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1-Introduction:

Suppose you had no ideas what fractals were, and you were asked to model objects like clouds, grass,
plants, etc.. What else could you use to define the geometries of these objects? Although polynomials can
easily define objects with smooth geometry, they are pretty useless if you want to model complex objects
like grass or plants, since those possess infinitely non smooth, highly structured geometries. In the early
1980s, mathematicians have become concerned with non-smooth sets, that is, sets where the method of
classical calculus couldn't be applied. It was the fundamental work of Mandelbrot that opened up a new
way to model natural phenomena. What is a fractal? Many definitions exists, and mathematicians have
not yet agreed on one. Benoit Mandelbrot refers to the word "fractals" as objects who possess
self-similarity. For the rest of this paper, we will adopt this as our definition of a fractal.

It is important for the reader to understand that fractals don't really exists in nature. They are used as a
model for studying complex natural phenomena. If you look closer and closer at a leaf of a tree, you will
eventually arrive at the cells that constitute the leaf. This property of self-similarity that natural objects
possess is maintained as long as we don't look to close at them. However, with fractals, there is no limit
as too how far we can look before this property disappears. As we keep looking deeper and deeper in the
structure, additional details will be revealed and you will probably have a strong feeling of déjà vu.

This brings us to our main discussion: how can we generate these fractals? Besides using IFS, which is
our main topic, other techniques exists. Lindenmayer systems, or L-systems for short, where invented in
1968 by Aristid Lindenmayer [Lind68] as a way to model biological growth. The technique works as
follows : we have an alphabet V consisting of various symbols and an initiator (a string of symbols from
V) to which we apply a list of production rules. By applying all the rules, we create a new word. If we
repeat this scheme over and over again, a global pattern will emerge. This global process will often have
the self-similarity property that we were talking about. This technique is very similar to an iterated
function system. Both of them are dynamical systems (defined later).

An Iterated Function Systems is a set of contraction mappings W={w1,w2,...wn} acting on a space X.
Associated with this set of mappings W, is a set of probabilities P={P1,P2,...,Pn}. As we will see, these
probabilities are used to generate a random walk in the space X. If we start with any point in X and apply
these maps iteratively, we will come arbitrarily close to a set of points A in X called the attractor of the
IFS. These attractors are very often fractal. (for the most part, we will assume attractors are fractal sets,
and thus, use the words interchangeably) This forms the basis for creating an algorithm that will
approximate the attractor of an IFS. We sometime call sets {Wk(A)} whose limits are fractals,
pre-fractals. These are sets the algorithm will be able to generate . Increasing the number of times we
apply the maps will give us a more accurate picture of what the attractor looks like.
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2-Mathematical Preliminaries

In order to understand what iterated function systems are and why the random iteration algorithm works,
we need to be familiar with some mathematical concepts. Readers with a good background in analysis
and algebra can move on to the next section.

For the rest of this section, a space X is simply a set of elements (points).
I- Metric Spaces
definition: A space X with a real-valued function d: X x X →ℜ is called a metric space (X,d) if d possess
the following properties:

1.d(x,y) ≥ 0 for ∀ x,y ∈ X
2.d(x,y) = d(y,x) ∀ x,y ∈ X
3.d(x,y) ≤ d(x,z) + d(z,y)∀ x,y,z ∈ X . (triangle inequality)
For instance, ℜ with d = |x-y| is a metric space. ℜ2 with the usual euclidian distance is also a metric
space.

Open Sets
definition : A subset S of the metric space (X,d) is open if, for each point x ∈ S , we can find a r > 0 so
that {y ∈ X : d(x,y) < r } is contained in S.

Closed Sets
definition:A subset S of the metric space (X,d) is closed if,whenever a sequence{xn}contained in S

converges to a limit x ∈X,then in fact this limit x∈S.

Bounded Sets
definition: A subset S of the metric space (X,d) is bounded if we can find an x ∈ X and an M ∈ℜ > 0 so
that d(a,x) ≤ M ∀ a ∈ S.

Cauchy Sequence
definition: A sequence {xn} in X is called a Cauchy sequence if given ε > 0, we can find an N ∈Ν > 0

such that d(xn,xm) <ε ∀ n,m > Ν
Note: A cauchy sequence need not have a limit in X. This stimulate the next definition.

Complete Metric Space
definition: A metric space (X,d) is complete if every Cauchy sequences in X converges in X.

Compact Sets
definition: A subset S of the metric space (X,d) is compact if every sequences in S has a subsequence
which converges in S.

Since we are mostly concerned with metric spaces where the underlying space is ℜn or Cn , we can state
the following :
theorem: If a subset S ⊂ ℜn (or Cn) is closed and bounded, then it is compact.

