-

tributes are dealt with similarly. Dealing with

JasminAttributes attached to Soot Units is

a bit trickier and is addressed in the following

section.

2.2.3 Mapping Unit Attributes into a

Method's Code Attribute Table

Soot Attributes attached to Units do not

map trivially to a given class �le structure as

was the case for SootClass, SootMethod and

SootField attributes, because Units naturally

map to bytecode instructions, which do not

have associated attribute tables. The obvious

solution is to map all of a method's Unit at-

tributes into entries in the method's Code At-

tribute's attribute table in the generated class

�le. Each entry will then contain the bytecode

program counter (PC) of the speci�c instruc-

tion it indexes. This is what is done automat-

ically by the Soot framework at code genera-

tion time. However, generating one Code at-

tribute per Unit attribute can lead to undue

class �le bloat and increased processing and

memory requirements by virtual machine's run-

time attribute interpretation module. Often

di�erent instances of identical Code Attribute

attributes should be expressed in a tabular for-

mat. For example instead of creating 10 null

pointer check attributes for a method, it is

more eÆcient to create a single redundant null

pointer table as an attribute for these in the

class �le. The Soot framework allows an anal-

ysis implementor to easily create this table by

providing the TagAggregator interface as out-

lined in Figure 5.

By implementing this interface and register-

ing it in the class CodeAttributeGenerator,

it is possible to selectively aggregate Tags at-

tached to di�erent Unit instances into a single

Tag. A user can aggregate all Attributes gen-

erated by his/her analysis by iterating over a

method's Units and calling the aggregateTag

method on each of the Tags attached to a given

Unit. The produceAggregateTag method is

then called to produce a single aggregate at-

tribute to be mapped into single attribute in

the method's Code Attribute's attribute table.

public interface TagAggregator {
public void aggregateTag(Tag t, Unit u);

public Tag produceAggregateTag();

}

Figure 5: The TagAggregator Interface

2.2.4 Extending Jasmin for Attribute

Support

The Soot framework does not directly gener-

ate bytecode; instead it uses the Jasmin tool to

do so. Jasmin speci�es a textual assembler-like

grammar for class �les and transforms conform-

ing input into binary class �les. Because the

Jasmin grammar does not provide constructs

for expressing generic class �le attributes, we

have augmented it to accept and correctly

process the added language constructs for at-

tributes.

Informally, an attribute is encoded in

Jasmin as a triple consisting of an at-

tribute directive, the attribute's name and

the attribute value in Base64. The at-

tribute directive is one of .class attribute,

.method attribute, .field attribute and

.code attribute. These directives must be

produced in Jasmin code at speci�c locations:

.class attribute These must be found imme-

diately before the class' �eld declarations.

.�eld attribute These must be found imme-

diately after the �eld declaration they re-

late to.

.method attributes These must be found

immmediately after the method declara-

tion they relate to.



.code attribute These must be found before

the end of the method they relate to. Code

attributes that correspond to instructions

with speci�c bytecode PC values must ex-

press this symbolically. This is done by

outputting a Jasmin assembler label before

each bytecode that is indexed by some at-

tribute. This label is then used as proxy

for the PC of the bytecode it indexes

in a Jasmin .code attribute attribute.

Labels are encoded inside an attribute's

Base64 value data stream by surrounding

the label name with the % symbol. When

our modi�ed Jasmin actually creates the

class �le attribute, it will replace the la-

bels found in an attribute's data stream

by the corresponding 16-bit bigendian PC

value.

Figure 6(a) gives an example of a Java

method and Figure 6(b) gives an extract of the

attributed Jasmin assembler generated, show-

ing the labeled bytecode instructions corre-

sponding to the two array accesses in the pro-

gram. For this example the generated class

�le attribute will be 6 bytes: 2 bytes for

the PC represented by label2, followed by

1 byte for the Base64 encoded value AA==(no

check needed), followed by 2 bytes for the PC

represented by label3 and �nally 1 byte for

the Base64 encoded value Aw== (array bounds

checks needed).

