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Abstract

Compiling high-level languages requires complex code transformations

which rearrange the abstract syntax tree. Doing so can be particularly

challenging for languages containing binding constructs, and often leads

to subtle errors. In this thesis, we demonstrate that higher-order abstract

syntax (HOAS) encodings coupled with support for contextual objects

offer substantial benefits to certified programming. We implement a

type-preserving compiler for the simply-typed lambda-calculus, including

transformations such as closure conversion and hoisting, in the dependently-

typed language Beluga with first-class support for HOAS and contextual

objects. Contextual objects allow us to directly enforce contextual invariants

which would otherwise be difficult to express when variable contexts exist

implicitly on a meta-level, as it is the case with other HOAS encodings.

Unlike previous implementations, which have to abandon HOAS locally in

favor of a first-order binder representation, we are able to take advantage

of HOAS throughout the compiler pipeline, thereby avoiding having to

implement any lemma about binder manipulation. Scope and type safety of

the code transformations are statically guaranteed, and our implementation

directly mirrors the proofs of type preservation.
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Résumé

La compilation de langage de haut niveau demande l’application de

transformations complexes réorganisant l’arbre de syntaxe abstrait (AST).

Une telle réorganisation de l’AST peut être particulierement difficile lorsque

le language contient des constructions de liaison de variable, d’où peuvent

découler nombre d’erreurs. Dans ce mémoire, nous démontrons l’utilité de

l’encodage d’opérateurs de liaison par syntaxe abstraite d’ordre supérieure

(HOAS) et de terme contextuel (CMTT) pour le développement de pro-

grammes certifiés formellement. Pour ce faire, nous avons implémenté un

compilateur préservant les types pour un lambda-calcul typé dans Beluga,

un langage de programmation supportant les types dépendants et une notion

de terme contextuel. Les termes contextuels nous permettent d’imposer

directement des propriétés constantes de nature contextuelle qui seraient

autrement difficile à exprimer dû à la nature du contexte d’hypothèse,

dictée par l’encodage choisi. Contrairement aux développements précédents,

qui abandonnent l’encodage d’opérateur de liaison par syntax abstraite

d’ordre supérieur pour un encodage de premier ordre, il nous est possible

de conserver notre encodage d’orde supérieur tout au long de la compi-

lation, évitant par ce fait l’implémentation manuelle d’opérations pour

la gestion d’opérateurs de liaison. Notre compilateur est formellement

vérifié pour le respect de la portée et la préservation des types. De plus,

notre implémentation est en correspondance directe avec une preuve de

préservation des types, résultant en un minimum de code superflu.
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CHAPTER 1
Introduction

When programming critical software, an important issue resides

in determining that the software corresponds to the specification from

which it is built. Certified software [Shao, 2010] is software whose source

code is accompanied by a formal, machine-checkable proof that they are

well-behaved. That a software is well-behaved is established through the

correspondence between the implementation and its functional specification,

but also through a series of dependability claims, properties of the program

taken as necessary conditions for the software to be considered trustworthy.

Properties include safety, namely that the software will not crash when

being executed, but also domain-specific claims, going from information-

theoretic security for certified encryption software to properties from social

choice theory for electronic voting technology [Schürmann, 2013].

Modern programmers benefit from a high level language providing

abstraction mechanisms and facilities to ease the development of complex

software. Source code developed in a high level language has to be trans-

lated to an executable language using a compiler. The advantages that

programmers appreciate in high level programs are also found in certifi-

cation languages and tools, where layers of abstraction allow for proofs of

correctness with no concerns for low level details such as specifics of memory

manipulation. However, proofs of dependability claims must still be valid

of the code which is being executed, generally in a low level bytecode or an

assembly language. As such, certified compilers, which guarantee that claims

made about the source code are still valid for the compiled program, are
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highly desirable and arguably imperative for large applications of certified

software.

The field of certified compilers has seen important breakthroughs in

the last decade, for example with Compcert [Leroy, 2006], a fully certified

compiler for the C programming language. When certifying compilers, we

are concerned with the preservation of the semantics of programs from

the source code to the compiled target. By showing that the possible

executions (or the execution, in the case of a deterministic language) of

compiled targets refines the possible executions dictated by the source

language semantics, any claim which is true of all possible executions on

the source level will be true of the compiled target, and as such compilation

is considered secure. However, demonstrating semantics preservation is an

intricate task. Indeed, Leroy [2006] reports certification overheads in the

order of 8 times the source code. A significant portion of this effort might be

avoidable if the claims made at the source level depend on weaker properties

of the programs, or can be satisfied with an approximation of the semantics

such as types.

Compiler developers have long recognized the power of types to es-

tablish key properties about complex code transformations. However, the

standard approach is to type-check the intermediate representations pro-

duced by compilation. This amounts to testing the result of compilation via

type-checking. Type-based verification methods support building correct-

by-construction software, and hold the promise of dramatically reducing the

costs of quality assurance. By encoding desired properties into the types

of programs, verification is reduced to type-checking the developments,

resulting in little to no certification overhead. Moreover, as type information

follows the structure of the program, type-based verification is easier to
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maintain than stand-alone proofs, and scale gracefully. This contrasts with

a posteriori verification, where a small modification in the program may

necessitate a complete overhaul of its certification proof.

In the present work, we explore the use of sophisticated type systems

to certify compilers by implementing a type safe compiler for the simply

typed lambda-calculus, including transformation to continuation-passing

style (CPS), closure conversion and hoisting.

Code transformations are programs which themselves manipulate

programs. We will be using the term meta-language to refer to the pro-

gramming language in which our code transformations are developed (in

this case, Beluga), and object-language for languages in which programs

manipulated by our code transformations are written. The object-language

for the input of code transformations will be referred to as source language,

and for programs produced by code transformations as target language.

There are three key ingredients crucial to the success: First, we

embed our object-languages in a dependently-typed language, the LF

logical framework [Harper et al., 1993], and reason about them using a

dependently-typed meta-language, Beluga, such that we can channel

type checking to verify precise properties about our code transformations.

Second, we encode our object-languages using higher-order abstract syntax

(HOAS), reusing the LF function space to model object-level binders. Third,

we represent open code fragments using the notion of contextual objects

and first-class contexts. A contextual object, written as [Ψ.M ], characterizes

an open LF object M which may refer to the bound variables listed in the

context Ψ [Nanevski et al., 2008]. By embedding contextual objects into

computations, users can not only characterize abstract syntax trees with
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free variables, but also manipulate and rearrange open code fragments using

pattern matching.

A central question when implementing code transformations is the

representation of the source and target languages. HOAS is one of the most

sophisticated representation techniques, eliminating the need to deal with

common and notoriously tricky aspects such as α-renaming, fresh name

generation and capture-avoiding substitution. However, while the power

and elegance of HOAS encodings have been demonstrated in representing

proofs, for example in the Twelf system [Pfenning and Schürmann, 1999], it

has been challenging to exploit its power in program transformations which

rearrange abstract syntax trees and move possibly open code fragments.

Previous implementations (for example Chlipala [2008]; Guillemette and

Monnier [2008]) have been unable to take advantage of HOAS throughout

the full compiler pipeline and had to abandon HOAS in closure conversion

and hoisting. We rely on the rich type system and abstraction mechanisms

of the dependently-typed language Beluga [Pientka and Dunfield, 2010;

Cave and Pientka, 2012] to implement a type preserving compiler using

HOAS for all stages.

Our implementation of a type-preserving compiler is very compact,

avoiding tedious infrastructure for manipulating binders. Our code directly

manipulates intrinsically typed terms, corresponding to type derivations,

and can be interpreted as an executable version of the proof that the

compiler is type-preserving.

The main contribution of this thesis is the implementation of the

first type-preserving closure conversion and hoisting implementation using

HOAS.

Other contributions of this thesis include:
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• The presentation of a type preservation proof for a continuation-

passing style transformation based on Danvy and Filinski [1992] and of

its implementation in Beluga over the simply typed lambda-calculus

(STLC) encoded with HOAS.

• The development and presentation of a closure conversion algo-

rithm, of its type preservation proof and of its implementation in

Beluga over the STLC encoded with HOAS.

• The development and presentation of a hoisting algorithm, of its type

preservation proof and of its implementation (together with closure

conversion) in Beluga over the STLC encoded with HOAS.

Our work shows that programming with contextual objects offers

significant benefits to certified programming. The full development is

available online at http://complogic.cs.mcgill.ca/beluga/cc-code.

1.1 Structure of the Thesis

The structure of this thesis is as follows: We start with an overview

of the field of certified compilers (Chapter 2). We then introduce the

features and syntax of Beluga (Chapter 3), the proof and programming

environment used to implement this work. Next, we show the source

language of our compiler and give its encoding in Beluga (Chapter 4).

We then present a mechanically checked type preserving implementation

of a CPS transformation (Chapter 5), closure conversion (Chapter 6) and

hoisting (Chapter 7). Each of these sections consists of a brief introduction

to the transformation, followed by a description of the algorithm used and

the language it targets, and by a sketch of the type-preservation proof.

We include detailed walkthroughs of the implementation in Beluga,

guided by the correspondence between the type-preservation proof and the
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Beluga development. Finally, we outline future work (Chapter 8) before

turning to the conclusion (Chapter 9).

Throughout this thesis, typewriter font is used for Beluga source

code, and italic for λ→ and idealized code.
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CHAPTER 2
Background

2.1 From Typed to Certified Code Transformations

Compilers have historically adopted a strong typing discipline in

the surface language as a means to rule out a large class of bugs in the

user’s program, only to erase these types before many of the later stages of

compilation. Interest in type preserving transformations has been spurred by

the development of compilers that maintain types throughout the successive

stages of the compilation pipeline [Benton et al., 1998; Shao and Appel,

1995], resulting in, for example, better optimizations [Leroy, 1992] and

support for proof carrying code [Necula, 1997].

One of the most important papers on typed code transformations,

Morrisett et al. [1999] defines a series of typed code transformations that

take programs written in a richly typed high-level programming language

such as System F to a typed assembly language (TAL). In particular, the

authors define a typed CPS transform based on an earlier one proposed

by Harper and Lillibridge [1993], a typed closure conversion and typed

hoisting. Minamide et al. [1996] give an earlier account of closure conversion

for a type passing polymorphic language. Chlipala [2007] follows the same

blueprint as the compilation to TAL for the implementation of a compiler

over a higher-order language with polymorphism and side-effects in Coq,

all the while mechanically proving semantic preservation in addition to type

preservation throughout the passes.

An alternative to closure conversion that we do not investigate in the

current work is defunctionalization [Reynolds, 1972]. Defunctionalization
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is a whole-program transformation. Each abstraction is assigned a unique

tag and applications are interpreted using a special function that dispatches

upon all the tags in the program. Pottier and Gauthier [2004] observe that

closure conversion may in fact be viewed as a particular implementation of

defunctionalization, where tags happen to be code pointers and dispatching

on a tag is replaced with a single indirect jump. Nielsen [2000]; Banerjee

et al. [2001] give a simply typed version of defunctionalization, while Pottier

and Gauthier [2004] generalize the source language to System F extended

with GADTs, which they observe to be closed under defunctionalization.

Before our work, other typed transformations have been implemented

in host languages in such a way as to obtain type safety as a direct con-

sequence of type checking the implementation. For example, Chen and Xi

[2003] present an implementation of a CPS transformation in Dependent ML

(DML) which statically guarantees to be type safe, using GADTs and over a

first-order representation of terms using de Bruijn indices. Guillemette and

Monnier [2006] achieve similar results in Haskell but with a term representa-

tion based on HOAS. Linger and Sheard [2004] use Ωmega’s computational

facilities on the level of types to implement a statically guaranteed CPS

transformation using a first-order representation, which, unlike previously

mentioned work, does not rely on explicitly passing around proofs encoded

at the term level. It is these lines of work that are most closely related

to ours, with the proviso that authors usually make do with first-order

encodings. In particular, we are not aware of any static type safe closure

conversion operating on higher-order encodings.

Code transformations have also been mechanically proven to be

semantics preserving, which is a stronger statement than merely preserving

types. Dargaye and Leroy [2007] prove the correctness of a CPS transform
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in Coq. Chlipala [2008] proves semantic preservation of CPS, closure

conversion and hoisting transformations using parametric weak higher order

abstract syntax (PHOAS). However, the author had, in the case of closure

conversion, to revert locally to a first-order representation, equivalent to de

Bruijn levels encoding, in order to distinguish variables.

2.2 Theorem Provers Using Higher-Order Abstract Syntax

Higher-order abstract syntax (HOAS) is an encoding where binders of

an object language are represented using the function space of the meta-

language. A description of this encoding technique is included in Chapter 3

of this thesis. Although HOAS is one of the most sophisticated encoding

techniques for structures with binders and holds the promise of dramatically

reducing the proof overhead related to manipulating abstract syntax trees

with binders, the implementation of a certified compiler using HOAS has

been elusive.

Abella [Gacek, 2008] is an interactive theorem prover which supports

HOAS, but not dependent types at the specification level. The standard

approach would be to specify source terms, typing judgments, and the

closure conversion algorithm, and then prove that it is type-preserving.

However, in Abella one cannot obtain an executable program from the

proof. Moreover, the separation between algorithms and proofs of type-

preservation would lead to a duplication of code. This is in contrast to our

work, where we manipulate intrinsically typed representations of our object

languages (see Sec. 3.1.2), which corresponding to type-derivations rather

than terms. We thus implement, in place of each transformation, their

respective type preservation proof.

Twelf [Pfenning and Schürmann, 1999] is a theorem prover which shares

with Beluga its data level language, the LF logical framework. However,
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where LF objects are reasoned about in Beluga using indexed datatypes

and functions, Twelf provides a logic programming engine, employing

proof search to construct derivations. CPS transformations over an object

language using HOAS as binder encoding is simple to implement, and known

to be an example where the substitution principle provided by LF makes

for a compact and direct implementation of the transformation.1 Closure

conversion in Twelf using higher-order abstract syntax is still an open

problem. This is because non-naive closure conversion algorithms require

discriminating between bound variables, which cannot be done directly

in Twelf. In Twelf, hypotheses are grouped in a single, implicit context.

Hoisting, whose safety heavily relies on static contextual information,

would require significant work, which may include reifying contexts into LF

and carrying witnesses of variable occurrences to reason about contextual

dependencies.

Closer to Beluga is Delphin [Poswolsky and Schürmann, 2009], a

functional programming language manipulating data encoded in the LF

logical framework. Having a functional programming language as mode

of interaction with the prover allows for certified implementations to be

closer to regular implementations based on function specifications. This is

not the case when using logic programming or tactic-based provers such

as Twelf and Abella respectively. However, Delphin, which is not based

on contextual type theory, does not provide the necessary abstraction to

distinguish between multiple contexts [Pientka, 2008], which is essential to

our closure conversion and hoisting implementations (see Chapters 6 and 7).

1 CPS was used as an example in the Twelf tutorial at POPL 2009 [Twe,
2009]
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2.3 Time Regained

The work presented in this thesis builds on a number of previous work

in the field of typed and certified compilation. While the tools available,

both in term of theorem provers and of programming languages, have

considerably progressed through the years, the objectives are roughly the

same. We embrace a rich programming environment, Beluga, providing

us with facilities such as explicit substitutions, first-class contextual objects

and support for HOAS. We follow the pipeline of code transformations from

TAL [Morrisett et al., 1999], exploring the use of modern theorem provers

to compiler verification and adapting the algorithms found in the work

mentioned in this chapter to harness the benefits of Beluga’s proof and

programming environment. While we do not verify that our transformations

preserve semantics, our work is in line with a number of advancement in

tools for certifying software, in particular in describing how to use the

abstractions provided by Beluga to achieve lower verification overhead.

19



CHAPTER 3
Beluga

Beluga [Pientka and Dunfield, 2010; Pientka, 2008; Cave and Pientka,

2012] is a dependently-typed proof and programming environment based

on contextual type theory [Nanevski et al., 2008]. It uses a two-level

approach, segregating data from computation. Data is defined in the logical

framework LF [Harper et al., 1993], a dependently-typed language with

support for higher-order abstract syntax (HOAS). At the computational

level, functions and datatypes are defined over contextual objects, which

represent potentially open LF terms within their contexts.

