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Abstract

The emergence of a new class of highly dynamic and
object-oriented programming languages presents new
challenges to the established field of Compiler Opti-
mization. With the advent of Java and it’s popular-
ity, there is now a great incentive for addressing these
issues. This paper describes how the Runtime perfor-
mance of Java could benefit by annotating Java code
by means of classfile attributes and details how support
for this feature has been added and implemented in the
Soot Framework.

1 Introduction

Java is a clean, dynamic object-oriented language
that is compiled into classfiles that contain bytecode.
Bytecode is a high-level, platform independent pro-
gram representation that is interpreted by Java Vir-
tual Machines (JVMs). Performing optimizations at
the classfile level has distinct advantages with respect
to optimizing JVMs:

• Classfiles are portable across all platforms having
JVM implementations; optimizing classfiles has
the potential of improving performance across all
these JVMs.

• Classfile optimizations are performed statically
and need only be done once; dynamic on-the-fly
JVM optimizations incur runtime costs and must
be repeated for each program run.

Hence optimizing classfiles is highly desirable; un-
fortunately although significant gains can be achieved
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by performing such optimizations [1], this approach is
inherently limited by the nature of bytecode. Byte-
code, as a secure, semantically rich platform indepen-
dent abstraction, is a much higher-level code represen-
tation than native machine code; typically one byte-
code instruction will map to several native machine
instructions. As a result many traditional compiler op-
timizations cannot be expressed at the bytecode level
and thus cannot be generated statically by an ahead-
of-time compiler.

On another thread, because of the nature of the
Java Runtime there is an opportunity for significant
dynamic, profile based optimizations. However at
present such optimizations are only done by high per-
formance JVM implementations as there is no stan-
dard way to express such information in bytecode.

As the previous comments should have made clear,
there is an information gap between the static analy-
sis phase and the Java runtime which consequently im-
poses a heavy performance burden on JVM implemen-
tations. What is needed is a mechanism to bridge this
gap while preserving all the characteristics of the Java
platform as well as the heavy software engineering in-
vestments made in current JVMs. One solution to this
problem is to make use of classfile attributes. Classfile
attributes are a very flexible mechanism to attach ar-
bitrary information to classfiles. Such attributes can
be user defined and attached to classfiles without al-
tering their semantics: a JVM implementation will
safely ignore attributes it does not understand .

2 Classfile Attributes

The De facto file format for Java bytecode is the
classfile format [11]. Builtin to this format is the no-



attribute_info {
u2 attribute_name_index;
u4 attribute_length;
u1 info[attribute_length];

}

Figure 1: Classfile Attribute Data Structure

tion of attributes. Classfile attributes are simple data
structures present inside classfiles having the format
specified by Figure 2.

In Figure 2, attribute name index is a 2 byte
unsigned integer value corresponding to the index of
the attribute’s name in the classfile’s Constant Pool,
attribute length is 4 byte unsigned integer specify-
ing the length of the attribute’s data and info is an
array of attribute length bytes that contains the
actual uninterpreted raw attribute data.

A handful of attributes are already defined as part
of the Java Virtual Machine specification [11]; in par-
ticular the actual bytecode for a non-abstract, non-
native method is contained in the Code classfile at-
tribute. However the power of the attribute mech-
anism lies in the fact that arbitrary attributes can
be user defined, as long as their names to not clash
with those of the standard attributes. Adding custom
attributes will not break compatibility with exiting
JVMs as these will simply ignore unknown attributes,
without altering the semantics of the given classfile.

Attributes can be associated with 4 different struc-
tures within a classfile. In particular classfiles have
one class info structure as well as method info and
field info structures for each of the class’ meth-
ods and fields respectively. Each of these 3 struc-
tures contain an attribute table which can hold an ar-
bitrary number of attribute info structures. Each
non-native, non-abstract method’s attribute table will
contain a unique Code attribute to hold the method’s
bytecode. This Code attribute has itself a attribute
table of it’s own, that can contain a few standard at-
tributes and arbitrary custom attributes.

2.1 Possible Uses for Attributes

As hinted at in the previous section, the nature
of performance enhancing classfile attributes could
be dual: attributes could convey either static com-
piler analysis information or execution profile infor-
mation. We shall examine both these application do-
mains presently.