2.2.5 Auxiliary Support

Several utility classes and interfaces have also

been added to Soot to provide additional sup-

port for Tags. Notable among these are: the

TagManager class, which contains static meth-

ods to provide Tag related functionality such as

pretty printing Tags and mapping a Tag name

to its corresponding Soot class; the TagPrinter

interface; and the StdTagPrinter class.

The TagPrinter interface is meant to be im-

plemented by classes that can print Tags. For

example a PrettyPrinter class or a XML printer

class could implement this interface formating

tags di�erent ways. A TagPrinter is registered

with the TagManager to con�gure the latter's

Tag printing behavior.

public void sum(int[] a)
{ int total=0;

int i=0;

for (i=0; i<a.length; i++)
total += a[i];

int c = a[i];

}

(a) Java source

.method public sum([I)V

.limit stack 3

.limit locals 3

...
label2:

iaload

...
label3:

iaload

return
.code_attribute ArrayNullCheckAttribute

"%label2%AA==%label3%Aw=="

.end method

(b) Attributed Jasmin

Figure 6: Attributed Jasmin

2.2.6 Summary

With all of these features the Soot frame-

work is now well endowed with a simple-to-

use, generic-attribute generation feature that is

tightly integrated into its overall optimization

support facilities. This enables analysis imple-

mentors to seamlessly augment their analysis

with custom attribute support.

3 Attributes for Array

Bounds Checks

In the previous section we outlined how we

have integrated attributes into the Soot opti-

mizing framework. In this section we illustrate

the framework using an example of eliminating

array bounds checks. We brie
y describe the

array bounds check problem, the analyses we

use to �nd unneeded checks, and how to create

bounds check tags and convert them into class

�le attributes by using the Soot framework. Fi-

nally, we show how to modify a JVM to take

advantage of our attributes.



3.1 The Array Bounds Check

Problem in Java

Java requires array reference range checks at

runtime to guarantee a program's safe ex-

ecution. If the array index exceeds the

range, the runtime environment must throw

an IndexOutOfBoundsException at the pre-

cise program point where the array reference

occurs. For array-based computations, array

bounds checks may cause a heavy runtime over-

head, and thus it is bene�cial to eliminate all

checks which a static analysis can prove to be

unneeded. In fact, several Java virtual ma-

chines implement array bounds check elimina-

tion algorithms in their JIT compilers[22, 4].

In these systems the optimization is done at

runtime as part of the translation of bytecode

to native code. However, since the optimiza-

tion is done at runtime, this approach has two

limitations.

1. Only relatively simple algorithms can be

applied because of time constraints.

2. They lack global information, such as �eld

information and whole-program informa-

tion. Usually a JIT compiler can not af-

ford the expense of these analyses.

We have developed an algorithm that works

at the bytecode level. By statically proving

that some array references are safe and an-

notating these using class �le attributes, an

attribute-aware JIT can avoid generating in-

structions for array bounds checks without per-

forming the analysis itself. The attributed class

�les can also be used by an ahead-of-time com-

piler, such as IBM's High Performance Com-

piler for Java.

Java requires two bounds checks, a lower

bound check and upper bound check. The

lower bound of an array is always a constant

zero. The upper bound check compares the

index with the array length. On popular ar-

chitectures, such as IA-32 and PowerPC, both

checks can be implemented by just doing an

upper bound check with an unsigned compare

instruction, since a negative integer is always

larger than a positive one when it is interpreted

as an unsigned integer. Thus, in order to be

really bene�cial, one must eliminate both the

upper and lower bound checks.

Another subtle point is that eliminating ar-

ray bounds checks is often also related to elimi-

nating null pointer accesses. Each array access,

for example x[i], must �rst check that the ar-

ray x is not-null. In many modern compilers

null pointer checks are performed by handling

the associated hardware trap if a null pointer

is dereferenced. In this case the machine archi-

tecture guarantees a hardware exception if any

very low memory addresses are read or written.

