Teaching CPU Architecture:
A New Way to Provide Effective Scaffolding

Elizabeth Patitsas, Vanessa Kroeker, Rachel Jordan, and Kimberly Voll
University of Toronto University of British Columbia Centre for Digital Media

The Paper CPU: an activity for introducing CPU architecture — and to scaffold computer simulations!

Memory and Registers Fetch and Decode Execute ALU and Decide Branch

MEMORY & REGISTERS (Steps 1, 3, and 7) FETCH AND DECODE (Steps 1, 2, and 6) EXECUTE (Steps 2, 3, 4,5, 6 and 7) ALU AND DECIDE BRANCH (Steps 4 and 5)

. The j f the Arithmetic Logic Unit i rithmetic and logi rations in mputer.
As you go through the program, refer to the reference sheet at the end of this document to see where to go next when completing each step. Fetch and Decode will ask for the instruction stored in memory, which will be 6 bytes, starting at the address PC. Execute works with a lot of the rest of the computer to make sure every instruction is run properly. e job of the Arithmetic Logic Unit s to do the arithmetic and logic operations in the compute

The value of PC will come from Execute. Parse the six bytes as follows: . Start off by getting the following things: iCd, iFn, valC, valP, srcA, srcB, and dstE from Fetch/Decode.
MEMORY * the 1st hex digit is the instruction code (iCd) . scrA is the register address where the value you will use for valA is stored. Get this value from the register, and do the same
» the 2nd hex digit is the instruction function (iFn) with srcB to get valB.

STEP 1 Start by getting aluA and aluB: STEP 2 Calculate a new hexadecimal value, valE:

If iCd is: aluA aluB IfiCDis: | andiFnis __, then: valE
1 0 0 ~6 0,1,2 AluB + aluA

Below is a program stored in memory, beginning at memory address 0. At each memory address, one byte (2 digits) of data is
stored. Memory addresses are the numbers on the top row. * the 3rd hex digit is register A (rA) . Send iCd, iFn, valA, valB, valC, aluA, and aluB, over to ALU/DECIDE and wait for two values back: valE and bch.

» the 4th hex digit is register B (rB) . The nextPC will be valP, with one exception: when iCd = 7 AND bch = 1. In this case, we will move to somewhere else in
el R e e e e R e e e e e e e e e e e e e e e e e e e * the remaining hex digits (8 digits, or 4 bytes) are called valC our program, and nextPC will be valC. Pass nextPC to the PC cell in the next empty column of Fetch/Decode.
30 8200 0000 013081 0000 0005 3080000000 0062 11|71 88 00 00100 24 60 10 61|21 70/88 00 00 00|12 10

3 valC 0 6 0 aluB + aluA
6 valA valB 6 1 aluB - aluA
7 valC 0 6 2 aluB A aluA

And then calculate the following four values: (NOTE: ALL VALUES ARE IN HEXADECIMAL.) - Lastly, tell Memory to write the value valE to the register with address dstE.

STEP 3 Your job is also to figure out if the conditions are right for branching—Execute will then decide if we are actually going to branch.

IfiCdis ___, then: valP SrcA srcB dstE Get these values from Fetch/Decode (Step #1)
PC+2 F (the hex value) F (the hex value) F (the hex value)

1
Our computer has 8 registers — 8 memory slots in the cpu — to hold onto the numbers we are currently working with. Like main 3 PC+6 F (the hex value) F (the hex value) rB
memory, each register has an address, shown in the left row. The columns to the right of these addresses represent clock cycles that 6 PC+2 rA B rB
7

the computer goes through. F (the hex value) F (the hex value) F (the hex value)

REGISTERS If iCD is: and iFn is __, then: bch

~7 , 1, 0

0 jump unconditionally: bch =1

7
7 1 If valE < 0 in the previous clock cycle, then bch = 1. Otherwise, bch = 0.
7 2 0

Address | Unless a new value is written to a register, the register keeps its previous value: copy these values from the previous clock cycle.
0 0 0

PC C
Instruction
iCd

Get these values from Execute:

et these values from registers (Step #2)

Get these values from the ALU (Step #3)

0

Calculate this value (Step #4)

Note: We have no register F. If you try to access register F, return a 0; if you're trying to write to register F, just move on. F is used as a flag
to indicate we don't need to read or write to memory in a given instruction.