In this chapter, we establish, through a series of examples, the syntax

of Beluga, foreshadowing the use of its various facilities in our compiler.

More thorough introductions to Beluga and to programming with de-

pendent types are available in Pientka [2010] and on the website of the

Beluga project1 .

3.1 LF Logical Framework

The LF logical framework provides a meta-language to define higher-

order, dependently-typed specifications of formal systems. The object

languages of our compiler are encoded in LF, representing programs as

abstract syntax trees built from LF data constructors. In Beluga, the kind

type declares an LF type family. For readability, we will display → for -> in

Beluga code.

1 http://complogic.cs.mcgill.ca/beluga/tutorial.pdf
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datatype tp: type =
| nat : tp
| arr : tp → tp → tp
;

Figure 3–1: Example of a Simple LF Datatype

tp, from Fig. 3–1, is an example of a simple LF type family encoding

a type language with a base type for natural numbers and a type A → B

for functions. It has two constructors, nat and arr. The former has arity

0, and represents the type of natural numbers. arr, the LF representation

of →, combines two objects of type tp into a single object of type tp. An

example of an LF term of type tp would be arr nat nat, which would be

interpreted as N → N, the type of functions from natural numbers to natural

numbers.

3.1.1 Higher-Order Abstract Syntax

LF supports encodings based on higher-order abstract syntax (HOAS),

a representation technique where hypothetical derivations are represented as

functions of the meta-language.

datatype term : type =
| app : term → term → term
| lam : (term → term) → term
| z : term
| s : term → term
;

Figure 3–2: The Lambda-Calculus with N as an LF Datatype

term (see Fig. 3–2) is an LF datatype representing an untyped lambda

calculus with natural numbers (N). The lambda term λx.x 1 would be

represented in LF term as lam \x.app x (s z). By using higher-order

abstract syntax to represent binders in our object language, we reuse the

variable facilities from the meta-language, providing us with, amongst other
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things, fresh-name generation, selecting names which do not appear in the

scope for variables, and α-renaming, which renames variables while avoiding

their capture. Substitution is also obtained for free, reducing to function

application. This contrasts with first-order encodings such as de Bruijn

indices and named representations [Gabbay and Pitts, 1999], where the

programmer has to provide his own implementation of capture-avoiding

substitution and naming facilities such as fresh-name generation.

3.1.2 Dependent Types

LF is dependently typed, which means that types can be indexed

by terms and as such depend on them. This allows us to encode precise

invariants in types, which are enforced by type-checking the program.

datatype source: tp → type =
| app : source (arr T S) → source T → source S
| lam : (source T → source S) → source (arr T S)
| z : source nat
| s : source nat → source nat
;

Figure 3–3: The STLC as an LF Datatype

We can use dependent types and index the LF datatype source by

tp, as shown in Fig. 3–3. This indexing, resulting in an intrinsically typed

representation, internalizes typing derivations – a source object can only

represent well-typed terms in the source language it represents. Reusing our

previous example, λx.x 1 is represented in source as lam \x.app x (s z),

the same as in term, but its type would now be source (arr (arr nat

T)T) rather than term. However, it would be impossible to represent the

ill-typed term (λx.x 1)1 in source. This is because app (lam \x.app x

(s z))(s z), the LF term in direct correspondence with (λx.x 1)1, is

not derivable from the rules of source. Indeed, the second argument to the

app constructor should be of type source (arr nat T), as dictated by the
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type of (lam \x.app x (s z)), source (arr (arr nat T)T), however

suc z is of type source nat. In the remainder of this thesis, we display λ

in Beluga code as a pretty-printed version of \.
3.2 Computational Level

Once data is defined, we can analyze it recursively on the compu-

tational level. In Beluga, this is done by programming, using pattern

matching on contextual objects in dependently-typed recursive functions.

This section introduces each of these concepts in turn. We use as an ex-

ample the development of a substitution function over source terms to

highlight the underlying ideas.

3.2.1 Contextual Objects and Contexts

A contextual object [Ψ.M ] of contextual type [Ψ.A] [Nanevski et al.,

2008] is composed of an open LF term M which has type A within a context

Ψ. Its contextual type precisely characterizes what variables are allowed to

occur in M and A, internalizing the concept of a well-scoped open term.

In Beluga, when using the modality [ ], the . separates the context of

assumptions from the conclusion. Pattern matching on a contextual object

refines our knowledge of its type and of the form of its context, allowing us

to statically reason about open objects.

The context Ψ represents the pool of hypotheses which can appear

in the typing derivation of M . The substitution principle is admissible in

contextual type theory, meaning that we can always substitute a concrete

derivation for a hypothesis of the same type.

In Beluga, contexts consist of zero or one context variables, followed

by zero or more concrete variable declarations. Context variables are

classified by schemas (keyword schema), which describe what can be

contained in a context. Schemas are formed by a list of clauses, each
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consisting of a tuple of LF terms, grouped with the keyword block. Free

variables appearing in each clauses are existentially bound at the head of the

clause, explicitly using the construct some T1... Tn for variables T1 ... Tn,

or implicitly, exploiting Beluga’s type reconstruction engine.

schema sctx = source s

schema tsctx = block t1:source s, t2:source s

Figure 3–4: Example of Schema Definitions in Beluga

In Fig. 3–4, we present two schema definitions as example. The schema

sctx characterizes contexts containing source variables of arbitrary

tp, while the schema tsctx characterizes contexts pairing two source

assumptions of the same type as a hypothesis.

3.2.2 Inductive Datatypes

Beluga supports inductive datatypes indexed by contextual objects

[Cave and Pientka, 2012]. They can be used to assert relations between

contexts and contextual objects. The syntax to write such a datatype is

similar to the one of an LF datatype, with the exception that its type family

is defined in kind ctype rather than in type. Inductive datatypes may be

formed of other inductive datatypes, of contexts and of contextual objects,

guarded by a constructor.

datatype Subst: {Δ:sctx}{Γ:sctx} ctype =
| Emp : Subst [Δ] []
| Dot : Subst [Δ] [Γ] → [Δ. source T]

→ Subst [Δ] [Γ,x:source T]
;

Figure 3–5: An Inductive Datatype for source Substitutions

Subst, given in Fig. 3–5, is an indexed datatype representing a sub-

stitution for source variables. Subst is indexed by two contexts, Γ and
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Δ, both of schema sctx, respectively the domain and the codomain of the

substitution. The first constructor of Subst, Emp, establish the existence of

a substitution from the empty context to any context of schema sctx. The

second constructor of Subst, Dot, extends the domain of a substitution from

Γ to [Γ,x:source T] by adding a source term of type T in the codomain of

the substitution Δ. As an example, the subsitution exchanging x and y in

the context [x:source S,y:source T] would be encoded as Dot (Dot Emp

[y:source T,x:source S. x])[y:source T,x:source S. y], which has

type Subst [y:source T,x:source S] [x:source S,y:source T].

3.2.3 Functions

On the computational level of Beluga, functions can be defined

over contextual objects, contexts and indexed datatypes. The syntax of

Beluga distinguishes between two function spaces, dependent functions,

corresponding to Π, whose domain are named and may appear in types, and

simply-typed functions, corresponding to →. On the computational level,

→ is taken as the simply-typed function space, overloading the notation for

the LF function space. A function signature T, in Beluga, is formed from

inductive datatypes a �C, contextual objects U, functions types T→T’, and of

Π quantifiers {X:U}T binding a variable of contextual type U in type T.

Within the body of a function, a variable e:T is bound with the

construct fne => if emanating from the function type T → T ′, and with

mlame => if Π-quantified. For readability, we will display λ� for mlam and ⇒
for => in Beluga code.

Beluga functions manipulate their inputs through pattern matching,

destructing them into their components and reasoning with them before

constructing an output. Pattern matching over contextual objects recovers
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information about the shape of an object, but also about its context and de-

pendencies to its context, both of which are explicit in Beluga’s contextual

object representation.

A case construct, in Beluga, is formed of an expression being

matched, e in the example given in Fig. 3–6, and of a series of patterns

which will be tested sequentially. Execution chooses the first branch whose

pattern matches the expression, with all the variables appearing in the

patterns bound as their respective matchee in e. In Beluga, terms in

case e of
| [Γ. M... ] ⇒ ...
| [Γ,x:term, y:term. M... y] ⇒ ...
| [Γ,x:term, y:term. M ] ⇒ ...

Figure 3–6: Example of Case-Construct and Patterns in Beluga

contextual objects are associated with an explicit substitution, carrying

information about which variables from the context may appear in them. A

... represents an identity substitution over a context variable, indicating that

the term may depend on variables from the context variables appearing in

the context portion of the contextual object. Concrete variables from the

context may only appear in terms if they are mentioned explicitly in the

substitution. For example, in [Γ,x:term, y:term. M... y], M may depend

on variables from Γ or on y, but not on x, while in [Γ,x:term, y:term

. M], M can’t refer to any variables – we will say that it is closed. In the

remainder of this thesis, we display ... for .. in Beluga code.

Where a stronger function space would treat terms under binders as

black boxes, we can observe the internals of LF functions. As such, we may

use the pattern λx. M, where λx. is an LF binder for x, and M is an LF

term which can be further refined by observation. [Γ. lam (λx. M... x)] is

a well-formed contextual object of contextual type [Γ. source (arr S T)]
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for some tp S and T. M... x itself lives in the context Γ extended with a

source variable of type S, forming the contextual object [Γ,x:source S. M

... x] of contextual type [Γ,x:source S. source T].

case sub of
| Emp ⇒ ...
| Dot sub’ [Δ. M... ] ⇒ ...

Figure 3–7: Example of a Case-Construct on an Inductive Datatype

We can also use pattern matching to observe inductive datatypes.

In the example included in Fig. 3–7, where sub is a Subst [Δ] [Γ], the

Emp branch would have Γ being empty, while the Dot branch would have

Γ= [Γ’,x:source T], sub’ of type Subst [Δ] [Γ’] and [Δ. M... ] of

contextual type [Δ. source T].

As an example, we give in Fig. 3–9 the definition of a type-preserving

substitution function, taking as input a source term of type T in the con-

text Γ and a substitution (Subst) from context Γ to Δ, and producing a

source term of the same type in context Δ. We will consider here only

three cases: patterns matching on variables, applications and lambda-

abstractions, as they are representative of the other cases forming the full

function. As mentioned in Subsection 3.1.1, the encoding of our object lan-

guage source T in LF using HOAS already provides us with a substitution

principle, such that Subst and applySubst would be superfluous except

when manipulating explicit substitutions is required. We include it here

solely to demonstrate the syntax and different features of Beluga func-

tions.

We first present, in Fig. 3–8, a simplified version of the code, with the

contexts and contextual dependencies omitted.
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rec applySubst:
fn (e:source T) ⇒ fn (sub:Subst) ⇒ case e of
| app M N ⇒
let M’ = applySubst M sub in
let N’ = applySubst N sub in
app M’ N’

| lam (λx. M x) ⇒
let (M’ x) = applySubst (M x) (Dot sub x) in
lam (λx. M’ x)

| #p ⇒ ... % look #p up in sub
;

Figure 3–8: Simplified Beluga Code of a Substitution Function

In the application case, matched by the pattern app M N, we recursively

apply the substitution sub to the subterms M and N before reconstructing

the application with the updated terms M’ and N’.

In the lambda-abstraction case, matched by lam (λx. M x), we

extend the substitution with the identity substitution on x using the

constructor Dot. x is re-abstracted over in the returned term M’ using the

lam constructor.

The last pattern, #p, matches source term variables from the domain

of sub. # is a special pattern prefix in Beluga that may only match

assumptions of the right type from the context rather than general terms.

It would, for example, match x, but not lam (λx. x). We can then unfold

the constructors of sub to reveal the term associated to #p in the codomain

of sub. For example, if #p corresponds to one of the variables extending sub

as we go under lambda-binders in applySubst, we would return the same

variable in the codomain of the substitution.

In Fig. 3–9, we present the Beluga code of applySubst, revisiting

each cases in more detail.
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rec applySubst:
[Γ. source T] → Subst [Δ] [Γ] → [Δ. source T] =
fn e ⇒ fn sub ⇒ case e of
| [Γ. app (M... ) (N... )] ⇒
let [Δ. M’... ] = applySubst [Γ. M... ] sub in
let [Δ. N’... ] = applySubst [Γ. N... ] sub in
[Δ. app (M’... ) (N’... )]

| [Γ. lam (λx. M... x)] ⇒
let (sub:Subst [Δ] [Γ]) = sub in
let [Δ,x:source S. M’... x] = applySubst [Γ,x:source _. M... x]

(Dot sub [Δ,x:source _. x]) in
[Δ. lam (λx. M’... x)]

| [Γ. #p... ] ⇒ lookupSubst [Γ. #p... ] sub
...
;

Figure 3–9: Extract from the Implementation of a Substitution Function

Its first pattern, [Γ. app (M... )(N... )], matches applications. We use

let-constructs to recurse on its subterms M and N and bind the resulting

terms before combining them as an application in context Δ.

The second pattern, [Γ. lam (λx. M... x)], matches lambda-

abstractions. As previously mentioned, we can manipulate terms under

an LF binder by adding the local variable to the context. An annotated

let-construct is used to recover the names for contexts Γ and Δ. After ex-

tending the substitution sub with the identity on x, we recurse on the body

of the lambda-abstraction. Explicit contexts should here make assumptions

manipulation clearer than in the code of Fig. 3–8: to observe the body

of the lambda-abstraction, we extend the typing context of the lambda-

abstraction with a typing assumption on the local variable x:source _.

Underscores (_) can stand in for unnamed variables and are filled automat-

ically by Beluga during reconstruction. On return, we bind back the local

variable while reconstructing a lambda-abstraction of the right contextual

type.
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The last pattern, [Γ. #p... ], matches variables from the context Γ,

which corresponds to the domain of the substitution sub. We can use the

function lookupSubst, defined for all variables of Γ, to find the source

term in context Δ corresponding, in our substitution sub, to the variable

#p. The signature of lookupSubst, given in Fig. 3–10, is a dependent

rec lookupSubst:
{#p:[Γ.source T]} Subst [Δ] [Γ] → [Δ. source T] =
λ�#p ⇒ fn sub ⇒ let (sub : Subst [Δ] [Γ]) = sub in
case [Γ. #p... ] of
| [Γ’, x:source T. x] ⇒
let Dot sub’ [Δ. M... ] = sub in
[Δ. M... ]

| [Γ’, x:source S. #q... ] ⇒
let Dot sub’ [Δ. M... ] = sub in
lookupSubst [Γ’. #q... ] sub’

;

Figure 3–10: Implementation of the Substitution Function for Variables

function over variables of type source T within context Γ, restricting the

first argument of the function to be a variable (we note here that we use

the dependent function space Π instead of the simply-typed one → even

though #p doesn’t occur in the rest of the signature as Beluga doesn’t

provide a syntax for the latter over variables). The second argument and the

return type are the same as the ones from applySubst. We pattern match

on #p to see if it is the first variable of the context, in which case we return

the term M. If it is not the first variable of the context, we recurse with the

inner substitution sub’ on the rest of the context. In both cases, as #p is a

variable from Γ and we know that Γ is not empty. Thus, sub is of the form

Dot sub’ [Δ. M... ].
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CHAPTER 4
Source Language

Before dwelling into the intricacies of our type preserving transforma-

tions, we present, in this chapter, the source language for our compiler.

4.1 The Simply Typed Lambda-Calculus

The source language of our compiler is the simply typed lambda-

calculus (STLC) extended with n-ary tuples, selectors, let-expressions and

unit.

(Type) T, S ::= S → T | code S T | S × T | unit
(Source) M,N ::= x | λx.M | M N | fst M | rst M | (M1,M2)

| let x = N in M | ()
(Context) Γ ::= · | Γ, x : T

Figure 4–1: Syntax of the source language

Each of our type-preserving algorithms transforms the source language

of Figure 4–1 to a separate target language, where all our object languages

share the same language for types. N-ary products are constructed using

the binary product S × T and unit. In closure conversion, we will use n-ary

tuples to describe the environment. Foreshadowing closure conversion,

and inspired by the type language of Guillemette and Monnier [2007], we

add a special type code S T . This type only arises as a result of closure

conversion; while it is present in the type language, no source terms of type

λcodety S T may be constructed.