In order to do the upper array bounds check the

length of the array must be accessed, and since

the length of the array is usually stored at a

small o�set from x, this access will trap if x

is null. Thus, the array bounds check gives a

null pointer check for free. If the array bounds

check is eliminated, then it may be necessary

to insert an explicit null pointer check (since

the address of x[i] may be suÆciently large to

avoid the null pointer trap, even if x is null).

3.2 Static Analyses

We have developed two static analyses, null-

ness analysis and array bounds check analysis,

using the Soot framework. Each of these anal-

yses are implemented using the Jimple typed

3-address representation.

3.2.1 Nullness Analysis

Our nullness analysis is a fairly straightfor-

ward 
ow-sensitive intraprocedural analysis

that is implemented as an extension of the

BranchedForwardFlowAnalysis class that is

part of the Soot API. The basic idea is that

variable x is non-null after statements of the

form x = new(); and statements that refer to

x.f or x[i]. We also infer nullness informa-

tion from condition checks of the form if (x

== null). Since the nullness analysis is in-

traprocedural, we make conservative assump-

tions about the e�ect of method calls.

3.2.2 Array Bounds Check Analysis

The core of the array bounds check algorithm is

an intraprocedural analysis. For each method,

it constructs an inequality constraint graph of

local variables, integer constants, and other

symbolic nodes (i.e. class �elds, array refer-

ences, and common subexpressions) similar in



spirit to the work by Bodik et. al. [2]. The al-

gorithm collects constraints of nodes and prop-

agates them along the control 
ow paths until a

�xed point is reached. For each array reference,

the shortest distance from an array variable to

the index indicates whether the upper bound

check is safe or not, and the shortest distance

from the index to the constant 0 determines the

safety of lower bound check.

We have extended this basic analysis in two

ways. The �rst handles the case where an ar-

ray is assigned to a �eld in a class. Fields with

final or private modi�ers are analyzed �rst.

Often these �elds can be summarized by sim-

ply scanning all methods within the current

class. Using these simple techniques we can

determine whether a �eld is assigned a con-

stant length array object that never changes

and never escapes.

The second extension is used to �nd rectan-

gular arrays. Multidimensional arrays in Java

can be ragged (i.e. di�erent rows in an array

may have di�erent lengths), and this makes it

more diÆcult to get good array bounds analy-

sis. However, in scienti�c programs arrays are

most often rectangular. Thus, we have also de-

veloped a whole-program analysis using the call

graph to identify rectangular arrays that are

passed to methods as parameters. Rectangular

arrays can have two di�erent meanings, shape

rectangular (each dimension has the same size,

but subdimensions can be sparse in memory

or aliased), or memory-shape rectangular (the

object is created by 'multianewarray' bytecode

and no subdimensions are ever assigned other

array objects). The second type is stricter than

the �rst. For bounds check analysis, shape rect-

angular is good enough.

3.3 From Analysis to Attributes

After the analysis phase the 
ow information is

associated with Jimple statements. The next

step is to propagate this information so that

it will be embedded in the class �le attributes.

This is done by �rst tagging the Jimple state-

ments, and then specifying a tag aggregator

which packs all the tags for a method into one

aggregated tag.

3.3.1 Format of Attribute

We �rst outline the attribute as it even-

tually appears in the generated class �le.

The structure of the array bounds attribute

is quite straightforward. It has the name

"ArrayNullCheckAttribute". Figure 7 shows

the format of the array bounds check attribute

as it will be generated for the class �les.

array_null_check_attribute

{
u2 attribute_name_index;

u4 attribute_length;

u3 attribute[attribute_length/3];
}

Figure 7: Array Bounds Check Attribute

The value of attribute name index is an

index into the class �le's constant pool.

The corresponding entry at that index is a

CONSTANT Utf8 string representing the name

"ArrayNullCheckAttribute". The value of

attribute length is the length of the at-

tribute data, excluding the initial 6 bytes.