Now that we know what a compact set is, we can define the following space:
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definition: Let X be a complete metric space.Then H(X) consists of the non-empty compact subsets of X.

To make H(X) into a metric space, we must find a real valued function h : H(X) x H(X) → ℜ with the
properties enumerated before. To construct this metric, we need to know what a δ-parallel body Aδ of a
set A is :

definition : Let (X,d) be a metric space. A δ-parallel body Aδ of a set A is the set of points in X within
distance d of A : {x ∈ X : d(x,y) ≤ d for some y ∈ A}

definition : Let A,B ∈ H(X), and h(A,B) = infinimum{ d : A ⊂ Bδ and B ⊂ Aδ } . We call h(A,B) the
Hausdorff metric.

The Hausdorff metric tells us how close two sets are to each other. If A and B are very close, then d will
be small, and thus h(A,B) will be small also.
Before we can begin talking about iterated function systems,there's two more interesting mathematical
notions we must be aware of.

II- Dynamical Systems

definition : A dynamical system is a transformation S : X → X on a metric space (X,d). It is denoted by
{X ;S}.

definition : Let {X ;S} be a dynamical systems. A point x ∈ X for which S(x) = x is called a fixed point
of {X ;S}.

III- Contraction Mappings

definition : Let S : X → X be a transformation on the metric space (X,d). S is a contraction if ∃ s ∈
ℜwith 0 ≤ s < 1 such that d(S(x),S(y)) ≤ sd(x,y) ∀ x,y  ∈ X. Any such number s is called a contractivity
factor of S.

The following theorem will be very important for later on.
Contraction Theorem : Let S : X → X be a contraction on a complete metric space (X,d). Then S
possess exactly one fixed point xs ∈ X and moreover for any point x ∈ X, the sequence {Sk (x): n =

0,1,2.....} converges to xs. That is, limn→inf Sk(x) = xs .
The proof can be found in [Barn93]

3-Iterated Function Systems

[Barn93] defines an iterated function systems in the following way :

definition : A (hyperbolic) iterated function system consists of a complete metric space (X,d) together
with a finite set of contraction mappings wn : X → X, with respective contractivity factor sn , for n =
1,2,....N. The abbreviation "IFS" is used for "iterated function systems". The notation for the IFS just
announced is {X ;wn : n = 1,2,...N} and its contractivity factor is s = max{sn :n = 1,2,...N}.

The following theorem is extremely important and suggest an algorithm for computing the pre-fractals.
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Theorem 3.1:
Let {H(X) ;w1,w2,...wN}be an IFS with contractivity factor s. We define W(B) = union(wi(B))  for

i=1..N, B∈ H(X). Then the following can be said :

        a) W(B) is a contraction mapping with contractivity factor s

        b) Its unique fixed point A ∈ H(X) obeys A = W(A) = union(wi(A)) for i = 1..N
            given by A = limk→infinityWk(B) =  intersection(Wk(B)) k=1..infinity, for any B ∈ H(X).

The proof can be found in [Barn93].
definition : The fixed point A ∈ H(X) as described in the theorem is called the attractor of the IFS.

Like we've said before, attractors of IFS are very often fractals. So , this theorem gives us a way to
compute pre-fractals. All we have to do is take any compact subset A (e.g a square if X = ℜ2 would
work} of X, and apply iteratively the contraction mapping W on A. As k → inf , the set { Wk(B) } for
any B ∈ H(X) will give us better and better approximations to the attractor of the IFS.

The Deterministic Algorithm [Barn93]:
Let {X ;w1,w2,...wn) be an IFS. Choose any compact set Bo ⊂ ℜ2. Then compute successively

Bn+1 = union(wi(Bn)) for i = 1..n

This sequence { Bn } will converge to the attractor of the IFS.
 

4-The Random Iteration Algorithm

The Random Iteration Algorithm [Barn93]: Let {X ;w1 ,w2 ,...wN} be an IFS, where probability Pi > 0

has been assigned to wi for i = 1,2,....n , where Σ Pi = 1. Choose xo ∈ X and then choose recursively and
independently

xn ∈ { w1(xn-1),w2(xn-1),....,wN(xn-1) } for n = 1,2,3....

where the probability of the event xn = wi(xn-1) is Pi. Thus construct a sequence {xn : n = 0,1,2....} ⊂ X.
This sequence of points will come arbitrarely close to every point in the attractor of the IFS.
 