The typing rules for the language presented in Fig. 4–1 are given in

Fig. 4–2. The source term for lambda-abstraction λx.M is well-typed when
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Γ � M : T Source term M has type T in context Γ

Γ, x : T � M : S

Γ � λx.M : T → S
t lam

Γ � M : T → S Γ � N : T
Γ � M N : S

t app

Γ � M : T Γ, x : T � N : S

Γ � let x = M in N : S
t let

x : T ∈ Γ
Γ � x : T

t var

Γ � M : T × S
Γ � fst M : T

t first
Γ � M : T × S
Γ � rst M : S

t rest

Γ � M : T Γ � N : S
Γ � (M,N) : T × S

t cons
Γ � () : unit

t unit

Figure 4–2: Typing rules for the source language

M is well-typed in a typing context extended with a typing assumption for

x. Application M N may be formed at type S from a well-typed M at function

type T → S and a well-typed N of type T. Let-construct let x = M in N is

well-typed at type S if M is well-typed at some type T and N is well-typed

at type S in a context extended with a typing assumption x:T. Variables

are well-typed if a typing assumption for them is present in the context.

Selectors fst M and rst M are well-typed if M is well-typed at a product

type T×S.

4.2 Representing the Source Language in LF

The encoding of the source language presented in Figure 4–3 completes

the definition of source given in Chapter 3.

datatype source : tp → type =
| lam : (source S → source T) → source (arr S T)
| app : source (arr S T) → source S → source T
| fst : source (cross S T) → source S
| rst : source (cross S T) → source T
| cons : source S → source T → source (cross S T)
| nil : source unit
| letv : (source S) → (source S → source T) → source T;

Figure 4–3: Encoding of the source language in LF
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As a reminder, in Beluga’s concrete syntax, the kind type declares an

LF type family, as opposed to a computational data type. Binders in our

object languages are represented via HOAS, using the LF function space.

We use an intrinsically typed representation: by indexing source terms

with their types, we represent type derivation of terms rather than terms

themselves, such that we only manipulate well-typed source terms.

An LF term of type source T in a context Γ, where T is a tp, corre-

sponds to a typing derivation Γ � M : T . N-ary tuples are encoded as lists,

using constructors cons and nil, the latter doubling as representation of ().

We represent selectors fst and rst using the constructor fst and rst respec-

tively. We prefer this representation to one that would group an arbitrary

number of terms in a tuple for simplicity: as we index our terms with their

types, and without computation in types, such tuples would have to carry

additional proofs of the well-typedness of tuples and of their projections,

which, while possible, would be cumbersome.
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CHAPTER 5
Continuation Passing Style

In this chapter, we present an algorithm to translate a direct style

source language to a continuation-passing style (CPS) target language, prove

that it is type-preserving, and describe its implementation in Beluga.

Continuation-passing style means that the control flow of the program is

passed explicitly to functions, as an extra argument. This argument, called a

continuation, will consume the result of the function before proceeding with

the execution of the program. Continuation-passing style is used in many

compilers for functional languages for it moves all function calls to a tail

position and enables further analysis and optimizations. Our continuation-

passing style transformation algorithm is adapted from Danvy and Filinski

[1992].

5.1 Target Language

The language targeted by our CPS transformation is shown in Fig. 5–1.

(Value) V ::= x | λ(x, k). P | (V1, V2)
(Expression) P,Q ::= V1 V2 K | let x = V in P |

let−fst x = V in P | let−rst x = V in P | halt V | K V
(Continuation) K ::= k | λx. P
(Context) Δ ::= · | Δ, x : T | Δ, k ⊥T

Figure 5–1: Syntax of the Target Language for CPS

The target language is divided into values, expressions, and continua-

tions. We give all the typing rules for this language in Fig 5–2.

The well-typedness of terms of the target language is defined through

three judgments, each referring to a typing context Δ. Context Δ contains
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Δ � V : T Value V has type T in context Δ

x : T ∈ Δ
Δ � x : T

t var
Δ, x : T, k ⊥S � P ⊥
Δ � λ(x, k). P : T → S

t lam

Δ � V :1 S Δ � V :2 T

Δ � (V1, V2) : S × T
t cons

Δ � () : unit
t unit

Δ � P⊥ Expression P is well-formed in context Δ

Δ � V1 : S → T Δ � V2 : S Δ � K ⊥T

Δ � V1 V2 K ⊥ t app Δ � V : T
Δ � halt V⊥ t halt

Δ � K ⊥T Δ � V : T
Δ � K V ⊥ t kapp

Δ � V : T Δ, x : T � P ⊥
Δ � let x = V in P ⊥ t let

Δ � V : S × T Δ, x : S � P ⊥
Δ � let−fst x = V in P ⊥ t first

Δ � V : S × T Δ, x : T � P ⊥
Δ � let−rst x = V in P ⊥ t rest

Δ � K⊥T Continuation K expects as input values of type T in context Δ

x ⊥T ∈ Δ
Δ � x ⊥T

t kvar
Δ, x : T � P ⊥
Δ � λx. P ⊥T

t klam

Figure 5–2: Typing Rules for the Target Language of CPS

typing assumptions for values x:T, where variable x stands in for a value

of type T, and for continuations k ⊥T , where variable k stands in for a

well-typed continuation of the form ⊥T .

Values consist of variables, lambda-abstractions and tuples of values.

They are typed using judgement Δ � V : T , signifying that a value

V has type T in the typing context Δ. The typing rules for values are

straightforward, being the same as the ones for typing source terms, with

the exception of t lam, with lambda-abstractions now taking an explicit

continuation as argument. λ(x, k).P has type T → S if P is a well-formed

expression which may refer to a variable x of type T and a continuation
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variable k denoting a well-formed continuation expecting as input values of

type S.

Expressions P are typed using judgment Δ � P ⊥ for a well-typed P in

context Δ, representing that they do not return anything by themselves but

instead rely on the continuation to carry on the execution of the program.

Expressions include application of a continuation K V , application of

a function V1 V2 K, a base expression halt V , a general let-construct,

let x = V in P and two let-constructs to observe lists, let−fst x = V in P and

let−rst x = V in P .

Finally, we define the well-typedness of a continuation through the

judgment Δ � K⊥T , where K is a continuation, either a continuation

variable or a well-typed expression expecting an input values of type S in

the context Δ.

5.2 CPS Algorithm

We give the definition of the translation to continuation-passing style

in Figure 5–3. [[M ]]k = P takes as input a source term M and produces a

target term P depending on k, where k is a (fresh) variable standing in for

the top-level continuation in the translated expression.

The algorithm used, adapted from Danvy and Filinski [1992], eliminates

administrative redexes on the fly, which is to say that all redexes created

during the translation when substituting concrete continuations in place of

continuation variables in a continuation application as typed by t kapp are

reduced eagerly by the algorithm.

Lemma 1. Substitution (Continuation in Expression)

If Γ, k ⊥T � P ⊥ and Γ � K ⊥T then Γ � [K/k]P ⊥

Proof. Proof by induction on the derivation Γ, k ⊥T � P ⊥.
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[[x]]k = k x
[[λx.M ]]k = k (λ(x, k1). P ) where [[M ]]k1 = P
[[M N ]]k = [(λp.[(λq.p q k)/k2]Q)/k1]P where [[M ]]k1 = P

and [[N ]]k2 = Q
[[(M,N)]]k = [(λp.[(λq.k (p, q))/k2]Q)/k1]P where [[M ]]k1 = P

and [[N ]]k2 = Q
[[let x = N in M ]]k = [(λq.let x = q in P )/k2]Q where [[M ]]k = P

and [[N ]]k2 = Q
[[fst M ]]k = [(λp.let−fst x = p in k x)/k1]P where [[M ]]k1 = P
[[rst M ]]k = [(λp.let−rst x = p in k x)/k1]P where [[M ]]k1 = P
[[()]]k = k ()

Figure 5–3: CPS Algorithm

While we could prove a number of substitution properties between our

judgments (see Fig. 5–2), in the proof of preservation, we only need to

substitute a continuation in an expression. Lemma 1 states that we can

substitute a continuation for a continuation variable of the same type in a

well-formed expression.

Theorem 1. Type Preservation

If Γ � M : T then Γ, k ⊥T � [[M ]]k ⊥.

Our main theorem for this transformation, Theorem 1, states that a

source expression of type T will be transformed by the algorithm given in

Figure 5–3 to a target expression expecting a continuation k of type ⊥T .

The typing context of the target language subsumes the typing context

of source term, such that we can use Γ in the conclusion, reading typing

assumptions for source terms as assumptions for target values. The proof of

Theorem 1 follows by structural induction on the typing derivation of the

source term. The substitution prefixing terms in the proof are performed

during the algorithm, and should be read as the term resulting from the
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substitution, reducing continuation applications eagerly, rather than as a

term together with a delayed substitution.

Proof. By induction on the typing derivation Γ � M : T .

Case. Γ � x : T

hence M = x and [[M ]]k = k x.

Γ � x : T by assumption

Γ, k ⊥T � x : T by weakening

Γ, k ⊥T � k ⊥T by t kvar

Γ, k ⊥T � k x ⊥ by t kapp

Γ, k ⊥T � [[M ]]k ⊥ by definition

Case. Γ � λx.M ′ : T → S

hence M = λx.M ′ and [[M ]]k = k (λ(x, k).[[M ′]]k)

Γ � λx.M ′ : T → S by assumption

Γ, x : T � M ′ : S by inversion on t lam

Γ, x : T, k ⊥S � [[M ′]]k ⊥ by i.h.

Γ � λ(x, k).[[M ′]]k : T → S by t lam

Γ, k ⊥T→S � λ(x, k).[[M ′]]k : T → S by weakening

Γ, k ⊥T→S � k ⊥T→S by t kvar

Γ, k ⊥T→S � k (λ(x, k).[[M ′]]k) ⊥ by t kapp

Γ, k ⊥T→S � [[λx.M ′]]k ⊥ by definition

Case. Γ � M ′ N : T

hence M = M ′ N and [[M ]]k = [λp.[λq.p q k/k2][[N ]]k2/k1][[M
′]]k1

Γ � M ′ N : T by assumption

Γ � M ′ : S → T and Γ � N : S by inversion on t app

Γ, k2 ⊥S � [[N ]]k2 ⊥ by i.h.
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Γ, k ⊥T , p : S → T, q : S � p : S → T by t var

Γ, k ⊥T , p : S → T, q : S � q : S by t var

Γ, k ⊥T , p : S → T, q : S � k ⊥T by t kvar

Γ, k ⊥T , p : S → T, q : S � p q k ⊥ by t app

Γ, k ⊥T , p : S → T � λq.p q k ⊥S by t klam

Γ, k ⊥T , p : S → T, k2 ⊥S � [[N ]]k2 ⊥ by weakening, exchange

Γ, k ⊥T , p : S → T � [λq.p q k/k2][[N ]]k2 ⊥ by substitution (Lemma 1)

Γ, k ⊥T � λp.[λq.p q k/k2][[N ]]k2 ⊥S→T by t klam

Γ, k1 ⊥S→T � [[M ′]]k1 ⊥ by i.h.

Γ, k ⊥T , k1 ⊥S→T � [[M ′]]k1 ⊥ by weakening, exchange

Γ, k ⊥T � [λp.[λq.p q k/k2][[N ]]k2/k1][[M
′]]k1 ⊥

by substitution (Lemma 1)

Γ, k ⊥T � [[M ′ N ]]k ⊥ by definition

Case. Γ � (M ′, N) : T × S

hence M = (M ′, N) and [[M ]]k = [λp.[λq.k (p, q)/k2][[N ]]k2/k1][[M
′]]k1

Γ � (M ′, N) : T × S by assumption

Γ � M ′ : T and Γ � N : S by inversion on t cons

Γ, k2 ⊥S � [[N ]]k2 ⊥ by i.h.

Γ, k ⊥T×S, p : T, q : S � p : T by t var

Γ, k ⊥T×S, p : T, q : S � q : S by t var

Γ, k ⊥T×S, p : T, q : S � (p, q) : T × S by t cons

Γ, k ⊥T×S, p : T, q : S � k ⊥T×S by t kvar

Γ, k ⊥T×S, p : T, q : S � k (p, q) ⊥ by t kapp

Γ, k ⊥T×S, p : T � λq.k (p, q) ⊥S by t klam

Γ, k ⊥T×S, p : T, k2 ⊥S � [[N ]]k2 ⊥ by weakening, exchange

Γ, k ⊥T×S, p : T � [λq.k (p, q)/k2][[N ]]k2 ⊥ by substitution (Lemma 1)
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Γ, k1 ⊥T � [[M ′]]k1 ⊥ by i.h.

Γ, k ⊥T×S, k1 ⊥T � [[M ′]]k1 ⊥ by weakening, exchange

Γ, k ⊥T×S � λp.[λq.k (p, q)/k2][[N ]]k2 ⊥T by t klam

Γ, k ⊥T×S � [λp.[λq.k (p, q)/k2][[N ]]k2/k1][[M
′]]k1 ⊥
by substitution (Lemma 1)

Γ, k ⊥T×S � [[(M ′, N)]]k ⊥ by definition

Case. Γ � let x = N in M ′ : T

hence M = let x = N in M ′

and [[M ]]k = [λq.let x = q in [[M ]]k/k2][[N ]]k2

Γ � let x = N in M ′ : T by assumption

Γ � N : S and Γ, x : S � M ′ : T by inversion on t let

Γ, x : S, k ⊥T � [[M ′]]k ⊥ by i.h.

Γ, k ⊥T , q : S, x : S � [[M ′]]k ⊥ by weakening, exchange

Γ, k ⊥T , q : S � q : S by t var

Γ, k ⊥T , q : S � let x = q in [[M ′]]k ⊥ by t let

Γ, k ⊥T � λq.let x = q in [[M ′]]k ⊥S by t klam

Γ, k2 ⊥S � [[N ]]k2 ⊥ by i.h.

Γ, k ⊥T , k2 ⊥S � [[N ]]k2 ⊥ by weakening, exchange

Γ, k ⊥T � [λq.let x = q in [[M ′]]k/k2][[N ]]k2 ⊥ by substitution (Lemma 1)

Γ, k ⊥T � [[let x = N in M ′]]k ⊥ by definition

Case. Γ � fst M ′ : T

hence M = fst M ′ and [[M ]]k = [λp.let−fst x = p in k x/k1][[M
′]]k1

Γ � fst M ′ : T by assumption

Γ � M ′ : T × S by inversion on t fst

Γ, k1 ⊥T×S � [[M ′]]k1 ⊥ by i.h.
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Γ, k ⊥T , p : T × S, x : T � k ⊥T by t kvar

Γ, k ⊥T , p : T × S, x : T � x : T by t var

Γ, k ⊥T , p : T × S, x : T � k x ⊥ by t kapp

Γ, k ⊥T , p : T × S � p : T × S by t var

Γ, k ⊥T , p : T × S � let−fst x = p in k x ⊥ by t first

Γ, k ⊥T � λp.let−fst x = p in k x ⊥T×S by t klam

Γ, k ⊥T , k1 ⊥T×S � [[M ′]]k1 ⊥ by weakening, exchange

Γ, k ⊥T � [λp.let−fst x = p in k x/k1][[M
′]]k1 ⊥

by substitution (Lemma 1)

Γ, k ⊥T � [[fst M ′]]k ⊥ by definition

Case. Γ � fst M ′ : T

hence M = rst M and [[M ]]k = [λp.let−rst x = p in k x/k1][[M
′]]k1

Γ � rst M ′ : T by assumption

Γ � M ′ : S × T by inversion on t snd

Γ, k1 ⊥S×T � [[M ′]]k1 ⊥ by i.h.