The attribute[] �eld is the table that holds

the array bound check information. The

attribute length is 3 times larger than the

table size. Each entry consists of a PC (the �rst

2 bytes) and the attribute data (last 1 byte),

totalling 3 bytes. These pairs are sorted in the

table by ascending PC value.

The least 2 bits of the attribute data are

used to 
ag the safety for the two array bounds

checks. The bit is set to 1 if the check is needed.

The null check information is incorporated into

the array bounds check attribute. The third

lowest bit is used to represent the null check

information. Other bits are unused and are set

to zero. The array reference is non-null and the

bounds checks are safe only when the value of

the attribute is zero.

3.3.2 Add Attributes

It takes two steps to add attributes to class

�les when using the Soot annotation scheme.

The attribute is represented as a Tag in the

Soot framework. For the array bounds check

problem we proceed as follows:



1. Create an ArrayCheckTag class which im-

plements the Tag interface. The new class

has its own internal representation of the

attribute data. In our implementation

the ArrayCheckTag uses 1 byte to rep-

resent bounds checks as explained above.

For each array reference, we create an

ArrayCheckTag object. The tag is at-

tached to a Jimple statement which acts

as a Host for the array check tag.

2. Create a class called ArrayCheckTag-

Aggregator which implements the Tag-

Aggregator interface.

The aggregator will aggregate all ar-

ray check tags for one method body.

We then register the aggregator to the

CodeAttributeGenerator class, and spec-

ify the aggregator as active. The ag-

gregator generates a CodeAttribute tag

when it is required to produce the aggre-

gated tag. The CodeAttribute tag has

the name "ArrayNullCheckAttribute",

which is the attribute name in the class

�le.

Soot manages all CodeAttribute tags and

produces a Jasmin �le with the appropriate at-

tribute directives, and �nally Soot calls the ex-

tended Jasmin assembler to generate the class

�le with attributes.

3.4 Making a JVM Aware of At-

tributes

After generating the annotated class �le, we

need to make a JVM aware of attributes and

have it use them to improve its generated na-

tive code. We modi�ed both Ka�e's OpenVM

1.0.5 JIT and the IBM HPCJ ahead-of-time

compiler to take advantage of the array bound

attributes. Below we describe the modi�ca-

tions needed for Ka�e; the modi�cations to

HPCJ are similar.

The Ka�eVM JIT reads in class �les, veri�es

them, and produces native code on demand. It

uses the methods structure to hold method in-

formation. We added a �eld to the methods

structure to hold the array bounds check at-

tribute. Figure 8 shows the data structure.

typedef struct _methods {

....

....
soot_attr attrTable;

} methods;

typedef struct _soot_attr{

u2 size;

soot_attr_entry* entries;

} soot_attr;

typedef struct _soot_attr_entry {

u2 pc;
u1 attribute;

} soot_attr_entry;

Figure 8: Modi�ed Ka�e Internal Structure

When the VM reads in the array bounds

check attribute of the Code attribute, it al-

locates memory for the attribute. The <PC,

data> pairs are then stored in the attribute ta-

ble. The pairs were already sorted by PC when

written into the class �le, so no sorting has to

be done now.

The Ka�e JIT uses a large switch statement

to generate native code for bytecodes. It goes

through the bytecodes sequentially. We use

the current PC as the key to look up the ar-

ray bounds check attribute in the table before

generating code for array references. Because

attribute pairs are sorted by ascending PC, and

bytecodes are processed sequentially, we can

use an index to keep the current entry in the

attribute table and use it to �nd the next entry

instead of searching the whole table. Figure 9

gives the pseudocode.

Here, we turn o� bounds check instructions

when the array reference is non-null and both

bounds are safe. We also insert null check in-

structions at the place where bounds check in-

structions can be removed but the null check is

still needed.