2.1.1 Static Compiler Analysis Information

As stated previously, many traditional compiler opti-
mizations cannot be fully expressed in bytecode be-
cause of it’s abstract high-level nature; however by
defining custom classfile attributes it is possible to get
around this problem. The following is a non exhaus-
tive list of possible applications for such attributes.

Register Allocation For each method, register al-
location can be abstracted and computed stati-
cally. This is definitely a promising avenue for
attributes and has already been show effective by
2 research groups [2] [3].

Array Bound Checks The Java Language man-
dates that each array access be checked to be
valid (within the array’s bounds). This is done by
JVMs at runtime; however as previous work has
shown, many such accesses can be shown valid
at compile time. These could be annotated by
means of attributes.

Null Pointer Checks The Java Language man-
dates that each object reference be determined
non-null before it is dereferenced. Although this
is often achieved by hardware traps which incur
no runtime performance overhead, some architec-
tures could benefit from a nullness attribute.

Stack Allocation of Objects In bytecode there is
only one instruction for allocating memory for
objects, and the memory is always allocated on
the heap. However certain static analyses such
as escape analysis can determine that some ob-
ject can be safely allocated on the stack, thus
potentially reducing some memory management
runtime overhead [4].

Runtime Static Method Binding Virtual
call sites that cannot be safely resolved statically
often can be resolved dynamically if certain con-
ditions holds. These conditions could be supplied
as annotations.

Parallel Computations In a method, if two regions
of code, or method calls are deemed to be in-
dependent then this could be annotated and the
JVM would be given a chance to execute them in
parallel.

Exception Handling as Control Flow Some ap-
plication use exception handling intensively as a
control flow mechanism. Providing such a hint
could allow a JVM to potentially use a possibly



different exception handling mechanism tailored
to this type of situation. The expected target
of an exception handler could be specified, and
given certain constraints, the exception handler
could be called directly from the catch clause.

2.1.2 Profile Information

The most successful paradigm to date for squeezing
speed out of Java, has been for JVMs to tune their ex-
ecution according to the execution profile of a program
by natively compiling the most heavily used pieces of
code. Hence JIT enabled JVMs typically compile only
the most executed methods based on their dynamic
appraisal of a specific run. This has yielded significant
speed improvements over purely interpreted bytecode
and much effort is still being invested in this approach
as the Java HotSpot Project gives testimony [12].

The drawback with this approach is that an overly
heavy burden is placed on JVMs that must dynam-
ically profile the execution of the code they run and
make optimization decisions on-the-fly. All this incurs
a runtime cost and can lead to highly complex and
buggy JITs. A solution would be to use attributes to
provide such profiling information gathered on previ-
ous, ahead-of-time runs of a program. Given that most
programs present a similar execution profile from run
to run, such information could ease the burden of JIT
implementors and reduce runtime profiling cost. The
following is a non-exhaustive list of possible applica-
tions for such attributes.

Hot Methods Methods could be given a hotness rat-
ing. This could provide useful hints for JITs in
helping them decide which methods to compile.

Persistent Objects Allocation sites could be given
a persistence rating based on the expected life-
time of an allocated object. This could provide a
useful hint to high-performance garbage collectors
on how to efficiently manage object allocation.

Garbage Collection There is no garbage collector
that is optimal for all programs. For some pro-
grams a generational garbage collection is a big
plus, while for others it is overkill or the gen-
erational allocation assumption simply does not
hold. Based on profiling, annotations could be
produced to specify which type of GC would be
best for a program. A JVM could then use this
hint to select an appropriate GC at runtime.

Branch Prediction Annotation
Annotating which bytecode branches are most

frequently taken could help a JVM produce more
efficient native code.

Hot Data Based on profiling, if certain objects are
often accessed as a group, this information could
be conveyed to the JVM for better memory al-
location and data locality. This attribute could
provide a virtual memory map for the JVM.