NlHH o R[N o w
~lmiH O v~ o ol w

Finally, save valE back to the register at dtsE (Step #5)

The Paper CPU Activity Our Logisim Simulation Advantages of the Paper CPU You can do it too!

How it works: « Previously, we taught CPU architecture by starting Effective scaffolding: students become comfortable The activity is freely available at http:
= Students do the activity in groups with a circuit simulation of a “simple” CPL with the structure of a CPU //www.ugrad.cs.ubc.ca/~cs121/2011W2/
= Each student acts as one of the four stages = Students found even the simplest version of it Learning for the whole class: jumping to Logisim Labs/Lab9/playcpu. pdf
= Students calculate and pass values around overwhelming! only benefited the top students

REFERENCE SHEET

Goals: " We Created the Paper CPU as an aCtIVIty to Discovery |earning: t"]e StUdentS typica”y “discover” Sequence of steps to be completed, including values to pass during a clock cycle:

= Introduce CPU architecture Scaff0|d the Y86 simulation pipelining and data forwarding on their own. , Fotch/Decods anlyses th instructon /@vae .
Ta gatinaide & module: and forwards appropriate information @ oc 5
4\

L' Makn qure i ou'tein poket mode. the finger bukion in the uppeeele . MM Y T 1\ about the function of the instruction beh \
n,

« Determine what a mystery program does e | T | Collaborative learning: by putting students into a T LR S AW) S

nnn

E.
L

. e e b p o MEEE e forwards relevant data for the ALU to \ j \ _ .
- Y [| R N a0 form th t tati . . !
How we implement it: group to collaborate. T R R L A
. N . . m . . stores the results as (valE) it also @ and ¢ ’
bich determines how the program will @

0 » " " " " : o e d d . s : Y I v . . . advance (bch)
The activity is used as an introduction to CPU | [| Little overhead: little to no extra teaching load; 57 b pdats e oot

begin again at step 1. va é) va

architecture
« It provides scaffolding for teaching a simulated

reduces student questions later on.

Different instructions:
iCd iFn Does this:

Halts the computer

Notes for afterwards: students have a paper copy of

Moves a value into a register

Y86 CPU in Logisim o 1o add to their notes for the cl : :
. eir work to add to their notes for the class. : :
« At UBC we run the Paper CPU in lab followed : : coniion .

Jump if less than or equal

Improved student buy-in: we survey our students

directly by the Logisim simulation o T Il f—=—% =

T : - S B B e B N ST S == v 3 B I .. - - -
= AT UToronto we do the activity on its own in et e |l after every lab; since adding the activity student

tutorial A —— T B feedback has improved significantly!

L auatua i | [I N Figure: Reference sheet for the Paper CPU

Acknowledgements

= The Paper CPU has been developed with the feedback of UBC's CPSC 121 students and TAs — a big thank you to them!
TISIESIIG{’%FO = The Y86 Logisim simulation was made by Patrice Belleville and Steve Wolfman, based on Bryant and O’Hallaron’s Y86 architecture. ®
) = Development was partially funded by UBC's CS Science Education Initiative.

NSERC
CRSNG

THE UNIVERSITY OF
BRITISH COLUMEBIA

= E.P. is supervised by Steve Easterbrook and Michelle Craig; travel funding from NSERC.

http://www.ugrad.cs.ubc.ca/~cs121/2011W2/Labs/Lab9/playcpu.pdf
http://www.ugrad.cs.ubc.ca/~cs121/2011W2/Labs/Lab9/playcpu.pdf
http://www.ugrad.cs.ubc.ca/~cs121/2011W2/Labs/Lab9/playcpu.pdf