4 Experimental Results

We measured four array-intensive benchmarks

to show the e�ectiveness of the array bounds

check attribute. The benchmarks are charac-

terized by their array reference density, and the



idx = 0;

...

case IALOAD:
...

if (attr_table_size > 0) {

/* it has annotation */
attr = entries[idx].attribute;

idx++;

/* code generation */
if (attr & 0x03)

check_array_index(..);

else
/* null check code generation */

if (attr & 0x04)

explicit_check_null(..);
}

else

/* normal path */
check_array_index(..);

Figure 9: Using attributes in Ka�eVM

results of bounds check and null check analy-

sis. These data are runtime measurements from

the application programs, and do not include

JDK libraries. We also measured the class �le

size increase due to attributes. Finally we re-

port the performance improvement of bench-

marks on attribute-aware versions of Ka�eVM

and the IBM High Performance Compiler for

Java.

4.1 Benchmarks

Table 1 shows benchmark characteristics.1 The

third column describes the array type used in

the benchmark: s represents single dimensional

and m represents multidimensional.2 The last

column shows array reference density of the

benchmark, which is a count of how many array

references per second occur in the benchmark.

It is a rough estimate of the potential bene�t

of array bounds check elimination.

1Note that we use the abbreviation mpeg for the

benchmark mpegaudio.
2Multidimensional arrays are harder to analyze due

to their more complex aliasing, as well as the possibility

of being non-rectangular.

name source type density
mpeg SpecJVM98 s/m 19966466/s
FFT scimark2 s 10262085/s
LU scimark2 m 14718027/s
SOR scimark2 m 13683052/s

Table 1: Benchmarks

4.2 Result of Analysis

Table 2 shows the percentage of checks that

can be eliminated. This is measured by instru-

menting the benchmark class �le and getting

dynamic numbers.

name lower upper both not-null all
mpeg 89% 51% 50% 58% 26%
FFT 77% 61% 59% 97% 59%
LU 97% 64% 64% 68% 31%
SOR 99% 99% 99% 51% 50%

Table 2: Results of Analysis

The second and third columns show the per-

centages of lower and upper bounds checks that

could be safely removed. Usually we see that

a much higher percentage of lower bounds can

be proved safe than upper bounds. The fourth

column shows the percentage of bounds checks

where both upper and lower can be safely re-

moved. The �fth column shows the percentage

of safe null pointer checks, and the sixth col-

umn shows the percentage of array references

that are not null and with both bounds checks

safe. Clearly we are most interested in the last

column, when we determine that we can elimi-

nate both bounds and we know the array is not

null.

4.3 Class File Increase

The increase in �le size due to adding attribute

information is shown in Table 3.

The second column shows the �le size in

bytes after Soot whole program optimization.

The third column shows �le size of the opti-

mized class �le including array bounds check

attributes, and the relative increase in �le size

is listed in the last column. The �le size in-

crease depends primarily on the static count



name Soot -W with attr increase
mpeg 256349 276874 8.0%
FFT 2380 2556 7.4%
LU 1641 1907 16.2%
SOR 445 507 13.9%

Table 3: File Size Increase

of array references|each array reference needs

3 bytes of attribute information, and the class

itself needs a constant pool entry to store the

attribute name. Note that in this prototype

work we have made no e�ort to reduce or

compress this information; signi�cant improve-

ments should be possible.

4.4 Ka�e Performance Improve-

ment

We measured the Ka�eVM (ver 1.0.5 with JIT3

engine) modi�ed to take advantage of array

bounds check attributes. It runs on a dual

Pentium II 400MHz PC with 384Mb memory,

Linux OS kernel 2.2.8, and glibc-2.1.3. The

modi�ed JIT compiler generates code for an ar-

ray reference depending on the attribute. If no

attribute is present, it generates bounds check

instructions as in Figure 10. If the attribute

shows safe bounds check and unsafe null check,

it inserts null check code in place of the bounds

check (Figure 11). If both bounds checks and

null check are safe, no instructions are added.