2.2 Annotation Issues

In deciding what to annotate and in designing spec-
ifications for custom attributes many issues must be
considered. First it is highly desirable that the an-
notations be compatible with Java’s execution model.
That is, annotations should be platform independent
and ideally should not compromise the verifiability
of classfiles. The latter requirement might mandate
special considerations while designing an attribute
scheme. For example in [3]’s virtual register alloca-
tion scheme, virtual registers are monotyped to ensure
speedy verifiability at runtime. Luckily for many of
the annotation ideas exposed previously, verifiability
is a non-issue: for example most profile annotations
can simply be viewed as ’hints’ given to the runtime.

In designing annotations it is also important to take
into account the classfile bloat that will result from
these. This could have negative performance affects
due to network bandwidth and caches; furthermore,
the time needed to process the annotations themselves
could overshadow any possible gains that could be
obtained from these. Finally annotations should be
general enough so that they provide benefits for most
programs on most architectures.

3 Attribute Support in Soot

Soot [8] is an object-oriented bytecode analysis and
optimization framework implemented in Java and de-
veloped by the Sable Compiler Research Group at
McGill University [7]. In the context of this project,
we have extended the framework to support the em-
bedding of custom, user defined attributes in classfiles.
The Soot framework enables one to easily define and
implement various compiler analyses. The added at-
tribute support as is presented in this section, enables
the implementation of a wider range of such analyses,
encompassing those whose results cannot be expressed
directly in bytecode.



public interface Host
{

public List getTags();
public Tag getTag(String aName);
public void addTag(Tag t);
public void removeTag(String name);
public boolean hasTag(String aName);

}

Figure 2: The Host Interface

public interface Tag
{

public String getName();
public byte[] getEncoding();
public String toString();
public void setValue(byte[] value);

}

Figure 3: The Tag Interface

3.1 The Host and Tag Interfaces

Attribute support in Soot has been achieved by
adding two key interfaces: Host and Tag. Hosts are
objects that can hold Tags; conversely Tags are objects
that can be attached to Hosts. These interfaces are
listed in Figures 2 and 3. There are 4 Soot classes that
implement the Host interface; these are SootClass,
SootField, SootMethod and Unit, the latter of which
is Soot’s abstract notion of a bytecode instruction.
Application specific subclasses of Tag can be created
and attached to these Hosts by implementors of Soot
based analyses. As can be easily inferred, there is
a natural mapping between these 4 Soot classes and
the attribute architecture present in classfiles as de-
scribed in Section 2. Tags attached to a SootClasses
will be compiled into an entry in the attribute table
of the corresponding class and similarly for methods
and fields. Tags attached to Soot Units will compiled
into entries of the Unit’s method’s Code attribute ta-
ble, along with the bytecode Program Counter (PC)
of the specific instruction they index.

3.2 Producing Annotated Classfiles

The process of translating Tags held by Soot
Hosts into actual classfile attributes is now de-
tailed. In the current state of affairs Soot pro-
duces Jasmin code [9] for it’s processed classfiles.

The Jasmin code is then transformed by Jasmin
into actual classfiles. To enable attribute support,
we have extended the Jasmin syntax with 4 new
directives: .class attribute, .method attribute,
.field attribute and .code attribute. These all
have the following format:

attribute directive attribute_name attribute_value

where attribute name corresponds to the at-
tribute’s name that will be stored in the classfile’s
ConstantPool and attribute value is the actual
value of the raw byte array for the attribute which
is encoded in Base64 in order to maintain the textual
format of Jasmin code. Our custom Jasmin version
will compile the appropriate attribute in the resulting
classfile from these triples, translating the attribute
values in Base64 back to a raw byte array. There is
a peculiarity to this scheme: for .code attribute,
Jasmin will replace the first 2 bytes of the attribute’s
data by the PC of the instruction it is referring to, as
Soot currently lacks a mechanism for abstracting the
Program Counter for a method’s bytecode (see Sec-
tion 5.1). Hence at present, all Soot generated Code
attributes in classfiles start with a 2 byte PC index
that specify an instruction context.

As expected each Tag attached to a SootClass will
generate a corresponding .class attribute in the
Jasmin code, and similarly SootField attributes trans-
late to .field attribute directives, SootMethod at-
tributes to .method attribute directives and Unit at-
tributes to .code attribute directives.