Γ, k ⊥T , p : S × T, x : T � k ⊥T by t kvar

Γ, k ⊥T , p : S × T, x : T � x : T by t var

Γ, k ⊥T , p : S × T, x : T � k x ⊥ by t kapp

Γ, k ⊥T , p : S × T � p : S × T by t var

Γ, k ⊥T , p : S × T � let−rst x = p in k x ⊥ by t rest

Γ, k ⊥T � λp.let−rst x = p in k x ⊥S×T by t klam

Γ, k ⊥T , k1 ⊥S×T � [[M ′]]k1 ⊥ by weakening, exchange

Γ, k ⊥T � [λp.let−rst x = p in k x/k1][[M
′]]k1 ⊥

by substitution (Lemma 1)

Γ, k ⊥T � [[rst M ′]]k ⊥ by definition

Case. Γ � () : unit
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hence M = () and [[M ]]k = k ()

Γ, k ⊥unit � k ⊥unit by t kvar

Γ, k ⊥unit � k () ⊥ by t kapp

Γ, k ⊥unit � [[()]]k ⊥ by definition

5.3 Representing the Target Language in LF

As with the source language (see Chapter 4), we encode the target

language in the LF logical framework as intrinsically well-typed terms (see

Fig. 5–4). We reuse tp, the type index of the source language, to index

value, which correspond to values defined in Figure 5–1. An LF term of

type value T in a context Γ, where T is a tp, corresponds to a typing

derivation Γ � V : T for a (unique) Value V . Datatype exp is used to

represent well-typed expressions (Figure 5–1), where an LF term of type exp

corresponds to a typing derivation Γ � E ⊥ for a (unique) expression E.

Continuations are not present at this level, being represented directly as LF

functions from values to expressions on the computational level of Beluga.

datatype exp : type =
| kapp : value (arr S T) → value S

→ (value T → exp) → exp
| klet : value S → (value S → exp) → exp
| kfst : value (cross S T) → (value S → exp) → exp
| krst : value (cross S T) → (value T → exp) → exp
| halt : value S → exp

and value: tp → type =
| klam : (value S → (value T → exp) → exp)

→ value (arr S T)
| kpair : value S → value T → value (cross S T)
| kunit : value unit ;

Figure 5–4: Encoding of the Target Language of CPS in LF

5.4 Implementation of the Main Theorem

The Beluga function cpse implements the translation [[−]]k together

with its type preservation proof. Our description of CPS (see Fig. 5–3) is
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defined on open terms M , meaning that they may contain free variables.

Moreover, if we assume that M is well-typed in the context Γ, then it must

be well-scoped, which is to say that all the free variables in M must be

declared in Γ. Similarly, P is open and its typing context contains, for each

free source variable in M , a corresponding target free variable.

Our CPS translation function cpse, presented in Fig. 5–7, takes

as input a term M of type source T in the context Γ and produces an

expression P of type exp T. As there is a one to one correspondence

between source variables and target variables, we define the context Γ as a

joint context, where we store pairs of source and target variables of the same

type.

schema ctx = block x:source t, y:value t;

Figure 5–5: Definition of Schema ctx

The schema ctx (see Fig. 5–5) classifies contexts containing pairs of

source variables of type T and value variables of the same type using the

block keyword.

rec cpse:(Γ:ctx)[Γ. source T] → [Γ, k:value T → exp. exp]

Figure 5–6: Signature of the Main Function cpse

The signature of cpse, given in Fig. 5–6, can be read as follows: For all

contexts Γ, given a source term of type T in the context Γ, cpse returns a

well-typed expression which depends on the continuation k of type ⊥T in the

context Γ.

Our implementation of the CPS translation follows closely the proof of

Type Preservation (Theorem 1) for the algorithm presented in Figure 5–3,

with, for example, recursive calls to cpse corresponding to appeals to the
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induction hypothesis. It consists of a single downward pass on the input

program, relying on LF application to reduce administrative redexes. The

substitution principle presented in Lemma 1 is provided by Beluga, due

to our use of contextual objects to model the judgment Γ � P ⊥. Similarly,

appealing to structural lemmas such as exchange and weakening is implicit

in the implementation. Beluga recognizes, for example, the term [Γ,y,x.

M... x y] whenever [Γ,x,y. M... x y] is valid.

Figure 5–7 presents the implementation of the transformation in

Beluga. The first pattern, #p.1 matches the first field of members of Γ,

corresponding to source variables. Given a continuation c, we return the

second field of the same member, corresponding to a target variable of the

same type, applied to c. Type reconstruction fills in the _ in the type of c

with the type of the matched variable.

In the application case, we match on the pattern app (M... )(N... ) and

recursively transform M and N. We then substitute for the continuation vari-

able k in Q a continuation consuming the local argument of an application.

A continuation is then built from this, expecting the function to which the

local argument is applied, and substituted for k in P, producing a well-typed

expression if a continuation for the resulting type S is provided. Redexes

formed by the substitution of the built continuation for k in P are reduced

automatically, as continuation application is modeled directly using LF

function application. The rest of the cases are similar and in direct corre-

spondence with the proof of Theorem 1. In the lambda-abstraction and the

let-construct case, the typing annotation {N:[Γ, x:source S. source T]}

is used to name S, the type of x, which extends the context in the recursive

call to cpse.
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rec cpse :
(Γ:ctx)[Γ. source S] → [Γ, k: value S → exp. exp] =
fn e ⇒ case e of
| [Γ. #p.1... ] ⇒ [Γ, k:value _ → exp. k (#p.2... )]
| [Γ. app (M... ) (N... )] ⇒
let [Γ, k:value (arr T S) → exp. P... k] = cpse [Γ. M... ] in
let [Γ, k:value T → exp. Q... k] = cpse [Γ. N... ] in
[Γ, k:value S → exp. P... (λf. Q... (λx. kapp f x k))]

| {M:[Γ, x:source S. source T]}
[Γ. lam (λx. M... x)] ⇒

let [Γ, b:block (x:source S, _t:value S), c:value T → exp.
P... b.2 c] =

cpse [Γ, b:block (x:source S, _t:value S). M ... b.1 ] in
[Γ, k:value (arr S T) → exp. k (klam (λx.λc. P... x c))]

| [Γ. cons (M... ) (N... )] ⇒
let [Γ, k1:value S → exp. P... k1] = cpse [Γ. M... ] in
let [Γ, k2:value T → exp. Q... k2] = cpse [Γ. N... ] in
[Γ, k:value (cross S T) → exp.
P... (λp. Q... (λq. k (kcons p q)))]

| [Γ. nilv] ⇒ [Γ, c:value unit → exp. c knil]

| {N:[Γ, x:source S. source T]}
[Γ. letv (M... ) (λx. N... x)] ⇒
let [Γ, k1:value S → exp. P... k1] = cpse [Γ. M... ] in
let [Γ, b:block (x:source S, _t:value S), c:value T → exp.

Q... b.2 c] =
cpse [Γ, b:block (x:source S, _t:value S). N ... b.1 ] in
[Γ, k:value T → exp. P... (λp. klet p (λx. Q... x k))]

| [Γ. fst (E... )] ⇒
let [Γ, c:value (cross S T) → exp. E’... c] = cpse [Γ.

E... ] in
[Γ, c:value S → exp. E’... (λx. kfst x c)]

| [Γ. rst (E... )] ⇒
let [Γ, c:value (cross S T) → exp. E’... c] = cpse [Γ.

E... ] in
[Γ, c:value T → exp. E’ ... (λx. krst x c)]

;

Figure 5–7: Implementation of CPS in Beluga

5.5 Discussion and Related Work

The implementation of the continuation-passing style type-preservation

transformation in Beluga, including the definition of the type, source

and target languages, amounts to less than 65 lines of code. The fact that

this algorithm is simple to implement on a language using HOAS is not a

new result, nor is it surprising, as it relies heavily on substitution, which
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is provided by the meta-language in HOAS encodings. Guillemette and

Monnier [2006] and Chlipala [2008], both using a term representation based

on HOAS, achieve similar results, respectively in Haskell and in Coq.

We have also implemented a CPS transformation in Beluga over

System F, an extension of the simply typed lambda calculus where types

may depend on type variables. Little change is required for our simply typed

implementation to support System F: adding the identity substitution ... to

types appearing in annotations and function signatures so that they may

depend on type variables in the context suffices as sole modification to the

cases included in the implementation over a simply-typed language.

While we present here the implementation using a joint context,

an alternative would be to have distinct contexts for source and target

variables. We would have to carry an explicit relation stating that for

every variable in the source contexts, a variable of the same type is present

in the target context. This would be closer to the technique used for the

other transformations presented in this thesis (see Ch. 6 and Ch. 7), but

would complicate the extension to System F, as types would have to be

transported from the source to the target contexts in order to appear in

different contextual objects.

As demonstrated in the included program (Figure 5–7), features of

Beluga such as pattern variables, built-in substitution and first-class

contexts make for a straightforward representation of the transformation

as a single function, while dependent types allow us to build the type

preservation proof into the representation of the transformation with little

overhead.
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CHAPTER 6
Closure conversion

Closure conversion is a code transformation that makes the manipula-

tion of closure objects explicit and results in a program whose functions are

closed so that they can be hoisted to the top-level.

In a typical compiler pipeline, the CPS transformation precedes closure

conversion. However, closure conversion does not depend in any essential

way on the fact that its input is continuation-passing. For clarity, we present

closure conversion as a transformation on programs in direct style (which is

to say, not in continuation passing style) on the lambda-calculus.

6.1 Target Language

Our target language for closure conversion contains, in addition to

functions λy. P , function application P Q, tuples (P,Q), selectors fst

and rst , and let-expressions let y = P in Q, two new constructs: 1)

we can form a closure 〈P,Q〉 of an expression P with its environment Q,

represented as an n-ary tuple. 2) we can break apart a closure P using

let 〈yf , yenv〉 = P in Q.

(Target) P,Q ::= y | λy. P | P Q | fst P | rst P | let y = P in Q
| (P,Q) | () | 〈P,Q〉 | let 〈yf , yenv〉 = P in Q

(Context) Δ ::= · | Δ, y : T

Figure 6–1: Syntax of the Target Language for Closure Conversion

The essential idea of closure conversion is that it makes the evaluation

context of functions explicit; variables bound outside of a function are

replaced by projections from an environment variable. Given a source-level
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function λx.M of type T → S, we return a closure 〈λyc.P,Q〉 consisting of

a closed function λyc.P , where yc pairs the local argument y, standing in for

x, and an environment variable yenv whose projections replace free variables

of M , and its environment Q, containing all its free variables. Such packages

are traditionally given an existential type such as ∃l.(code (T × l) S) × l

where l is the type of the environment. We instead use T → S to type the

closure packages, hiding l and saving us from having to handle existential

types in their full generality.

We use the following judgements for our typing rules (see Fig. 6–2):

Δ � P : T Target P has type T in context Δ

The rules for t pack and t letpack are modelling implicitly the introduction

and elimination rules for existential types. Moreover, with the rule t pack,

we enforce that λx.P is closed. The remaining typing rules are similar to the

typing rules for the source language.

Δ � P : T Target P has type T in context Δ

Δ, x : T � P : S

Δ � λx. P : code T S
t lam

Δ � P : code T S Δ � Q : T

Δ � P Q : S
t app

Δ � P : T Δ, x : T � Q : S

Δ � let x = P in Q : S
t let

x : T ∈ Δ
Δ � x : T

t var

Δ � P : T × S
Δ � fst P : T

t first
Δ � P : T × S
Δ � rst P : S

t rest
Δ � () : unit

t unit

· � P : code (T × Tenv) S Δ � Q : Tenv

Δ � 〈P,Q〉 : T → S
t pack

Δ � P : T Δ � Q : S

Δ � (P,Q) : T × S
t cons

Δ � P : T → S Δ, yf : code (T × l) S, yenv : l � Q : S

Δ � let 〈yf , yenv〉 = P in Q : S
t letpackl

Figure 6–2: Typing Rules for the Target Language of Closure Conversion
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6.2 Closure Conversion Algorithm

Before describing the algorithm in detail, let us illustrate briefly

closure conversion using an example. Our algorithm translates the program

(λx.λy.x+ y) 5 2 to

let 〈f1, c1〉 =
let 〈f2, c2〉 =
〈 λe2. let x = fst e2 in let xenv = rst e2 in

〈λe1. let y = fst e1 in let yenv = rst e1 in fst yenv + y, (x, ())〉
, () 〉
in f2 (5 , c2)

in f1 (2, c1)

When evaluated, the program reduces to:

let 〈f1, c1〉 = 〈 λ(y, e1).fst e1 + y , ( 5 , () ) 〉 in f1 (2 , c1)

and then further to:

(λ(y, e1).fst e1 + y) (2 , (5 , ()))

Closure conversion introduces an explicit representation of the envi-

ronment, closing over the free variables of the body of an abstraction. We

represent the environment as a tuple of terms, corresponding to the free

variables in the body of the abstraction.

We define the algorithm for closure conversion in Figure 6–4 using

[[M ]]ρ, where M is a source term which is well-typed in the context Γ and

ρ a mapping of source variables in Γ to target terms in the context Δ.
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Intuitively, ρ maps source variables to the corresponding projection of the

environment. It is defined as follows:

Δ � ρ : Γ ρ maps variables from source context Γ to target context Δ

Δ � id : · m id
Δ � ρ : Γ Δ � P : T

Δ � ρ, x �→ P : Γ, x : T
m dot

Figure 6–3: Formation Rules for Mappings

For convenience, we write πi for the i-th projection instead of using the

selectors fst and rst . As an example, π2 M would correspond to the term

fst (rst M).

[[x]]ρ = ρ(x)

[[λx.M ]]ρ = 〈 λyc. let y = fst yc in let yenv = rst yc in P , Penv 〉
where {x1, . . . , xn} = FV(λx.M)
and ρ′ = x1 �→ π1 xenv, . . . , xn �→ πn yenv, x �→ y
and Penv = (ρ(x1), . . . , ρ(xn)) and P = [[M ]]ρ′

[[M N ]]ρ = let 〈yf , yenv〉 = P in yf (Q , yenv) where P = [[M ]]ρ and Q = [[N ]]ρ

[[let x = M in N ]]ρ = let y = P in Q where P = [[M ]]ρ and Q = [[N ]](ρ,x �→y)

[[(M,N)]]ρ = (P , Q) where P = [[M ]]ρ and Q = [[N ]]ρ
[[fst M ]]ρ = fst P where P = [[M ]]ρ
[[rst M ]]ρ = rst P where P = [[M ]]ρ
[[()]]ρ = ()

Figure 6–4: Closure Conversion Algorithm

To translate a source variable, we look up its binding in the map

ρ. To translate tuples and projection, we translate the subterms before

reassembling the result using target language constructs. () is directly

translated to its target equivalent. Translating let-expression let x = M in N

involves translating M using the mapping ρ and translating N with the

extended map ρ, x �→ x, therefore guaranteeing that the map provides

instantiations for all the free variables in N , before reassembling the
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converted terms using the target let-construct. The interesting cases of

closure conversion arise for lambda-abstraction and application.

When translating a lambda-abstraction λx.M , we first compute the set

{x1, . . . , xn} of free variables occurring in λx.M . We then form a closure

consisting of two parts:

• A term P , obtained by converting M with the new map ρ′ which

maps variables x1, . . . , xn to their corresponding projection of the envi-

ronment variable and x to itself, thereby eliminating all free variables in

M .

• An environment tuple Penv, obtained by applying ρ to each variable in

(x1, . . . , xn).

When translating an application M N , we first translate M and N

to target terms P and Q. Since the source term M denotes a function,

the target term P will denote a closure. We extract the two parts of the

closure using a let-pack construct, obtaining xf , the function, and xenv, the

environment, before applying the extended environment (Q, xenv) to xf .

We implement the described algorithm in Beluga as a recursive

program which manipulates intrinsically well-typed source terms. As these

encodings represent typing derivations rather than terms, as discussed

in the presentation of the source language, our program represent a

transformation over typing derivation. To understand the general idea

behind our implementation, we discuss how to prove that given a well-typed

source term M we can produce a well-typed target term which is the result

of converting M . The proof relies on several straightforward lemmas which

correspond exactly to auxiliary functions needed in our implementation.

Lemma 1. Term Strengthening

If Γ � M : T and Γ′ = FV (M) then Γ′ � M : T and Γ′ ⊆ Γ
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Proof. Proof using an auxiliary lemma: if Γ1,Γ2 � M : T then Γ′
1,Γ2 � M :

T for some Γ′
1 ⊆ Γ1 which is proven by induction on Γ1.

Term Strengthening (Lemma 1) says that the set of typing assumption Γ′ as

computed by FV is sufficient to type any term M if this term is well-typed

under some context Γ, and that Γ contains at least the same assumptions as

Γ′.

Lemma 2. Term Weakening

If Γ′ � M : T and Γ′ ⊆ Γ then Γ � M : T .