cmp reg1, [reg2+off]

jge outofboundserror

Figure 10: Array Bounds Check Instructions

cmp reg1, 0
je nullpointerexception

Figure 11: Explicit Null Check Instructions

Table 4 gives the benchmark results for

the attribute-aware Ka�eVM. The \nocheck"

column shows the running time without any

bounds or null checks for the application

classes, while the \with attr" and \normal"

columns show the execution times of each

benchmark with and without attributes respec-

tively. Each benchmark gets some improve-

ment roughly scaled according to the percent-

age of safe checks. Note that LU without checks

actually has a performance degradation; this

anomaly is discussed in the next section.

name normal nocheck with attr
mpeg 80.83s 62.83s(22.3%) 72.57s(10.2%)
FFT 51.44s 48.84s(5.1%) 50.01s(2.8%)
LU 81.10s 81.88s(-0.9%) 78.15s(3.6%)
SOR 46.46s 41.23s(11.3%) 43.19s(7.0%)

Table 4: Ka�eVM Runtime

4.5 High Performance Compiler

Performance Improvement

The High Performance Compiler for Java runs

on a Pentium III 500MHz PC with the Win-

dows NT operating system. The structure of

the High Performance Compiler is such that

safe checks could be removed prior to its in-

ternal optimization phase, allowing subsequent

optimizations to take advantage of the reduced

code; this has resulted in a speed increase that

does not correlate as well with the relative num-

ber of checks removed. Tables 5 and 6 show

the benchmark times with and without internal

optimizations|the last two columns in each ta-

ble give the performance improvement when

either just array bounds checks or just null

pointer checks are completely removed; note

that as with Ka�eVM, there are some unex-

pected performance decreases.

Generally with the High Performance Com-

piler results, we see a very slight improvement

in the running time due to null pointer check

elimination (\normal" column and \nonull"

column respectively), and a signi�cantly larger

improvement due to array bounds check elim-

ination (\noarray" column). This re
ects the

relative cost of the two operations|where pos-

sible the High Performance Compiler imple-

ments null pointer checks by handling the asso-

ciated hardware trap if a null pointer is deref-

erenced. The machine architecture guarantees



name normal nocheck with attr noarray nonull
mpeg 50.88s 29.96s(41.1%) 39.14s(23.1%) 30.64s(39.8%) 47.94s(5.8%)
FFT 28.22s 25.09s(11.1%) 26.59s(5.8%) 25.15s(10.9%) 28.85s(-2.2%)
LU 39.99s 28.83s(27.9%) 32.33s(19.2%) 28.92s(27.7%) 38.39s(4.0%)
SOR 24.16s 15.46s(36.0%) 15.55s(35.6%) 15.18s(37.2%) 23.96s(0.8%)

Table 5: IBM High Performance Compiler without Optimizations

name normal nocheck with attr noarray nonull
mpeg 21.27s 15.93s(25.1%) 20.33s(4.4%) 17.12s(19.5%) 20.82s(2.1%)
FFT 17.39s 15.34s(11.8%) 19.45s(-11.8%) 16.08s(7.5%) 18.58s(-6.8%)
LU 21.50s 14.84s(30.8%) 21.27s(1.1%) 15.03s(30.1%) 21.49s(0.0%)
SOR 11.93s 8.88s(25.6%) 8.88s(25.6%) 8.88s(25.6%) 11.92s(0.1%)

Table 6: IBM High Performance Compiler with Optimizations On

a hardware exception if any very low memory

addresses (e.g. zero) are read or written. Thus,

since most null pointer checks are required be-

cause of an impending dereference or write any-

way, the null pointer check can be implemented

as an implicit byproduct of the subsequent code

(see Figure 12). The result is that the check

itself has relatively little apparent cost. Array

bounds checks, alternatively, require an explicit

test and branch, and so eliminating them has a

noticeable impact on the code being executed.