These directives must be produced in Jasmin code
at specific locations:

.class attribute These must be found immediately
before the class’ field declarations.

.field attribute These must be found immediately
after the field declaration they relate to.

.method attributes These must be found immme-
diately after the method declaration they relate
to.

.code attribute These must be found immediately
after the instruction they relate to.

Sample Jasmin code embedding .code attributes
is given in Figure 4.

3.3 Auxiliary Support in Soot for Tags

Several utility classes and interfaces have been
added to Soot to provide additional support for Tags.
An overview of these is now given.



iadd
daload
dastore
.code_attribute ArrayCheckTag AAAB
dastore
.code_attribute ArrayCheckTag AAAB
aload_0

Figure 4: Sample Annotated Jasmin Code

3.3.1 The TagManager class

This class is meant to contain static methods to pro-
vide Tag related functionality. At present it provides
a flexible facility for printing out Tags: a TagPrinter
can be registered and will subsequently be used for
printing calls made through it’s interface.

TagManger also currently provides a lookup mech-
anism for mapping an attribute name onto the proper
Soot class (if any) corresponding to the attribute. This
is useful to decode Soot attributes found when reading
classfiles.

3.3.2 The TagPrinter Interface and the Std-
TagPrinter class

The TagPrinter interface is meant to be implemented
by classes that can print Tags. For example a
PreatyPrinter class or a XML printer class could im-
plement this interface formating tags in a distinct
fashion. As previously noted, a TagPrinter is reg-
istered with the TagManager to configure the latter’s
Tag printing behavior.

One such class that has been implemented and is
now available in Soot is the StdTagPrinter that prints
out attributes in a easily parsible format. This facility
is used by the PrintAttributes utility (see Section 6).

3.4 A Sample Attribute

A first Soot attribute is already being developed
and is currently successfully supported by the frame-
work. This attribute has been tentatively named
ArrayCheckTag and can be used to annotate array
accesses that have been proven by some analysis to be
within bounds, thus indicating to a JVM that it can
safely omit corresponding runtime array bound checks.
This attribute is currently being used in Feng Qian’s
work at McGill University in implementing a Soot
based analysis for unnecessary array bound checks
elimination. Figure 5 exhibits the salient point in his

if (maxValueMap.containsKey(index)) {
AbstractValue indexV =
(AbstractValue)maxValueMap.get(index);

if (indexV.lessThan(arrayLength))
upCheck = false;

}
else if (index instanceof IntConstant) {
AbstractValue tmpAv =

AbstractValue.newConstantValue(index);
if (tmpAv.lessThan(arrayLength))
upCheck = false;

}
Tag checkTag = new ArrayCheckTag(lowCheck, upCheck);
if (!lowCheck || !upCheck) {
> s.addTag(checkTag);
}

Figure 5: Adding an ArrayCheckTag to a Unit

analysis. In the given code, having determined that ei-
ther an upper array bound or lower array bound need
not be checked, he creates an ArrayCheckTag and at-
taches it to the Jimple statement that contains the
array reference. Soot then automatically takes care
of propagating these tags to the appropriate bytecode
array access instruction at code generation time.

The current encoding of the ArrayCheckTag at-
tribute’s data at the bytecode level compromises 3
bytes. First like currently all Soot generated Code
level attributes the first 2 bytes are the PC of the byte-
code instruction it references. The remaining byte is
used to encode which of the upper and lower bound
checks can be omitted. This in fact requires only 2
bits of the byte. If the first bit is on, then an the up-
per bound check can be omitted and if the second bit
is on then the lower bound check can be omitted.

Thus the total size of an ArrayCheckTag attribute
in a classfile is 9 bytes (6 bytes for the header and 3
bytes for the data), plus the cost of the ArrayCheck-
Tag’s ConstantPool entry which is shared by all such
attributes in a given class. Hence annotating array
bound checks can be done effectively in terms of code
size. Note however that the size and format of this
attribute are likely to grow somewhat as we standard-
ize the encoding of Soot attributes. In particular we
plan on introducing major/minor version numbering
of attributes for future scalability.