Proof. Proof using an auxiliary lemma: if Γ′
1,Γ2 � M : T and Γ′

1 ⊆ Γ1 then

Γ1,Γ2 � M : T which is proven by induction on Γ′
1.

Term Weakening (Lemma 2) says that a term M stays well-typed at type T

if we substitute its typing context Γ for a context Γ′ containing all of the

assumptions in Γ.

Lemma 3. Context Reification

Given a context Γ = x1 : T1, . . . , xn : Tn, there exists a type TΓ =

(T1 × . . . × Tn) and there is a ρ = x1 �→ π1 xenv, . . . , xn �→ πn xenv s.t.

xenv : TΓ � ρ : Γ and Γ � (x1, . . . xn) : TΓ.

Proof. By induction on Γ

Context Reification (Lemma 3) says that it is possible to represent an

arbitrary context of typing assumptions Γ as a single typing assumption

xenv: TΓ. The type TΓ corresponds to the type of a tuple formed from the

term component of each assumption in Γ. As a witness to this claim, a

substitution ρ is produced, taking any terms referring to variables from Γ to

one solely referring to xenv.

Lemma 4. Map Extension

If Δ � ρ : Γ then Δ, x : T � ρ, x �→ x : Γ, x : T .
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Proof. Induction on the definition of Δ � ρ : Γ.

Map Extensions (Lemma 4) says that we can extend any substitution ρ

by the identity mapping a source variable x to a new target variable of the

same type. This does not follow directly from the application of rules of

formation for substitutions (see Fig. 6–3). Instead, it is necessary to weaken

all judgments of the form Δ � P : S contained in ρ by the formation rule

m dot to judgments of the form Δ, x : T � P : S.

Lemma 5. Map Lookup

If x : T ∈ Γ and Δ � ρ : Γ, then Δ � ρ(x) : T .

Proof. Induction on the definition of Δ � ρ : Γ.

Map Lookup (Lemma 5) states, intuitively, that substitutions as encoded by

our mapping judgment (see Fig. 6–3) work as intended: for any variable in

Γ, the substitution ρ produces a term of the same type in its target context,

Δ.

Lemma 6. Map Lookup (Tuple)

If Γ � (x1, . . . , xn) : T and Δ � ρ : Γ then Δ � (ρ(x1), . . . , ρ(xn)) : T .

Proof. By Lemma 5 and inversion on the typing rules.

Map Lookup (Tuple) (Lemma 6) says that applying a substitution ρ to each

component of a variable tuple will transport the tuple from the domain

of the substitution Γ to its codomain Δ while preserving the type of the

tuple.

Theorem 1. Type Preservation

If Γ � M : T and Δ � ρ : Γ then Δ � [[M ]]ρ : T

Proof. By induction on the typing derivation Γ � M : T
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Case. Γ � x : T

hence M = x and [[M ]]ρ = ρ(x).

Γ � x : T and Δ � ρ : Γ by assumption

Δ � ρ(x) : T by Map lookup (Lemma 5)

Δ � [[x]]ρ: T by definition

Case. Γ � λx.M ′ : T → S

hence M = λx.M ′

and [[M ]]ρ = 〈λc. let x = fst c in let xenv = rst c in P , Penv〉

Γ � λx.M ′ : T → S and Δ � ρ : Γ by assumption

Γ′ � λx.M ′ : T → S and Γ′ ⊆ Γ

where Γ′ = FV (λx.M ′) by Term strengthening (Lemma 1 )

Γ′, x : T � M ′ : S by inversion on t lam

Γ′ � (x1, . . . , xn) : TΓ′ and

xenv : TΓ′ � ρ′ : Γ′ by Context reification (Lemma 3)

Γ � (x1, . . . , xn) : TΓ′ by Term Weakening (Lemma 2)

Δ � ρ : Γ by assumption

(ρ(x1), . . . , ρ(xn)) = Penv by assumption

Δ � Penv : TΓ′ by Map lookup (tuple) (Lemma 6)

xenv : TΓ′ , x : T � ρ′, x �→ x : Γ′, x : T By Map extension (Lemma 4)

xenv : TΓ′ , x : T � P : S

where P = [[M ]]ρ′,x �→x by i.h. on M

c : T × TΓ′ , x : T, xenv : TΓ′ � P : S by Term weakening (Lemma 2)

c : T × TΓ′ , x : T � let xenv = rst c in P : S by rule t let

c : T × TΓ′ � let x = fst x in let xenv = rst c in P : S by rule t let

· � λc. let x = fst c in let xenv = rst c in P : code (T × TΓ′) S by rule t lam

Δ � 〈λc. let x = fst c in let xenv = rst c in P , Penv〉 : T → S
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by rule t pack

Δ � [[λx.M ′]]ρ : T → S by definition

Case. Γ � M ′ N : T

hence M = M ′ N

and [[M ]]ρ = let 〈xf , xenv〉 = [[M ′]]ρ in xf ([[N ]]ρ , xenv)

Γ � M ′ N : T and Δ � ρ : Γ by assumption

Γ � M ′ : S → T and Γ � N : S by inversion on t app

Δ � [[M ′]]ρ : S → T by i.h.

Δ � [[N ]]ρ : S by i.h.

Δ, xenv : l � [[N ]]ρ : S by term weakening

Δ, xenv : l � xenv : l by rule t var

Δ, xenv : l � ([[N ]]ρ , xenv) : (S × l) by rule t cons

Δ, xf : code (S × l) T, xenv : l � ([[N ]]ρ , xenv) : (S × l)

by term weakening, exchange

Δ, xf : code (S × l) T � xf : code (S × l) T by rule t var

Δ, xf : code (S × l) T, xenv : l � xf : code (S × l) T by term weakening

Δ, xf : code (S × l) T, xenv : l � xf ([[N ]]ρ , xenv) : T by rule t app

Δ � let 〈xf , xenv〉 = [[M ′]]ρ in xf ([[N ]]ρ , xenv) : T by rule t letpack

Δ � [[M ′ N ]]ρ : T by definition

Case. Γ � let x = N in M ′ : T

hence M = let x = N in M ′

and [[M ]]ρ = let x = [[N ]]ρ in [[M ′]]ρ,x �→x

Γ � let x = N in M ′ : T and Δ � ρ : Γ by assumption

Γ � N : S and Γ, x : S � M ′ : T by inversion on t let

Δ � [[N ]]ρ : S by i.h.

Δ, x : S � ρ, x �→ x : Γ, x : S by Map extension (Lemma 4)
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Δ, x : S � [[M ′]]ρ,x�→x : T by i.h.

Δ � let x = [[N ]]ρ in [[M ′]]ρ,x �→x : T by rule t let

Δ � [[let x = N in M ′]]ρ : T by definition

Case. Γ � (M ′, N) : T

hence M = (M ′, N) and [[M ]]ρ = ([[M ′]]ρ, [[N ]]ρ)

Γ � (M ′, N) : T and Δ � ρ : Γ by assumption

Γ � M ′ : T1 and Γ � N : T2

where T = T1 × T2 by inversion on t cons

Δ � [[M ′]]ρ : T1 by i.h.

Δ � [[N ]]ρ : T2 by i.h.

Δ � ([[M ′]]ρ, [[N ]]ρ) : T1 × T2 by rule t cons

Δ � [[(M ′, N)]]ρ : T by definition

Case. Γ � fst M ′ : T

hence M = fst M ′ and [[M ]]ρ = fst [[M ′]]ρ

Γ � fst M ′ : T and Δ � ρ : Γ by assumption

Γ � M ′ : T × S by inversion on t first

Δ � [[M ′]]ρ : T × S by i.h.

Δ � fst [[M ′]]ρ : T by rule t first

Δ � [[fst M ′]]ρ : T by definition

Case. Γ � rst M ′ : T

hence M = rst M ′ and [[M ]]ρ = rst [[M ′]]ρ

Γ � rst M ′ : T and Δ � ρ : Γ by assumption

Γ � M ′ : S × T by inversion on t rest

Δ � [[M ′]]ρ : S × T by i.h.

Δ � rst [[M ′]]ρ : T by rule t rest
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Δ � [[rst M ′]]ρ : T by definition

Case. Γ � () : unit

hence M = () and [[M ]]ρ = ()

Γ � () : unit by assumption

Δ � () : unit by rule t unit

Δ � [[()]]ρ : unit by definition


�

6.3 Representating the Target Language in LF

In this section, we describe the implementation of the closure conversion

algorithm in Beluga. The representation of the target language from

Figure 6–1 in LF is given in Figure 6–5.

datatype target: tp → type =
| clam : (target T → target S) → target (code T S)
| capp : target (code T S) → target T → target S
| cpack : target (code (cross T L) S) → target L

→ target (arr T S)
| cletpack: target (arr T S)

→ ({l:tp} target (code (cross T l)) S)
→ target l → target S)

→ target S
| cfst : target (cross T S) → target T
| crst : target (cross T S) → target (prod S)
| ccons: target T → target S → target (cross T S)
| cnil : target unit
| clet : target T → (target T → target S) → target S;

Figure 6–5: Encoding of the Target Language of Closure Conversion in LF

An LF term of type target T in a context Δ, where T is a tp, corre-

sponds to a typing derivation Δ � P : T . The data-type definition directly

reflects the typing rules with one exception: our typing rule t pack enforced

that P was closed. This cannot be achieved in the LF encoding, since the

context of assumptions is ambient. As a consequence, hoisting, which relies
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on the fact that the closure converted functions are closed, cannot be imple-

mented as a separate phase after closure conversion. We will come back to

this issue in Chapter 7.

6.4 Type Preserving Closure Conversion in Beluga: an Overview

Our main function for the Beluga implementation of closure con-

version is cc, whose signature, given in Fig. 6–6, corresponds to the type

preservation theorem (Theorem 1) for our closure conversion algorithm

(Fig. 6–4). cc translates well-typed source terms in a source context Γ

to well-typed target terms in the target context Δ given a map of the

source context Γ to the target context Δ. Δ will consists of an environment

variable xenv and the variable x bound by the last abstraction, along with

variables introduced by let bindings. Just as types classify terms, schemas

cc: Map [Δ] [Γ] → [Γ. source T] → [Δ. target T]

Figure 6–6: Signature of the Main Function cc

classify contexts in Beluga, similarly to world declarations in Twelf [Pfen-

ning and Schürmann, 1999]. We include the definition of the two schemas

used for this transformation in Fig. 6–7. The schema tctx describes con-

texts where each declaration is an instance of type target T, corresponding

to Δ in Fig. 6–1; similarly the schema sctx describes contexts where each

declaration is an instance of type source T, and it corresponds to Γ in

Fig. 4–1. In the remainder of this chapter and in Chapter 7, we will use Γ

to name contexts characterized by the schema sctx, and Δ for contexts of

schema tctx. While type variables appear in the typing rule t_letpack,

they only occur locally and are always bound before the term is returned by

our functions, such that they do not appear in the schema.
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schema tctx = target T;
schema sctx = source T;

Figure 6–7: Definition of Schemas tctx and sctx

datatype Map:{Δ:tctx}{Γ:sctx} ctype =
| Id : {Δ:tctx} Map [Δ] []
| Dot: Map [Δ] [Γ] → [Δ. target S]

→ Map [Δ] [Γ, x:source S];

Figure 6–8: Definition of Map as an Inductive Datatype

We use the indexed recursive type Map, whose definition is given in

Fig. 6–8, to relate the target context Δ and source context Γ [Cave and

Pientka, 2012]. As a reminder, in Beluga’s concrete syntax, the kind ctype

indicates that we are not defining an LF datatype, but a recursive type

on the level of computations. → is overloaded to mean computation-level

functions rather than the LF function space. Map is defined recursively on

the source context Γ directly encoding our definition Δ � ρ : Γ given earlier.

Beluga reconstructs the type of free variables Δ, Γ, and S and

implicitly abstracts over them. In the constructor Id, we choose to make Δ

an explicit argument to Id, since we often need to refer to Δ explicitly in

the recursive programs we are writing about Map.

The next section presents the implementation of the necessary auxiliary

functions, followed by cc, our main function.

6.5 Implementation of Auxiliary Lemmas

Term strengthening and weakening. We begin by implementing

functions for strengthening and weakening source terms, corresponding to

Lemmas 1 and 2 respectively. Both operations rely on an inclusion relation

Γ′ ⊆ Γ, which is defined using the indexed recursive computation-level

data-type SubCtx, presented in Fig. 6–9.
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datatype SubCtx: {Γ′:sctx} {Γ:sctx} ctype =
| WInit: SubCtx [] []
| WDrop: SubCtx [Γ′] [Γ] → SubCtx [Γ′] [Γ, x:source T]
| WKeep: SubCtx [Γ′] [Γ]

→ SubCtx [Γ′, x:source T] [Γ, x:source T];

Figure 6–9: Definition of SubCtx as an Inductive Datatype

Given a source term M in Γ the function strengthen, whose type

signature is included in Fig. 6–10, computes the strengthened version of M,

which is well-typed in the source context Γ′ characterizing the free variables

in M, together with the proof SubCtx [Γ′] [Γ]. Our implementation slightly

deviates from the statement of Term strengthening (Lemma 1) given earlier.

Instead of computing the free variables of M separately, we simply construct

Γ′ such that it characterizes the free variables of M. We represent the result

using the indexed recursive type StrTerm’ encoding the existential in the

specification as a universal quantifier using the constructor STm’. The fact

that Γ’ describes exactly the free variables of M is not captured by the type

definition. This is because SubCtx [Γ] [Gamma] is valid for all context

Γ, such that we could implement a strengthen function which would not

removed unused variables from the context.

datatype StrTerm’: {Γ:sctx} [.tp] → ctype =
| STm’: [Γ′. source T] → SubCtx [Γ′] [Γ]

→ StrTerm’ [Γ] [.T];

rec strengthen: [Γ. source T] → StrTerm’ [Γ] [.T]

Figure 6–10: Signature of the Function strengthen

Just as in the proof of the term strengthening lemma, we cannot

implement the function strengthen directly. This is because, while we

would like to perform induction on the size of Γ, we cannot appeal to the

induction hypothesis while maintaining a well-scoped source term in the case
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of an occurring variable in front of Γ. Instead, we implement str, which,

intuitively, implements the lemma

If Γ1,Γ2 � M : T and Γ′
1,Γ2 = FV(M), then Γ′

1,Γ2 � M : T

and Γ′
1 ⊆ Γ1.

In Beluga, contextual objects can only refer to one context variable,

such that we cannot simply write [Γ1, Γ2. source T]. Instead, to express

this, we use a data-type wrap which abstracts over all the variables in Γ2.

wrap is indexed by the type T of the source term and the size of Γ2. The

function str then recursively analyses Γ1, adding variables occurring in

the input term to Γ2. The type of str asserts, through its index N, the size

of Γ2, which stays constant on input and output of a call to str. This is

crucial to verify the totality of the function; in the case where we call str

with an argument of the form ainit M, this ensures that the returned wrap

will be of the same form, and similarly when called with some add (λx. M

..x).

datatype wrap: tp → nat → type =
| ainit: (source T) → wrap T z
| add: (source S → wrap T N) → wrap (arr S T) (suc N);

datatype StrTerm: {Γ:sctx} [.tp] → [.nat] → ctype =
| STm: [Γ′. wrap T N] → SubCtx [Γ′] [Γ]

→ StrTerm [Γ] [.T] [.N];

rec str: [Γ. wrap T N] → StrTerm [Γ] [.T] [.N] =
fn e ⇒ case e of
| [ . M] ⇒ STm [. M] WInit
| [Γ, x:source T. M... ] ⇒
let STm [Γ′. M’... ] rel = str [Γ. M... ] in
STm [Γ′. M’... ] (WDrop rel)

| [Γ, x:source T. M... x] ⇒
let STm [Γ′. add (λx.M’... x)] rel =

str [Γ.add (λx. M... x)] in
STm [Γ′, x:source T. M’... x] (WKeep rel);

Figure 6–11: Implementation of the Function str
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The function str, given in Fig. 6–11, is implemented recursively on the

structure of Γ and exploits higher-order pattern matching to test whether

a given variable x occurs in a term M. As a consequence, we can avoid the

implementation of a function which recursively analyzes M and test whether

x occurs in it, as previously demonstrated in Fig. 3–6.