 

The amazing thing this algorithm tells us is that we don't even have to think about choosing a compact
subset B of X and apply iteratively the contraction mapping W to this subset. The process of applying W
to B is computationally expensive compare to applying one of the maps wi to a single point x ∈ X. So,
given a k , the sequence {Wk(B)} will take much longer to generate than the sequence {xn : n =
0,1,2....k}. However, we immediately observed the familiar trade-off between time and space. There is
much more points generated by the sequence {Wk(B)} than the sequence {xn : n = 0,1,2...k} for the same
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value of k. But the simplicity of the random iteration algorithm makes it an attractive solution for
generating approximations of a fractal set.

Now, let's see why the algorithm works. Suppose we have a set B ∈ H(X). Then for each k, we have

Wk(B) = union(wi1(wi2(....(wik(B))))) where the union is over the set Jk of k-term sequences

(i1,i2,...ik) with 1 ≤ ij ≤ n.

What we did is simply expand the set Wk(B) :

Wk(B) = union(wi(Wk-1(B))) for i=1..N = union(wi(union( wj(Wk-2(B))) for j=1..N  ) for i = 1..N = union

(wi(wj(Wk-2(B)))) for i=1..N

We keep expanding the set Wk(B) until it's the union of sets obtained by applying iteratively k
compositions wi1,wi2,wi3,...wik to the set B. It is not unlikely that some sets might contain the same
elements.

Now, suppose that wi(B) is contained in B for every i. Then if x ∈ A (the attractor), it follows from

theorem 3.1 (statement b) that there is a (not necessarily unique) sequence (i1,i2,...,ik) such that x ∈
wi1(wi2(...(wik(B)))) for all k. A sequence of this kind is often called the address of a point. So A =
union{xi1,i2,...,..} and xi1,i2,... = intersection(wi1(wi2(...wik(B)))) k = 1...inf . This is the key to
understanding why the random iteration algorithm works.

Let xo Î B and xk = wik(wik-1(...wi1(B))) after k steps. Then the address of xk will agree with one point in
A up to the k-th term in the sequence. If we let k get bigger and bigger, xk will get closer and closer to a
point in A. At the same time, the sequence {xn} gets closer and closer to all points in the attractor.
Suppose after n iterations, we have a value xn. Then if we iterated k-th times more, xn+k =
wi(k+n)(wi(k+n-1)....(win(xn))) will be close to a point in A with an address beginning by (in,in+1,...ik+n).
Thus, the more we iterate the more close we are to each point in A. If let B be the entire monitor, then B
is obviously compact , and so any point chosen in this area will work. If we fall in A after a certain
number of iterations, that is, xk = wik(xk-1) Î A, then we will never leave the attractor after that. We will
simply hop from one point in the attractor to another. Since there are infinitely many points in A, we can
only display an approximation of what the attractor looks like. The probabilities associated with each
maps will determine the density of each portions of the attractor. If a map has a high probability of being
chosen, then the region where the contraction mappings maps the point too will be more dense than the
other regions.

5- Implementation

5.1 Restrictions
The definition of the IFS and the description of the random iteration algorithm are quite generic. We will
restrict ourselves to IFS where the space is either ℜ,ℜ²,ℜ³ or the complex numbers C.The contraction
mappings {w1,w2,....wn} used for generating the pictures are affine transformations. An affine
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transformation in ℜ² is of the following form :

T[x,y] = A[x y]T + [e f]T , where  A = 
 

5.2 The algorithm
As we've said before, the random iteration algorithm presented earlier was implemented. The initial point
xo ∈ X is always the origin of the space : xo = (0,0) if X ∈ℜ² or x0 = 0 + 0i = (0,0) if X ∈ C (complex

numbers) . Similarly, If X ∈ ℜ³ , then xo = (0,0,0). If we want to see the path the sequence {xn} takes
before it falls in the attractor A of the IFS,we can choose an initial point far from the attractor, which
usually lie in the unit square [0,0]x[1,1] if X ∈ ℜ². if X ∈ℜ², choosing a point near the edges of the
screen will work fine in most cases.

Since most computers don't have a built-in function that generates random numbers according to a given
probability density function (e.g normal distribution) , the following algorithm was used to select the
maps according to their probabilities Pi of being chosen :

Let {w1,w2,....,wN} be a set of contraction mappings and {P1,P2,....PN} the associated set of probabilities
Pi, where Pi means the probability of choosing wi. Let r be a number generated using a uniform
distribution. r is chosen in the interval [0,1]. The algorithm is then :
let sum = p1 and let i = 1
while ( r > sum)
{
sum = sum + pi
i = i + 1
}
use map wi

The coloring scheme we used attibutes a color to each contraction mapping wi. The user can specify the
color they want for each mappings, but the goal here is to identify what each mapping accomplishes, so it
is best to associate a unique color to each mapping wi.

5.2 Complexity of the algorithm :

The complexity of the algorithm depends on the number of points in the sequence {xn} we wish to
generate and the number of maps wi. But the former largely suppress the latter. So, the algorithm is
Θ(number of iterations).
 