> java PrintAttributes FFT.class
<FFT:public void <init>()>+61/ArrayCheckTag AA==
<FFT:public void <init>()>+73/ArrayCheckTag AA==
<FFT:public void <init>()>+74/ArrayCheckTag AA==

Figure 6: Sample Output of the PrintAttributes Util-
ity

4 Tools to Visualize Annotated Class-
files

4.1 PrintAttributes Utility

This is a simple utility to print out custom at-
tributes in a easily parsible format. It uses JavaClass
API [10] to extract the attributes from the specified
classfile and uses Soot’s StdTagPrinter class to print
them out. The utility currently only takes one argu-
ment, the filename of the class to print out. Sample
output for a classfile that has been annotated by the
array bounds check analysis is given in Figure 6.

4.2 Hypertext Browsing of Attributes

We have extended and modified JavaClass’
class2HTML utility in support of custom attributes.
The resulting utility processes classfiles and produces
corresponding HTML files that have hyperlinks to
attributes. The utility uses Soot to format the
attributes it finds. If an attribute is understood
by Soot it will be formatted in a human friendly
fashion, usually by instantiating a class for the at-
tribute and calling upon it’s toString method. Sam-
ple output produced by this utility can be found at
http://www.cs.mcgill.ca/~patrice/cs621/FFT.html

5 What’s Missing for more Complete
Attribute Support

5.1 Abstracting the PC

It is at times useful to produce attributes whose
data contains references to the explicit value of the PC
(Program Counter) of certain bytecode instructions.
This cannot be done easy in Soot since Soot works in
terms of Units and not absolute bytecodes. Although
it would be possible to let Tags refer to Units and then
translate these references into PCs at the Jasmin level,
this scheme still presents many problems as Units in

Soot can be edited, reordered or otherwise deleted by
various optimizations, the effect of which would have
to be reflected in the referencing Tags. We are cur-
rently still evaluation how abstracting the PC could
be best achieved in the Soot framework.

5.2 Reading Soot Attributes back into
Soot

At present we can produce custom Soot annotated
classfiles but we cannot read these same attributes, or
any other custom attributes, back into Soot. It would
also be desirable to parse attributes from text files
when processing a set of class files. These issues are
presently being addressed..

6 Related Work

To the best of our knowledge there has been little
work done in investigating the possible uses of class-
file attributes to improve the performance of byte-
code. We are aware of only 2 research groups that
have been investigating this topic and both are focused
on conveying register allocation information through
attributes [2] [3]. This involves developing a Virtual
Register allocation scheme where one assumes an in-
finite number of registers and then proceeds to stati-
cally minimize the number that are actually used. The
scheme developed by [3] monotypes each virtual reg-
ister which allows for efficient runtime verifiability of
their attributes; attributes to deal with spills are also
presented. Experimental results obtained to date by
both groups exhibit significant code speedups.

7 Future Work

Most of the attribute support in Soot is now com-
plete; although some important features still require
our attention, work can now be more focussed on de-
veloping innovative analyses that make use of this new
facility. It will also be crucial that runtime systems
understand and make use of the classfile attributes
generated by these. In this respect we expect to col-
laborate with IBM’s HPCJ [6] group and investigate
how the Kaffe OpenVM [5] could be modified in sup-
port of these. Once we have such runtime support
we will conduct experimental results to validate the
soundness and effectiveness of our annotations.



8 Conclusion

Classfile attributes can be exploited to convey ex-
tra information to JVMs and allow for faster code ex-
ecution speeds. Support for generating custom class-
file attributes has now been added to The Soot byte-
code Optimization Framework. Soot analyses can now
make use of a simple API to annotate various Objects
in the framework; classfile attributes will automati-
cally be generated from these annotated objects. Two
tools have been developed to view custom annotated
classfiles. One of these allows for hypertext brows-
ing of the generated annotated classfiles. Although
attribute support in the Soot framework is now ex-
tensive, there still remains some work to be done in
order to have a more complete and flexible implemen-
tation; most notably we must find a way to abstract
the PC for methods in Soot. Nonetheless Soot is now
attribute enabled can be currently be used as an effec-
tive tool to generate attributes by those who require
such functionality.
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