The first case, [. M], is only matched if Γ = ·. Then, FV (M) = · and
we initialize the subcontext relation with the WInit constructor.

The second case, [Γ, x:source T. (M... )], means that x, the variable

on top of the context, does not appear in M. We can hence strenghten M to

context Γ, recursively call str on this subcontext, and use the subcontext

relation constructor WDrop to relate Γ and Γ, x:source T.

Finally, the last case, [Γ, x:source T. (M... x)], means that x may

occur in M. We know, as the term did not match the previous pattern, that

x does indeed occur in M, and we must keep it as part of FV(M). We use the

add constructor of the wrap datatype to add x the accumulator representing

Γ2, and recursively call str on the Γ subcontext. The type index N, which

stays constant in calls to str, asserts that the wrap in the output will be

of the form add (λx.M’... x). We then use the WKeep subcontext relation

constructor to signify that we kept x as part of FV(M).

While one can implement term weakening following similar ideas, we

incorporate it into the variable lookup function defined next.

Map extension and lookup. The function lookup, given in

Fig. 6–12, takes a source variable of type T in the source context Γ and

Map [Δ] [Γ] and returns the corresponding target expression of the same

type.

We quantify over all variables in a given context by {#p:[Γ. source

T]} where #p denotes a variable of type source T in the context Γ. In the
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rec lookup:{#p:[Γ.source T]} Map [Δ] [Γ] → [Δ. target T] =
λ�#p ⇒ fn ρ ⇒ let (ρ: Map [Δ] [Γ]) = ρ in case [Γ. #p... ] of
| [Γ′, x:source T. x] ⇒ let Dot ρ′ [Δ. M... ] = ρ in [Δ. M... ]
| [Γ′, x:source S. #q... ] ⇒ let Dot ρ′ [Δ. M... ] = ρ in

lookup [Γ′. #q... ] ρ′;

Figure 6–12: Implementation of the Function lookup

function body, λ�-abstraction introduces an explicitly quantified contextual

object and fn-abstraction introduces a computation-level function. The

function lookup is implemented by pattern matching on the context Γ and

the parameter variable #p, after observing the type of ρ to introduce Γ to

the namespace.

To guarantee coverage and termination, it is pertinent that we know

that an n-ary tuple is composed solely of source variables from the context

Γ, in the same order. We therefore define VarTup in Fig 6–13 as a computa-

tional datatype for such variable tuples. Nex v of type VarTup [Γ] [.LΓ],

where Γ = x1:T1,. . ., xn:Tn, is taken to represent the source language

tuple (x1,. . ., xn) of type T1 × . . .× Tn in the context Γ.

datatype VarTup: {Γ:sctx} [.tp] → ctype =
| Emp: VarTup [] [.unit]
| Nex: VarTup [Γ] [.L] → VarTup [Γ, x:source T] [.cross T L

]
;

Figure 6–13: Definition of VarTup as an Inductive Datatype

The function lookupVars (see 6–14) applies a map ρ to every variable

in a variable tuple.

lookupVars allows the application of a Map defined on a more general

context Γ provided that Γ′ ⊆ Γ. This corresponds, in the theoretical

presentation, to weakening a variable tuple with Lemma 2 before applying
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rec lookupVars: VarTup [Γ′] [.LΓ′] → SubCtx [Γ′] [Γ]
→ Map [Δ] [Γ] → [Δ. target LΓ′] =

fn vt ⇒ fn sub ⇒ fn σ ⇒ let (σ : Map [Δ] [Γ]) = σ in
case sub of
| WInit ⇒
let Emp = vt in % Γ′ = Γ = .
[Δ. cnil]

| WDrop sub’ ⇒
let DotMap σ′ [Δ. P... ] = σ in
lookupVars vt sub’ σ′

| WKeep sub’ ⇒
let Nex vt’ = vt in
let DotMap σ′ [Δ. P... ] = σ in
let [Δ. M... ] = lookupVars vt’ sub’ σ′ in
[Δ. ccons (P... ) (M... )]

;

Figure 6–14: Implementation of the Functione lookupVars

a mapping on it with Lemma 6. In the first case, we learn that Γ′ = Γ = ·,
such that the corresponding tuple is (·) in context Δ.

In the second case, the first variable of Γ does not appear in Γ′, we

can thus disregard it in the tuple construction and we recursively call

lookupVars after removing x �→ P from σ.

In the third case, the top variable of Γ appears on top of Γ′ as well, and

we have x �→ P in σ. We recursively construct to tuple for the rest of Γ′,

before adding P in front to get a tuple of type LΓ′ .

extendMap (see Fig. 6–15), which implements Map extension (Lemma 4),

weakens a mapping with the identity on a new variable x. It is used to

extend the Map with local variables, for example when we encounter a

let-binding construct.

To extend a map, we must first weaken Δ to Δ, x:target S, which

can be done directly if our mapping is empty (constructor IdMap). Other-

wise, we use extendMap’ which crawls down the mapping, weakening its

64



rec extendMap’: Map [Δ] [Γ]
→ Map [Δ, x:target S] [Γ] =

fn σ ⇒ case σ of
| IdMap [Δ] ⇒ IdMap [Δ, x:target _]
| DotMap σ′ [Δ. M... ] ⇒
let ρ’ = extendMap’ σ′ in
DotMap ρ’ [Δ, x:target _. (M... )]

;

rec extendMap: Map [Δ] [Γ]
→ Map [Δ, x:target S] [Γ, x:source S] =

fn σ ⇒ case σ of
| IdMap [Δ] ⇒

DotMap (IdMap [Δ, x:target _]) [Δ, x:target _. x]
| DotMap σ′ [Δ. M... ] ⇒
let ρ’ = extendMap’ σ′ in
let ρ = DotMap ρ’ [Δ, x:target _. M... ] in
DotMap ρ [Δ, x:target _. x];

Figure 6–15: Implementation of extendMap

constituents by x. We then add x �→ x on top of ρ to optain a mapping

from Γ, x:source S to Δ, x:target S.

A Reification of the Context as a Term Tuple. The context

reification lemma (Lemma 3) is proven by induction on Γ; in Beluga, we

can enable pattern matching on contexts by defining an indexed data-type

Ctx which wraps a context Γ in a constructor.

The function reify, given in Fig. 6–16, translates the context Γ to a

source term. It produces a tuple containing variables of Γ in order, along

with Map [x:target TΓ] [Γ] describing the mapping between those

variables and their corresponding projections. The type of reify enforces

that the returned Map contains, for each of the variables in Γ, a target term

of the same type referring solely to a variable x of type TΓ. This means

the tuple of variables of type TΓ also returned by reify contain enough

information to replace occurrences of variables in any term in context Γ
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datatype Ctx: {Γ:sctx} ctype =
| Ctx: {Γ:sctx} Ctx [Γ];

datatype CtxAsTup: {Γ:sctx} ctype =
| CTup: VarTup [Γ] [.LΓ] → Map [x:target LΓ] [Γ]

→ CtxAsTup [Γ];

rec reify: Ctx [Γ] → CtxAsTup [Γ] =
fn Γ ⇒ case Γ of
| Ctx [ ] ⇒ CTup Emp (IdMap [x:target unit])
| Ctx [Γ, x:source S] ⇒
let CTup vt σ = reify (Ctx [Γ]) in
let ρ’ = pushMap σ in
let rho = DotMap ρ’ [xenv:target (cross S _). cfst xenv] in
CTup (Nex vt) ρ

;

Figure 6–16: Implementation of the Function reify

perserving types - it contains either the variables themselves or terms of the

same type.

6.6 Implementation of the Main Theorem

The function cc, given in Fig. 6–17 and 6–18, implements our closure

conversion algorithm (see Fig. 6–4) recursively by pattern matching on ob-

jects of type [Γ. source T] . It follows closely the earlier proof (Thm. 1).

We describe here the cases for variables and lambda-abstractions omitting

the case for applications. When we encounter a variable, we simply lookup

its corresponding binding in ρ.

Given a lambda abstraction in context Γ and ρ which represents the

map from Γ to Δ, we begin by strengthening the term to some context

Γ′. We then reify the context Γ′ to obtain a tuple E together with the new

map ρ′′ of type Map [xenv:target TΓ′] [Γ′]. We use a type-annotation

on ρ′′ in the code to resurrect implicit information present in the types.

Next, we extend ρ′′ with the identity on the lambda-abstraction’s local

variable to obtain ρ′, and recursively translate M using ρ′, obtaining a

target term in context xenv, x. Abstracting over xenv and x gives us the
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rec cc: Map [Δ] [Γ] → [Γ. source T] → [Δ. target T] =
fn ρ ⇒ fn m ⇒ case m of

| [Γ. #p... ] ⇒ lookup ρ [Γ. #p... ]

| [Γ. lam λx.M... x] ⇒
let STm [Γ′. add (λx. ainit (M’ ... x))] rel =

str [Γ. add λx.ainit (M ... x)] in
let CTup [Γ′. E... ] (ρ′′:Map [xenv:target TΓ′] [Γ′]) =

reify (Ctx [Γ′]) in
let ρ′ = extendMap ρ′′ in
let [xenv:target TΓ′, x:target T. (P xenv x)] =

cc ρ′ [Γ′, x:source _. M... x] in
let [Δ. Penv... ] = lookupVars [Γ′. E... ] rel ρ in

[ Δ. cpack (clam (λc. (clet (cfst c)
(λx.(clet (crst c)

(λxenv. P xenv x))))))
(Penv... ) ]

| [Γ. z] ⇒ [Δ. cz]
| [Γ. suc (M ... )] ⇒
let [Δ. P’... ] = cc ρ [Γ. M... ] in
[Δ. csuc (P’... )]

| [Γ. app (M... ) (N... )] ⇒
let [Δ. P... ] = cc ρ [Γ. M... ] in
let [Δ. Q... ] = cc ρ [Γ. N... ] in

[Δ. copen (P... )
λe.λxf.λxenv. capp xf (ccons (Q... ) xenv)

. . .
;

Figure 6–17: Implementation of Closure Conversion in Beluga

desired closure-converted lambda-abstraction. To obtain the environment

Penv, we apply ρ on each variables in E using lookupVars. Finally, we pack

the converted lambda-abstraction and the environment Penv as a closure,

using the constructor cpack.

The rest of the cases are straightforward. z and nilv are replaced by

the appropriate constant of the target language, weakened to Δ given by ρ.

Unary fst,rst and suc, and binary app and cons are translated directly

by recursively calling the function on their subargument(s) using the input

map ρ, before recombining them using target term constructors. For let, we
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rec cc: Map [Δ] [Γ] → [Γ. source T] → [Δ. target T] =
fn ρ ⇒ fn m ⇒ case m of
. . .
| [Γ. letv (M... ) (λx.(N... x))] ⇒
let [Δ. P... ] = cc ρ [Γ. M... ] in
let [Δ, x:target S . Q... x] =
cc (extendMap ρ) [Γ, x. N... x]

in
[Δ. clet (P... ) (λx.Q... x)]

| [Γ. cons (M... ) (N... )] ⇒
let [Δ. M’... ] = cc ρ [Γ. M... ] in
let [Δ. N’... ] = cc ρ [Γ. N... ] in
[Δ. ccons (M’... ) (N’... )]

| [Γ. nilv] ⇒ [Δ. cnil]
| [Γ. fst (M... )] ⇒
let [Δ. M’... ] = cc ρ [Γ. M... ] in
[Δ. cfst (M’... )]

| [Γ. rst (M... )] ⇒
let [Δ. M’... ] = cc ρ [Γ. M... ] in
[Δ. crst (M’... )];

Figure 6–18: Implementation of Closure Conversion in Beluga (Continued)

extend the map with x �→ x using extendMap before translating the body

of the construct with a recursive call to cc.

6.7 Discussion and Related Work

Our implementation of closure conversion, including all definitions and

auxiliary functions, consists of approximately 200 lines of code.

The closure conversion algorithm has also served as a key benchmark

for systems supporting first-class nominal abstraction such as FreshML

[Pottier, 2007] and αProlog [Cheney and Urban, 2004]. Both languages

provide facilities for generating names and reasoning about their freshness,

which proves to be useful when computing the free variables in a term.

However, capture-avoiding substitution still needs to be implemented

separately. Since these languages lack dependent types, implementing a

certified compiler using our technique is out of their reach.
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One of the earliest studies of using HOAS in implementing compilers

was presented in Hannan [1995], where the author describes the implemen-

tation of a type-directed closure conversion in Elf [Pfenning, 1989], leaving

open several implementation details, such as how to reason about variable

equality.

Closely related to our work is Guillemette and Monnier [2007], which

describes the implementation of a type-preserving closure conversion algo-

rithm over STLC in Haskell. While HOAS is used in the CPS translation,

the languages from closure conversion onwards use de Bruijn indices. They

then compute the free-variables of a term as a list, and use this list to create

a map from the variable to its projection when variable occurs in the term,

and to ⊥ otherwise. Guillemette and Monnier [2008] extends the closure

conversion implementation to System F.

Chlipala [2008] presents a certified compiler for STLC in Coq using

parametric higher-order abstract syntax (PHOAS), a variant of weak HOAS.

He however annotates his binders with de Bruijn level before the closure

conversion pass, thus degenerating to a first-order representation. His

closure conversion is hence similar to the one of Guillemette and Monnier

[2007].

In both implementations, infrastructural lemmas dealing with binders

constitute a large part of the development. Moreover, additional information

in types is necessary to ensure the program type-checks, but is irrelevant

at a computational level. In contrast, we rely on the rich type system and

abstraction mechanisms of Beluga to avoid all infrastructural lemmas.
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CHAPTER 7
Hoisting

Hoisting is a code transformation that lifts lambda-abstractions, closed

by closure conversion, to the top level of the program. Function declarations

in the program’s body are replaced by references to a global function

environment.

As alluded to in Sec. 6.3, our encoding of the target language of closure

conversion does not guarantee that functions in a closure converted term are

indeed closed. While this information is available during closure conversion,

as we observe the contextual objets, it cannot easily be captured in our

meta-language, LF. We therefore extend our closure conversion algorithm

to perform hoisting at the same time. Hoisting can however be understood

by itself; we present here a standalone hoisting algorithm and its type

preservation proof, highlighting the main ideas of the transformation.

When hoisting all functions from a program, each function may

depend on functions nested in them. One way of performing hoisting (see

Guillemette and Monnier [2008]) consists of binding the functions at the

top level individually. We instead merge all the functions in a single tuple,

representing the function environment, and bind it as a single variable from

which we project individual functions, which ends up being less cumbersome

when using Beluga’s notion of context variables.
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Performing hoisting on the closure-converted program presented in

Sec. 6.2

let 〈f1, c1〉 =
let 〈f2, c2〉 =
〈 λe2. let x = fst e2 in let xenv = rst e2 in

〈λe1. let y = fst e1 in let yenv = rst e1 in fst yenv + y, (x, ())〉
, () 〉
in f2 (5 , c2)

in f1 (2, c1)

will result in

let l = (λl2.λe2.let x = fst e2 in let xenv = rst e2 in 〈 (fst l2) (rst l2) , (x, ()) 〉,
λl1.λe1.let y = fst e1 in let yenv = rst e1 in fst yenv + y, ())

in let 〈f1, c1〉 =
let 〈f2, c2〉 = 〈(fst l) (rst l), (·)〉
in f2 (5, c2)

in f1 (2, c1)

7.1 The Target Language Revisited

We define hoisting on the target language of closure conversion and

keep the same typing rules (see Fig. 6–2) with one exception: the typing rule

for t pack is replaced by the one included in Fig. 7–1.

l : Tf � P : code (T × Tx) S Δ, l : Tf � Q : Tx

Δ, l : Tf � 〈P,Q〉 : T → S
t pack’

Figure 7–1: Alternative Typing Rule for Hoisting

When hoisting is performed at the same time as closure conversion, P

is not completely closed anymore, as it refers to the function environment

l. Only at top-level, where we bind the collected tuple as l, will we recover
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a closed term. This is only problematic for t pack, as we request the code

portion to be closed; t pack’ specifically allows the code portion to depend

on the function environment.

The distinction between t pack and t pack’ is irrelevant in our imple-

mentation, as in our representation of the typing rules in LF the context is

ambient.