 

5.3 Results
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            Figure 5.3.1                                                                          Figure 5.3.2
              A Spiral                                                                       A close-up of a 3-D fern

                                         

           Figure 5.3.3                                                                         Figure 5.3.4
             Dragon                                                                           Sierpinski's triangle
 
 
 

Fractal Set Number of Iterations Scale Factor Time taken to generate the picture(millisec)

Sierpinski's triangle 4400 0.024 1047.85

Dragon Curve 82000 0.202 1079.57

Spiral 219000 0.517 1214.45

3-D Fern (Close-Up) 343000 2.035 1447.575

Table 5.3
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Table 5.3 gives us some quantitive informations about the pictures shown above. All pictures were
generated using the random iteration algorithm. The time taken to generate a picture is not very useful by
itself. As you can see by looking at the pictures, we tried to make every picture look equally good so that
we can compare objectively the time taken for generating approximations to different fractals. The
number of iterations (i.e number of points in the sequence {xn} ) is shown in table 5.3 for each of the
pictures. The scale factor tells us by how much we contracted or expanded the original picture. The
scaling is applied after we have multiplied the points x ∈ X by the affine transformation wi.

The dragon and the sierpinski's triangle took about the same time to generate. The spiral took a little bit
longer , and finally the three dimensional fern was the longest to compute. This is attributable to the fact
that it's the only figure shown here that's in three dimensions. So some details of the picture are hidden
by pixels closer to our viewpoint.

Finally, we can observe the coloring scheme at its work in these picture. We can clearly see the region of
space a mapping wi maps points x ∈ X into. The mappings used to generate the sierpinski's triangle
seems to map points into different region of space, while the two mappings used to create the dragon
seems to share a region in space. We emphasize the word seems here, since we should not forget that
rounding errors occur when moving points belonging in a continuous 2-D space onto a discrete 2-D
space (the screen).

5.4 Improvements

We talked about how the deterministic algorithm takes less iterations but more time for each iteration to
compute the next set Bn. The random iteration algorithm is faster for one iteration, but it needs a lot more
iterations for generating the same picture. A good compromise would be to start with more than one
point xo∈ X and build a sequence {xk} for each initial points {x0,x1,...xm} ∈ X. Another improvement
would be to use the scale factor as an estimate for how much iterations we will need to produce each time
the picture is expanded (more points needed) or contracted (less points needed).
 

6. Conclusion

6.1 Critique

The random iteration algorithm is a pretty fast way to generate complex objects. It lends itself perfectly
to objects which are self-similar since we can easily find contraction mappings wi that recreate
approximately the original object. One way to achieve fractal compression is based on this idea. The
detail at which we can see objects generated by an IFS is only limited by the amount of computer
memory that's available. By looking again at the pictures in section 5.3, it would seem that we have
applied some sort of shading technique to these pictures. However, this is not the case. The reason is that
pixels with non-zero intensities in areas (near the set's boundaries) where there are surrounded by lots of
black pixels appear to have less intensities than they truely have. In contrast, dense areas (lots of
non-black pixels) appear brighter.

This bring the issue of how we could apply conventional shading techniques to these pictures. Applying
the global illumination model for every point in the sequence {xn} would be extremely time consuming.
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[Reev85] describes a method for shading objects,made using particle systems, that could be used here
also at some extent. An other property of the random iteration algorithm that might be undesirable in
some cases is that every time we run the algorithm, we will never quite get the same picture twice. So if
we want to reproduce exactly an image that we generated a while ago, chances are, we will never be able
to do so.This is due to the fact that we don't always choose the same mapping wi for generating the point
xn = wi(xn-1) in the sequence {xn}. However, in some cases we might like the fact that each mapping wi
has a probability Pi of being chosen. If we are more interested in a certain region of the fractal, we might

attribute higher probabilities {P1,P2,..Pk} to the mappings {w1,w2,..wk} which maps points x ∈ X in that
region.

6.2 Summary

Two algorithms were presented : the deterministic algorithm and the random iteration algorithm.
Although not implemented, the deterministic algorithm was discussed because it was a direct
consequence of theorem 3.1. It turns out there is a simpler way of generating the attractor of the IFS. The
random iteration algorithm takes as argument one point xo in X,a set {w1,w2,...wN} of contraction
mappings, with an associated probability set {P1,P2,...PN}, and then generate a sequence {xn} where xn

= wi(xn-1) , with the probability of chosing wi equal to Pi. As n → inf , {xn} clusters around a set called
the attractor of the IFS. The attractor is very often a fractal set. A fractal has the property of being
self-similar.
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