Surprisingly, the combination of eliminating

both kinds of checks together is signi�cantly

more e�ective than the sum of eliminating both

individually. This is a consequence of both op-

timization and the way null pointer checks have

been implemented through the hardware excep-

tion mechanism. An array element reference in

Java needs to be guarded by both a null pointer

check and an array bounds check on the array

index ([18]). In the High Performance Com-

piler, the code generated for an array bounds

check naturally consists of a load of the array

size followed by a comparison of the size with

the index in question. The array size �eld, how-

ever, is o�set only a small distance in memory

from the start of the array object; the hard-

ware supports trapping on a range of low ad-

dresses, and so a dereference of the array size

�eld is as e�ective as dereferencing the object

itself at generating the required hardware trap

if the original object is null. Subsequent op-

timizations easily recognize this situation and

combine the two checks into the same actual

code; the code output for an array load or store

is thus often identical whether a null pointer

check is performed or not (see Figure 12).

The symmetric situation, eliminating array

bounds checks without also eliminating null

pointer checks, is also not as e�ective as one

might expect. In order to remove the array

bound check while leaving behind the implicit

null pointer check, speci�c code to dereference

the array object must be inserted in order to

still trigger the hardware trap mechanism if the

array object is null (e.g. code in Figure 12 is re-

placed by the code in Figure 13). This means

that the bene�t of deleting the bounds check

code is o�set slightly by the code required to

explicitly dereference the object as part of a

null pointer check.

mov eax,[ebx+offset] (implicit null ptr check)
cmp eax,edx
jge outofboundserror

Figure 12: Array Bounds Check with Implicit
Null Pointer Check.

It is interesting that anomalous results oc-

cur in the FFT runs as well as the LU run

of Ka�eVM. Here the benchmark runs with-

out some or all runtime checks are actually

slower than the versions with checks. Since we

are only reducing the checking overhead, and



test eax,[eax] (explicit null ptr check)

Figure 13: Null Pointer Check Inserted if Array
Bounds Checks Eliminated.

never increasing it, it seems counterintuitive

that performance would ever be less than the

baseline for any of our runs. However, in cer-

tain key benchmark functions the code changes

due to eliminating some but not all bounds

checks seems to negatively impact instruction

cache utilization, and we �nd our code highly

sensitive to the exact sequence of bytes be-

ing executed. For instance, if the benchmark

is compiled so as to arti�cially ignore the ar-

ray bounds attribute information for a speci�c

function (and thus generate normal bounds

checks regardless of whether attribute informa-

tion tells us they are unnecessary), much of the

performance degradation is eliminated. The in-

teraction of optimizing compilers with optimiz-

ing hardware is clearly a complex issue with

many tradeo�s, and we may not be able to ben-

e�t all programs equally.

5 Related Work

Work related to this paper falls into three cat-

egories: (1) other tools for optimizing class

�les; (2) related techniques for optimizing ar-

ray bounds checks; and (3) other uses of class

�le attributes.

5.1 Class File Tools

The only other Java tool that we are aware

of that performs signi�cant optimizations on

bytecode and produces new class �les is

Jax[24]. The main goal of Jax is application

compression where, for example, unused meth-

ods and �elds are removed, and the class hier-

archy is compressed. Their system is not fo-

cused on low-level optimization and it does not

handle attributes.

There are a number of Java tools that pro-

vide frameworks for manipulating bytecode:

JTrek[15], Joie[5], Bit[17] and JavaClass[13].

These tools are constrained to manipulating

Java bytecode in their original form, how-

ever. They do not provide convenient inter-

mediate representations such as Baf, Jimple or

Grimp for performing analyses or transforma-

tions, they do not allow the production of byte-

code, nor do they handle attributes.

5.2 Array Bounds Checks

Array bounds check optimization has been per-

formed for other languages for a long time.

Value range analysis has been used to remove

redundant tests, verify programs, or guide code

generation [10]. Further, there are a number of

algorithms that use data 
ow analysis to re-

move partial redundant bounds checks [9, 16].

More recently, the Java language has been

the focus of research. Array bounds check elim-

ination has been implemented in JIT compilers

[22, 4]. Midki� et. al. [19, 20] proposed a Java

Array package and loop versioning algorithm

to overcome the bounds check overhead in Java

scienti�c programs. An algorithm for general

applications was presented in [2]. Compared

with these intraprocedural algorithms, our al-

gorithm can take advantage of �eld information

and our analysis for �nding rectangular arrays.