7.2 Hoisting Algorithm

We now define the hoisting algorithm in Figure 7–2 as [[P ]]l = Q �	 E ,

where P , Q and E are target terms and l is a variable name which does not

occur in P . Hoisting takes as input a target term P and returns a hoisted

target term Q together with its function environment E, represented as a

n-ary tuple target term of product type L. We write E1 ◦ E2 for appending

tuple E2 to E1 and L1 ◦ L2 for appending the product type L2 to L1.

Renaming and adjustment of references to the function environment are

performed implicitly in the presentation, and binding l is taken to uniquely

name function references.

While the presented hoisting algorithm is simple to implement in an

untyped setting, its extension to a typed language demands more care with

respect to the form and type of the functions environment. As ◦ is only

defined on n-ary tuples and product types and not on general terms and

types, we enforce that the returned environment E and its type L are of the

right form. We take Δ �l E : L as restricting Δ � E : L for a n-ary tuple E

of product type L.

Lemma 1. Append Function Environments

If Δ �l E1 : L1 and Δ �l E2 : L2, then Δ �l E1 ◦ E2 : L1 ◦ L2.

Proof. By induction on the derivation Δ �l E1 : L1.
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[[x]]l = x �� ()

[[〈P1, P2〉]]l = 〈(fst l) (rst l), Q2〉 �� E where Q1 �� E1 = [[P1]]l
and Q2 �� E2 = [[P2]]l
and E = (λl.Q1, E1 ◦ E2)

[[let 〈xf , xenv〉 = P1 in P2]]l = let 〈xf , xenv〉 = Q1 in Q2 �� E where [[P1]]l = Q1 �� E1

and [[P2]]l = Q2 �� E2

and E = E1 ◦ E2

[[λx.P ]]l = λx.Q �� E where [[P ]]l = Q �� E
[[P1 P2]]l = Q1 Q2 �� E1 ◦ E2 where [[P1]]l = Q1 �� E1

and [[P2]]l = Q2 �� E2

[[let x = P1 in P2]]l = let x = Q1 in Q2 �� E1 ◦ E2 where [[P ]]l = Q1 �� E1

and [[P2]]l = Q2 �� E2

[[(P1, P2)]]l = (Q1, Q2) �� E1 ◦ E2 where [[P1]]l = Q1 �� E1

and [[P2]]l = Q2 �� E2

[[fst P ]]l = fst Q �� E where [[P ]]l = Q �� E
[[rst P ]]l = rst Q �� E where [[P ]]l = Q �� E

[[()]]l = () �� ()

Figure 7–2: Hoisting Algorithm

Append Function Environments (Lemma 1) says that the append

operator on tuples ◦ corresponds, at the level of terms, to the append

operator on product types ◦. Thus, appending two tuples E1 and E2 of type

L1 and L2 respectively will result in a tuple of type L1 ◦ L2.

Lemma 2. Function Environment Weakening (1)

If Δ, l : Lf1 � P : T and Lf1 ◦ Lf2 = Lf , then Δ, l : Lf � P : T .

Proof. By induction on the relation Lf1 ◦ Lf2 = Lf .

Lemma 3. Function Environment Weakening (2)

If Δ, l : Lf2 � P : T and Lf1 ◦ Lf2 = Lf , then Δ, l : Lf � P : T

Proof. By induction on the relation Lf1 ◦ Lf2 = Lf .

Function Environment Weakening (1) (Lemma 2) and (2) (Lemma 3) say

that we can replace a variable of a product type by a product type which

extends the original one. Lemma 2 proves this property when constructing
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the new product type by appending the original product type to another,

while Lemma 3 proves it when appending a product type onto the original

one. While we could prove this property more generally, for example, that

we can perform Function Environment Weakening as long as the targeted

product type contains all the components of the original product types, with

no respect for order, the two lemmas given here are sufficient for the proof

of the main theorem that follows, as they corresponds to our usage of the ◦
operator.

Theorem 1. Type Preservation

If Δ � P : T and [[P ]]l = Q �	 E then · �l E : Lf and Δ, l : Lf � Q : T

for some Lf .

Proof. By induction on the typing derivation Δ � P : T .

Case. Δ �l x : T

Δ �l x : T by assumption

[[x]]l = x �	 () by definition

Δ �l () : unit by rule t unit

Δ, lf : unit � x : T by term weakening

Case. Δ � 〈P1, P2〉 : T → S

Δ � 〈P1, P2〉 : T → S by assumption

· � P1 : code (T × Lx) S and Δ � P2 : Lx by inversion

[[〈P1, P2〉]]l = 〈(fst l) (rst l), Q2〉 �	 (λl.Q1, E) by definition

where [[P1]]l = Q1 �	 E1 , [[P2]]l = Q2 �	 E2 and E = E1 ◦ E2

l : L1 � Q1 : code (T × Lx) S and · �l E1 : L1 by i.h. on P1

Δ, l : L2 � Q2 : Lx and · �l E2 : L2 by i.h. on P2

· �l E1 ◦ E2 : L1 ◦ L2 and L1 ◦ L2 = Lf by Append f. env. (Lemma 1)

l : Lf � Q1 : code (T × Lx) S by F. env. weaken. (1) (Lemma 2)
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Δ, l : Lf � Q2 : Lx by F. env. weaken. (2) (Lemma 3)

· � λl.Q1 : code Lf (code (T × Lx) S) by rule t lam

· � (λl.Q1, E) : (code Lf (code (T × Lx) S)) × Lf by rule t cons

l : (code Lf (code (T × Lx) S)) × Lf � fst l : code Lf (code (T × Lx) S)

by rule t first

l : (code Lf (code (T × Lx) S)) × Lf � rst l : Lf by rule t rest

l : (code Lf (code (T × Lx) S)) × Lf � (fst l) (rst l) : code (T × Lx) S

by rule t app

Δ, l : (code Lf (code (T × E) S)) × Lf � 〈(fst l) (rst l), Q2〉 : T → S

by rule t pack’

Case. Δ � let x = P1 in P2 : T

Δ � let x = P1 in P2 : T by assumption

Δ � P1 : S and Δ, x : S � P2 : T by inversion on t let

[[let x = P1 in P2]]l = let x = Q1 in Q2 �	 E1 ◦ E2 by definition

where [[P1]]l = Q1 �	 E1 and [[P2]]l = Q2 �	 E2

Δ, l : L1 � Q1 : S and · �l E1 : L1 by i.h. on P1

Δ, x : S, l : L2 � Q2 : T , · �l E2 : L2 by i.h. on P2

· �l E1 ◦ E2 : L1 ◦ L2 and L1 ◦ L2 = Lf by Append f. env. (Lemma 1)

Δ, l : Lf � Q1 : S by F. env. weaken. (1) (Lemma 2)

Δ, x : S, l : Lf � Q2 : T by F. env. weaken. (2) (Lemma 3)

Δ, l : Lf , x : S � Q2 : T by exchange

Δ, l : Lf � let x = Q1 in Q2 : T by rule t let

Case. Δ � let 〈xf , xenv〉 = P1 in P2 : T

Δ � let 〈xf , xenv〉 = P1 in P2 : T by assumption

Δ � P1 : S → T and

Δ, xf : code (S × L) T, xenv : L � P2 : T by inversion on t letpack
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[[let 〈xf , xenv〉 = P1 in P2]]l = let 〈xf , xenv〉 = Q1 in Q2 �	 E by definition

where [[P1]]l = Q1 �	 E1 , [[P2]]l = Q2 �	 E2 and E = E1 ◦ E2

Δ, l : L1 � Q1 : S → T and · �l E1 : L1 by i.h. on P1

Δ, xf : code (S × L) T, xenv : L, l : L1 � Q2 : T and · �l E2 : L2

by i.h. on P2

· �l E1 ◦ E2 : L1 ◦ L2 and L1 ◦ L2 = Lf by Append f. env.(Lemma 1)

Δ, l : Lf � Q1 : S → T by F. env. weaken. (1) (Lemma 2)

Δ, xf : code (S × L) T, xenv : L, l : Lf � Q2 : T

by F. env. weaken. (2) (Lemma 3)

Δ, l : Lf , xf : code (S × L) T, xenv : L � Q2 : T by exchange

Δ, l : Lf � let 〈xf , xenv〉 = Q1 in Q2 : T by rule t letpack

Case. Δ � λx.P : code S T

Δ � λx.P : code S T by assumption

Δ, x : S � P : T by inversion on t lam

[[λx.P ]]l = λx.Q �	 E by definition

where [[P ]]l = Q �	 E

Δ, x : S, l : Lf � Q : T and · �l E : Lf by i.h. on P

Δ, l : Lf , x : S � Q : T by exchange

Δ, l : Lf � λx.Q : code S T by rule t lam

Case. Δ � P1 P2 : T

Δ � P1 P2 : T by assumption

Δ � P1 : code S T and Δ � P2 : S by inversion on t app

[[P1 P2]]l = Q1 Q2 �	 E by definition

where [[P1]]l = Q1 �	 E1 , [[P2]]l = Q1 �	 E2 and E = E1 ◦ E2

Δ, l : L1 � Q1 : code S T and · � E1 : L1 by i.h. on P1
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Δ, l : L2 � Q2 : S and · � E2 : L2 by i.h. on P2

· �l E1 ◦ E2 : L1 ◦ L2 and L1 ◦ L2 = Lf by Append f. env.(Lemma 1)

Δ, l : Lf � Q1 : code S T by F. env. weaken. (1) (Lemma 2)

Δ, l : Lf � Q2 : S by F. env. weaken. (2) (Lemma 3)

Δ, l : Lf � Q1 Q2 : T by rule t app

Case. Δ � (P1, P2) : T .

Δ � (P1, P2) : T by assumption

Δ � P1 : T1 and Δ � P2 : T2 by inversion on t cons

where T = T1 × T2

[[(P1, P2)]]l = (Q1, Q2) �	 E by definition

where [[P1]]l = Q1 �	 E1 and [[P2]]l = Q2 �	 E2 and E = E1 ◦ E2

Δ, l : L1 � Q1 : T1 and · � E1 : L1 by i.h. on P1

Δ, l : L2 � Q2 : T2 and · � E2 : L2 by i.h. on P2

· �l E1 ◦ E2 : L1 ◦ L2 and L1 ◦ L2 = Lf by Append f. env.(Lemma 1)

Δ, l : Lf � Q1 : T1 by F. env. weaken. (1) (Lemma 2)

Δ, l : Lf � Q2 : T2 by F. env. weaken. (2) (Lemma 3)

Δ, l : Lf � (Q1, Q2) : T by rule t cons

Case. Δ � fst P : T .

Δ � fst P : T by assumption

Δ � P : T × S by inversion on t first

[[fst P ]]l = fst Q �	 E by definition

where [[P ]]l = Q �	 E

Δ, l : Lf � Q : T × S and · � E : Lf by i.h. on P

Δ, l : Lf � fst Q : T by rule t first
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Case. Δ � rst P : T .

Δ � rst P : T by assumption

Δ � P : S × T by inversion on t rest

[[rst P ]]l = rst Q �	 E by definition

where [[P ]]l = Q �	 E

Δ, l : Lf � Q : S × T and · � E : Lf by i.h. on P

Δ, l : Lf � rst Q : T by rule t rest

Case. Δ � () : unit.

Δ � () : unit by assumption

Δ �l () : unit by rule t unit

Δ, l : Lf � () : unit by rule t unit


�

7.3 Implementation of Auxiliary Lemmas

Defining functions environments. The functions environment

represents the collection of functions hoisted out of a program. Since our

context keeps track both of variables which represent functions bound at the

top-level and of those representing local arguments, extra machinery would

be required to separate them. For this reason, we represent the function

environment as a single term in the target language rather than multiple

terms with individual binders, maintaining as an additional proposition its

form as a tuple of product type.

Our hoisting algorithm uses aggregate operations such as ◦, which
are only defined on n-ary tuples and on product types. To guarantee

coverage, we define the indexed datatype Env, given in Fig. 7–3, encoding

the judgement Δ �l E : Lf which asserts that environment E and its type

Lf are of the right form.
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datatype Env: {Lf:[.tp]} [.target Lf] → ctype =
| EnvNil: Env [.unit] [.cnil]
| EnvCons: {P:[.target T]} Env [.L] [.E]

→ Env [.cross T L] [.ccons P E];

Figure 7–3: Definition of Env as an Inductive Datatype

Env restricts target and tp to only form tuples of product types. Every

object of type Env begins with EnvNil, corresponding to the empty tuple

of type cnil. Bigger tuples are formed by adding target terms P of type T

on top of Env representing a tuple E of product type L with the constructor

EnvCons.

Appending function environments. When hoisting terms with

more than one subterm, each recursive call on those subterms results in a

different function environment; they need to be merged before combining

the subterms again. This is accomplished in our hoisting algorithm by the

operation ◦, and represented in Beluga as the function append, included

in Fig. 7–5. append corresponds to the application of Lemma 1 in the

proof of Type Preservation (Theorem 1). It takes as input two function

environments of type Env [.L1] [.E1] and and Env [.L2] [.E2], and

constructs a function environment of type Env [.L1 ◦ L2] [.E1 ◦ E2

]. As Beluga does not support computation in types, we return some

function environment E of type L, and a proof that E and L are the results of

concatenating E1 and E2, and respectively L1 and L2.

datatype App:{T:[.tp]}{S:[.tp]}{TS:[.tp]} [.target T]
→ [.target S] → [.target TS] → ctype =

| AStart: Env [.S] [.Q]
→ App [.unit] [.S] [.S] [.cnil] [.Q] [.Q]

| ACons: App [.T] [.S] [.TS] [.P] [.Q] [.PQ]
→ App [.(cross T’ T)] [.S] [.(cross T’ TS)]

[.(ccons P’ P)] [.Q] [.(ccons P’ PQ)];

Figure 7–4: Definition of App as an Inductive Datatype
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App [.L1] [.L2] [.L] [.E1] [.E2] [.E], whose definition is given

in Fig. 7–4 can be read as E1 and E2 being tuples of type L1 and L2, and

concatenating them yields the tuple E of type L. The first constructor,

AStart, encode the fact that unit (and cnil at the level of type) is left

identity for ◦. ACons can then be used to relate ◦ when the left constituent

is not empty, building it up one element at a time on top of the right

constituent.

datatype ExApp:{T:[.tp]}{S:[.tp]} [.target T] → [.target S]
→ ctype =

| AP: App [.L1] [.L2] [.L] [.E1] [.E2] [.E] → Env [.L] [.E]
→ ExApp [.L1] [.L2] [.E1] [.E2];

rec append: Env [.L1] [.E1]→ Env [.L2] [.E2]
→ ExApp [.L1] [.L2] [.E1] [.E2]

fn m ⇒ fn n ⇒ case m of
| EnvNil ⇒
AP (AStart n) n

| EnvCons [.P] e ⇒
let AP p e’ = append e n in
AP (ACons p) (EnvCons [. _] e’)

;

Figure 7–5: Implementation of the Function append

Next, we show the implementation of the two lemmas about function

environment weakening (Lemma 2 and 3).

rec weakenEnv1: (Δ:tctx) App [.L1] [.L2] [.L] [.E1] [.E2] [.E]
→ [Δ, l:target L2. target T] → [Δ, l:target L. target T] =

fn prf ⇒ fn m ⇒ case prf of
| AStart e ⇒ m
| ACons p ⇒
let [Δ, l: target L3’ . M’... l] = weakenEnv1 p m in
[Δ, l:target _ . M’... (crst l)]

;

Figure 7–6: Implementation of the Function weakenEnv1

weakenEnv1 (see Fig. 7–6) is a direct encoding of its specification.

In the first case, we learn that L2 = L, such that we return the original
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target term. In the other case, L = cross T’ T for some T’. We recursively

weaken L1 to T, before replacing occurences of l by crst l in the target

term M’.

rec appL1Unit:
App [. L1] [. unit] [. L3] [. E1] [. cnil] [. E3]
→ [. eqlt L1 L3] =

fn a ⇒ case a of
| AStart EnvNil ⇒ [. refllt]
| ACons a’ ⇒
let [. refllt] = appL1Unit a’ in
[. refllt]

;

rec weakenEnv2: (Δ:tctx) App [.L1] [.L2] [.L] [.E1] [.E2] [.E]
→ [Δ, l:target L1. target T] → [Δ, l:target L. target T] =

fn prf ⇒ fn n ⇒ case prf of
| AStart e ⇒
let AP a e’ = append e EnvNil in
let [. refllt] = appL1Unit a in
weakenEnv1 a n

| ACons p ⇒
let [Δ, l:target (cross S L1’). N... l] = n in
let [Δ, x:target S, l:target L3’. N’... x l] =

weakenEnv2 p [Δ, x:target S, l:target L1’. N... (ccons x l)]
in

[Δ, l:target (cross S L3’). N’... (cfst l) (crst l)];

Figure 7–7: Implementation of the Functione weakenEnv2

Due to the definition of Map, which builds L1 on top of a fixed L2,

weakenEnv2, given in Fig. 7–7, is not as direct to implement as weakenEnv1.

Intuitively, for given concatenation relation L1◦ L2 = L, we peel variables

from L1 until it is empty, in which case we have L2 = L. We then use

appL1Unit which proves that L2 ◦ · = L2, which we use, with weakenEnv1,

to weaken our term by L2, before adding back the variables from L1.

7.4 Implementation of the Main Theorem

The top-level function hcc performs hoisting at the same time as

closure conversion on closed terms. It relies on the function hcc’, included

in Fig. 7–8, to closure convert and hoist open terms when given a map
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between the source and target context. As illustrated in the included code,

only small changes are necessary to integrate hoisting within the closure

conversion implementation from Section 6.6.

hcc calls hcc’ with the initial map and the source term m of type T. It

then binds, with clet, the function environment as l in the hoisted term,

resulting in a closed target term of the same type.

hcc’ transforms a source term in the context Γ given a map between

the source context Γ and the target context Δ following the algorithm

described in Fig. 7–2. It returns a target term of type T which depends on

a function environment l of some product type Lf together with a concrete

function environment of type Lf . The result of hcc’ is described by the

datatype HCCRet which is indexed by the target context Δ and the type T of

the target term.

hcc’, given in Fig. 7–8 and 7–9, follows closely the structure of cc’.

When encountering a variable, we look it up in ρ and return the corre-

sponding target term with the empty function environment EnvNil. When

reaching a lambda-abstraction of type arr S T, we again strengthen the

body lam λx.M ... x to some context Γ′. We then reify Γ′ to obtain a vari-

able tuple (x1, . . . , xn) and convert the strengthened M recursively using the

map ρ extended with the identity. As a result, we obtain a closed target

term Q together with a well-formed function environment e containing

the functions collected so far. We then build the variable environment

(ρ(x1), . . . , ρ(xn)), extend the function environment with the converted

result of M which is known to be closed, and return capp (cfst l)(crst l)

where l abstracts over the current function environment.

While constant and unary constructor cases are unchanged by hoisting,

cases with more than one subterm demand more care with respect to the
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datatype HCCRet:{Δ:tctx} [.tp] → ctype =
| HRet: [Δ, l:target Lf. target T]

→ Env [.Lf] [.E] → HCCRet [Δ] [.T];

rec hcc’: Map [Δ] [Γ] → [Γ. source T] → HCCRet [Δ] [.T] =
fn ρ ⇒ fn m ⇒ case m of
| [Γ. #p... ] ⇒
let [Δ. Q... ] = lookup [Γ] [Γ. #p... ] ρ in
HRet [Δ, l:target (prod unit). Q... ] EnvNil

| [Γ. lam λx.M... x] ⇒
let STm [Γ′. add λx.ainit (M’... x)] rel =

str [Γ. add λx. ainit (M ... x)] in
let CTup vt (ρ′′:Map [xenv:target TΓ′] [Γ′]) = reify (Ctx [Γ′]) in
let [Δ. Penv... ] = lookupTup vt rel ρ in
let HRet r e = hcc’ (extendMap ρ′′) [Γ′, x:source _. M’... x] in
let [xenv:target TΓ′, x:target T, l:target Tf. (Q xenv x l)] = r

in
let e’ = EnvCons [.clam λl. clam λc.

clet (cfst c) (λx.clet (crst c) (λxenv. Q xenv x l))]
e in

let [.T’] = [.cross (code Tf (code (cross T TΓ′) S)) Tf]
in HRet
[Δ, l:target T’. cpack (capp (cfst l) (crst l)) (Penv... )] e’

| [Γ. z] ⇒ HRet [Δ, l:target unit. cz] EnvNil

| [Γ. suc (M ... )] ⇒
let HRet r e = hcc’ ρ [Γ. M... ] in
let [Δ, l:target L. P’... l] = r in
HRet [Δ, l:target L. csuc (P’... l)] e

| [Γ. app (M... ) (N... )] ⇒
let HRet r1 (e1 : Env [. L1] [.E]) = hcc’ ρ [Γ. M... ] in
let {P:[Δ, l:target L1. target (arr T S)]}

[Δ, l:target L1. P... l] = r1 in
let HRet r2 e2 = hcc’ ρ [Γ. N... ] in
let AP a12 e12 = append e1 e2 in
let [Δ, l:target L2 . Q... l] = r2 in
let [Δ, l:target L. P’... l] =

weakenEnv2 a12 [Δ, l:target L1. P... l ] in
let [Δ, l:target L. Q’... l] =

weakenEnv1 a12 [Δ, l:target L2. Q... l ] in
HRet [Δ, l:target L. copen (P’... l) λe.λxf.λxenv.

capp xf (ccons (Q’... l) xenv)] e12
...
;

Figure 7–8: Implementation of Closure Conversion and Hoisting in Beluga
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rec hcc’: Map [Δ] [Γ] → [Γ. source T] → HCCRet [Δ] [.T] =
fn ρ ⇒ fn m ⇒ case m of
...

| [Γ. letv (M... ) (λx.(N... x))] ⇒
let HRet r1 e1 = hcc’ ρ [Γ. M... ] in
let [Δ, l:target L1. P... l] = r1 in
let HRet r2 e2 = hcc’ (extendMap ρ) [Γ, x. N... x] in
let [Δ, x:target T1, l:target L2 . Q... x l] = r2 in
let AP a12 e12 = append e1 e2 in
let [Δ, l:target L. P’... l] =

weakenEnv2 a12 [Δ, l:target L1. P... l] in
let [Δ, x:target T1, l:target L. Q’... x l] =

weakenEnv1 a12 [Δ, x:target _, l:target L2. Q... x l] in
HRet [Δ, l:target L. clet (P’... l) (λx. Q’... x l)] e12

| [Γ. cons (M... ) (N... )] ⇒
let HRet r1 e1 = hcc’ ρ [Γ. M... ] in
let [Δ, l:target L1. M’... l] = r1 in
let HRet r2 e2 = hcc’ ρ [Γ. N... ] in
let [Δ, l:target L2. N’... l] = r2 in
let AP a12 e12 = append e1 e2 in
let [Δ, l:target L. M’’... l] =

weakenEnv2 a12 [Δ, l:target L1. M’... l] in
let [Δ, l:target L. N’’... l] =

weakenEnv1 a12 [Δ, l:target L2. N’... l] in
HRet [Δ, l:target L. ccons (M’’... l) (N’’... l)] e12

|[Γ. fst (M... )] ⇒
let HRet r e = hcc’ ρ [Γ. M... ] in
let [Δ, l:target L. P... l] = r in
HRet [Δ, l:target L. cfst (P... l)] e

|[Γ. rst (M... )] ⇒
let HRet r e = hcc’ ρ [Γ. M... ] in
let [Δ, l:target L. P... l] = r in
HRet [Δ, l:target L. crst (P... l)] e

|[Γ. nilv] ⇒ HRet [Δ, l:target unit. cnil] EnvNil
;

rec hcc: [. source T] → [. target T] =
fn m ⇒ let HRet r (e: Env [._] [.E]) = hcc’ (IdMap []) m in

let [l:target S. Q l] = r in
[. clet E (λl. Q l)];

Figure 7–9: Implementation of Closure Conversion and Hoisting in Bel-
uga (Continued)
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function environment l. This is because recursive calls to each subterm

result in a different function environment, which must then be merged,

using append. Moreover, the references to the function environment in

subterms must be adjusted to the merged function environment, using

functions weakenEnv1 and weakenEnv2. This is implicit in the algorithmic

presentation, but appears in the proof as, respectively, Lemma 2 and 3.

7.5 Discussion and Related Work

Our implementation of hoisting adds in the order of 100 lines to the

development of closure conversion and retains its main structure.

An alternative to the presented algorithm would be to thread through

the function environment as an additional argument to hcc. This avoids

the need to append function environments and obviates the need for

certain auxiliary functions such as weakenEnv1. Other properties around

App would however have to be proven, some of which require multiple

nested inductions; therefore, the complexity and length of the resulting

implementation is similar.

As in our work, hoisting in Chlipala [2008] is performed at the same

time as closure conversion, as a consequence of the target language not

capturing that functions are closed.

In Guillemette and Monnier [2008], the authors include hoisting as part

of their transformation pipeline, after closure conversion. Since the language

targeted by their closure conversion syntactically enforces that functions are

closed, it is possible for them to perform hoisting in a separate phase. In

Beluga, we could perform partial hoisting on the target language of closure

conversion, only lifting provably closed functions to the top level. To do so,

we would use two patterns for the closure case, [Γ. cpack M (N... )] where
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the function part, M, is closed and can thus be hoisted out, and [Γ. cpack

(M... )(N... )], where M may still depend on the context Γ, and as such can’t

be hoisted out.
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CHAPTER 8
Future Work

A number of extensions are foreseeable as future work, both on the

compiler and on our programming environment, Beluga. We list a few of

them in this section, noting their relation to the subject of this thesis and

sketching plausible approaches.

8.1 On the Compiler

System F. While the simply typed lambda calculus is a prototypical

formal system for typed functional programming languages, contemporary

popular languages are based on more expressive typed lambda calculi (see

OCa [2013]; Has [2013]). In System F [Reynolds, 1974], the core calculus

for many languages, types can be quantified over types, corresponding to

polymorphism in programming languages. We have already extended the

source language of the hoisting transformation to System F. Extending

our source language for the rest of the compiler would follow extensions to

comparable algorithms presented in related work [Guillemette and Monnier,

2008; Chlipala, 2008]. While the algorithms seldom change from STLC

to System F, open types pose a significant challenge. This is because our

implementation of closure conversion and hoisting reuse types in different

contexts. This would not be possible to do with types depending on type

variables present in the source context without adjusting their type variable

references to the target context. We believe that the extension could be

performed, albeit rather tediously, in the current version of Beluga, by

carrying a relation effectively copying the type from a source context to a

target contexts, ignoring the term variables while carrying the same type
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variables. Extensions to Beluga such as explicit substitutions, mentioned

later in this section, would facilitate developments with multiple contexts

such as this one, exposing fine-grained dependencies in contextual objects.

Other transformations and optimizations. A number of trans-

formations and optimizations could supplement our compilation pipeline,

making it closer to realistic modern compilers.

Function inlining is an optimization where function calls are selectively

expanded with the definition of the function. Functions which are not

called in the program can have their definition removed, a process called

dead-function elimination, while functions which are called only once can be

replaced by their definition and their top-level definition removed, reducing

the size of the program and, on a lower level language, avoiding costly

procedure calls. Appel and Jim [1997] present a quasi-linear algorithm to

perform function inlining, reducing all eta redexes and most shrink redexes

in linear time. Dead-function elimination can be performed in Beluga by

pattern matching on the substitution affixed to terms within contextual

objects, as exemplified in str in Chapter 6. This substitution tells us if a

given variable does not occur in a term, or if it may occur, but not how

many time it occurs. To know that a function is called only once in the

body of the program, we would have to traverse the term and keep a count

of the occurrences of function variables, as an upper-bound to the function

calls performed at run-time. The absence of references and pointers in

Beluga prevents us from implementing the data-structure used in the final

algorithm presented in the paper effectively, and thus from reaching the

desired time-complexity.

Common subexpression elimination is an optimization where identical

portions of the programs are replaced by references to a single expression,
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reducing the amount of duplicated computation. It is commonly found

in compilers for both functional and imperative languages. Non-linear

patterns, which are supported in Beluga, could be used to test multiple

subexpressions for both structural and variable equality. However, as

with function inlining, some algorithms might be out of reach of our

programming environment, the lack of references and pointers preventing us

from implementing efficient data-structures.

8.2 On Beluga

Interactive Development and Automation. In Beluga, we

write proofs directly, by programming, on the computational level, with its

functional language. This contrasts with other proof assistant such as Coq

and Abella, where proof terms are constructed interactively using a language

of tactics. Both approaches have their benefits, a complete discussion of

which is outside of the scope of this thesis (see, for example, Gonthier et al.

[2011]). However, for programming in Beluga to scale to larger project,

support for interactive development and automation in Beluga would be

desirable, for example automatically generating the different cases of a case

construct, or using proof search to fill trivial portions of programs.

Inspiration could be taken from the agda-mode [Cha, 2013], an emacs

mode for the Agda theorem prover where terms are constructed both

manually and interactively using predefined commands. Progress has been

made in Beluga towards a more responsive programming environment,

with the supports of holes in Beluga programs, meta-constructs of the

computational level representing a meta-variable, which can be substituted

by contextual objects of the right contextual type. Programs with holes can

be type-checked, but not executed; this assists developers by exposing the

type and available information at different points in the program.
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Work has also been done to support a certain number of tactics to

interactively fill the holes, for example by automatically generating covering

case constructs. We believe that our rich type system, exposing complex

invariants about the contexts of terms, could be exploited for program

synthesis. As programs are represented as proofs over LF derivations in

our system, program synthesis would corresponds to proof search. While

proof search is a well-researched area, it is often used with sole concern to

confirm the validity of the theorem, where, as we are interested in executing

the proof found, we also have programmatic concerns such as algorithmic

complexity. For this, careful ordering of the goals and being able to provide

hints to direct proof search might be beneficial.

It might then be fruitful to consider supporting an extensible tactics

language in the style of Ltac [Delahaye, 2000], where multiple tactics may

be combined, discriminating between state of the prover, which would

correspond to the contextual type and meta-context of holes.

Theoretical extensions. Theoretical extensions to Beluga could

also be envisioned to make it a more suitable environment for the develop-

ment of certified software.

Support for first-class substitution would make it easier to reuse terms

in different contexts, appending to them a substitution from their original

context to another. This would help in extending our compiler to System

F, where type arguments could be represented in a context containing only

type variables and substitution variable would transport them into contexts

containing both term and type variables. This extension has already been

described in Cave and Pientka [2014] and should be present in future

versions of Beluga.
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Looking further ahead, Beluga’s restricted form of dependent type,

which does not allow computations to appear in types, prevents us from

proving semantical properties about Beluga functions. Extending Bel-

uga to support full dependent types would open the possibility to prove not

only type preservation, but also semantics preservation for transformations

implemented, as ours, on the computational level.
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CHAPTER 9
Conclusion

In this thesis, we present a series of type-preserving transformations

over the simply typed lambda calculus as implemented in Beluga.

Our compiler not only type checks, but also coverage checks. Ter-

mination can be verified straightforwardly by the programmer, as every

recursive call is made on a structurally smaller argument, such that all our

functions are total. The fact that we are not only preserving types but also

the scope of terms guarantees that our implementation is essentially correct

by construction.

While we cannot, as discussed in Chapter 8, guarantee the preservation

of semantics for each translation, which would imply the full correctness

of our compiler, the aim of our work is different. In our presentation,

Beluga functions correspond to lemmas and theorem in type preservation

proofs, whose execution wields transformation algorithms. We show that the

infrastructure provided by Beluga, as a programming environment, can be

used to reduce the overhead of developing reliable software.

In Beluga, contexts are first-class; we can manipulate them, and

indeed recover the identity of free variables by observing the context of the

term. In addition, by supporting computation-level inductive datatypes,

Beluga provides us with an elegant tool to encode properties about

contexts and contextual object. We rely on built-in substitutions to replace

bound variables with their corresponding projections in the environment; we

rely on the first-class context and recursive datatypes to define a mapping of

92



source and target variables as well as computing a strengthened context only

containing the relevant free variables in a given term.

Our work clearly demonstrates the elegance of developing certified

software in Beluga. As we refine the understanding of programming with

contextual objects as supported by Beluga, we further motivate extensions

to the system, towards better support for safe realistic developments, and a

democratization of certified programming.
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