Field analysis is useful to other optimizations

such as object inlining and escape analysis [8].

Knowing an array's shape can also help mem-

ory layout of array objects [3].

5.3 Using Attributes

To the best of our knowledge there has been

relatively little work done in investigating the

possible uses of class �le attributes to improve

performance. We are aware of only two re-

search groups that have been investigating this

topic and both are focused on performance of

bytecode.

Hummel et. al. gave an initial study on us-

ing attributes to improve performance, where

they showed, using hand-simulation, that per-

formance could be improved using attributes

[11]. More recently this group has presented a

system built on guavac and kaffe [1]. Their

modi�ed guavac compiler translates from Java

source code to their own intermediate repre-

sentation, and then converts this intermediate

representation to annotated bytecode, which is



then executed using their modi�ed kaffe JIT.

They have concentrated on conveying register

allocation information. This involves develop-

ing a virtual register allocation scheme where

one assumes an in�nite number of registers and

then proceeds to statically minimize the num-

ber that are actually used.

The second group, Jones and Kamin, have

also focused on register allocation [14]. Their

approach monotypes each virtual register,

which allows for eÆcient runtime veri�ability

of their attributes; attributes to deal with spills

are also presented. Their experimental results

also exhibit signi�cant code speedups.

Compared to these groups, our work is more

focused on providing a general purpose frame-

work for producing attributed class �les. The

input to our system can be class �les produced

by any compiler, and we provide the neces-

sary infrastructure to convert the class �les to

typed 3-address intermediate code and to per-

form analysis on this intermediate code. We

also provide a simple mechanism for converting

the resulting 
ow analysis information to class

�le attributes. In this paper we have demon-

strated how this scheme can be applied to array

bounds checks; however, it can easily be ap-

plied to other problems, including the register

allocation problem.

6 Conclusions and Future

Work

In this paper we have presented an approach

to using class �le attributes to speed up the

execution of Java bytecode. Our approach has

been designed and implemented as part of the

Soot bytecode optimization framework, a sys-

tem that takes as input any Java bytecode and

produces optimized and attributed bytecode as

output.

In our system, the compiler writer develops

the appropriate 
ow analysis for the Jimple

typed 3-address representation, and then uses

tags to attach attribute information to the ap-

propriate hosts (statements, methods, classes

or �elds). If the tags are attached to statements

(Units), the compiler writer can also specify a

tag aggregator which combines all tags within

a method. The Soot system applies this aggre-

gator when producing the attributed class �les.

As part of our system we have produced an ex-

tended version of the Jasmin assembler which

can now support attribute directives and pro-

duces attributed class �les.

Our system is very easy to use, and we

showed how to apply it to the problem of elim-

inating array bound checks. We provided an

overview of our array bounds check analysis

and we showed how the results of the analysis

can be propagated to attributes. We also mod-

i�ed two virtual machines, the Ka�e JIT and

the IBM HPCJ ahead-of-time compiler, to take

advantage of the attributes, and we presented

experimental results to show signi�cant perfor-

mance improvements due to the array bounds

check attributes.

In our current approach our attributes are

not necessarily veri�able. Given veri�able class

�les and a correct analysis, we guarantee to

produce correct attributes. Thus, if our sys-

tem is used as a front-end to an ahead-of-time

compiler, there is no problem. However, if our

attributed class �les are transmitted from our

system to an external VM via an insecure link,

we currently have no way of ensuring that a

malicious agent does not change the attributes.

We would like to examine ways of signing the

attributed class �les so that we could ensure

that they had not been tampered with.

Based on our work so far, we believe that

the attributes supported by our system can be

used for a wide variety of tasks as outlined in

the introduction, and we plan to work on sev-

eral of these in the near future. In particular,

we wish to examine how escape analysis and

side-e�ect information can be expressed as at-

tributes, and we plan to examine how some of

the pro�le-based attributes can be used. We

also would like to see how attributes can be

used with other virtual machine implementa-

tions.
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