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A central problem in mechanism design is how to design simple and approximately revenue-
optimal auctions in multi-item multi-buyer settings. Prior to our work, all results only apply to

cases where the buyers’ valuations are linear over the items.We unify and improve all previous
results, as well as generalize the results to accommodate non-linear valuations [Cai and Zhao

2017]. In particular, we prove that a simple, deterministic and Dominant Strategy Incentive

Compatible (DSIC) mechanism, namely, the sequential posted price with entry fee mechanism,
achieves a constant fraction of the optimal revenue among all randomized, Bayesian Incentive

Compatible (BIC) mechanisms, when buyers’ valuations are XOS (a superclass of submodular

valuations) over independent items. If the buyers’ valuations are subadditive over independent
items, the approximation factor degrades to O(logm), where m is the number of items. We obtain

our results by first extending the Cai-Devanur-Weinberg duality framework to derive an effective

benchmark of the optimal revenue for subadditive buyers, and then developing new analytic
tools that combine concentration inequality of subadditive functions, prophet-inequality type of

arguments, and a novel decomposition of the benchmark.
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1. INTRODUCTION

In mechanism design, we usually focus on obtaining or approximating the optimal
mechanism. Clearly, the quality of the mechanism with respect to the designer’s
objective is crucial. However, perhaps one should also pay equal attention to the
simplicity of a mechanism. When facing a complicated mechanism, participants
may be confused by the rules and thus unable to optimize their actions and react
in unpredictable ways instead. Such behavior can lead to undesirable outcomes and
destroy the performance of the mechanism. An ideal mechanism would be optimal
and simple. For revenue maximization in multi-item settings, we now know that,
even in fairly basic cases, the optimal mechanisms suffer many undesirable prop-
erties including randomization, non-monotonicity, and others [Rochet and Chone
1998; Thanassoulis 2004; Pavlov 2011; Hart and Nisan 2013; Hart and Reny 2012;
Briest et al. 2010; Daskalakis et al. 2013; 2014]. To move forward, we need to
understand the tradeoff between optimality and simplicity.
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A central problem on this front is how to design simple and approximately
revenue-optimal mechanisms in multi-item settings. We have witnessed a lot of
progress in the past few years. For instance, when buyers have unit-demand valua-
tions, we can use a sequential posted price mechanism to approximates the optimal
revenue thanks to a line of work initiated by Chawla et al. [Chawla et al. 2007;
Chawla et al. 2010; Chawla et al. 2015; Cai et al. 2016]. When buyers are additive,
we know that either selling the items separately or running a VCG mechanism with
per buyer entry fee approximates the optimal revenue thanks to a series of work
initiated by Hart and Nisan [Hart and Nisan 2012; Cai and Huang 2013; Li and
Yao 2013; Babaioff et al. 2014; Yao 2015; Cai et al. 2016]. Recently, Chawla and
Miller [Chawla and Miller 2016] generalized these two lines of work to matroid rank
functions1. For subadditive valuations beyond matroid rank functions, we only
knew how to handle a single buyer [Rubinstein and Weinberg 2015] prior to our
work2. It is a major open problem to design a simple and approximately optimal
mechanism for multiple subadditive buyers.

1.1 Our Results

We have made major progress on this open problem in [Cai and Zhao 2017]. We
unify and strengthen all the results mentioned above via an extension of the duality
framework proposed by Cai et al. [Cai et al. 2016]. Moreover, we show that even
when there are multiple buyers with XOS valuation functions, a simple, determin-
istic and Dominant Strategy Incentive Compatible (DSIC) mechanism, namely the
sequential posted price with entry fee mechanism (see Mechanism 1) , suffices to
extract a constant fraction of the optimal Bayesian Incentive Compatible (BIC) rev-
enue3. For subadditive valuations, our approximation ratio degrades to O(logm).
Please see Table I for the approximation ratios we obtained for different valuation
classes.

Theorem 1. There exists a sequential posted price with entry fee mechanism
(SPEM) that achieves a constant fraction of the optimal BIC revenue in multi-item
settings, when the buyers’ valuation distributions are XOS over independent items.
When the buyers’ valuation distributions are subadditive over independent items,

our mechanism achieves at least Ω
(

1
logm

)
of the optimal BIC revenue, where m is

the number of items. Note that our mechanism is deterministic and DSIC.

SPEMs are clearly DSIC, as any buyer can first figure out how much surplus
she can obtain by winning her favorite bundle among the available items, and she

1Here is a hierarchy of the valuation functions. additive & unit-demand ⊆ matroid rank ⊆
constrained additive & submodular ⊆ XOS ⊆ subadditive. A function is constrained additive if

it is additive up to some downward closed feasibility constraints.
2All results mentioned above assume that the buyers’ valuation distributions are over independent
items. For additive and unit-demand valuations, this means a buyer’s values for the items are

independent. The definition is generalized to subadditive valuations by Rubinstein and Wein-
berg [Rubinstein and Weinberg 2015].
3A mechanism is Bayesian Incentive Compatible (BIC) if it is in every buyer’s interest to tell the

truth, assuming that all other buyers’ reported their values. A mechanism is Dominant Strategy
Incentive Compatible (DSIC) if it is in every buyer’s interest to tell the truth no matter what

reports the other buyers make.

ACM SIGecom Exchanges, Vol. 17, No. 1, November 2018, Pages 39–53



Simple Mechanisms for Subadditive Buyers via Duality · 41

Mechanism 1 Sequential Posted Price with Entry Fee Mechanism (SPEM)

Require: There are n buyers and m items. pij is the price for buyer i to purchase
item j and δi(·) is buyer i’s entry fee function.

1: S ← [m]
2: for i ∈ [n] do
3: Show buyer i the set of available items S, and define entry fee as δi(S).
4: if buyer i pays the entry fee δi(S) then
5: i receives her favorite bundle S∗i ⊆ S and pays

∑
j∈S∗i

pij .

6: S ← S \ S∗i .
7: else
8: i gets nothing and pays 0.
9: end if

10: end for

Additive
or Unit-
demand

Matroid
Rank

Constrained
Additive XOS Subadditive

Single
Buyer

Previous 6 or 4 31.1* 31.1 338* 338
This Paper - 11* 11 40* 40

Multiple
Buyers

Previous 8 or 24 133 ? ? ?
This Paper - 70* 70 268 O(logm)

* The result is implied by another result for a more general setting.

Table I. Comparison of approximation ratios between previous and current work.

only accepts the entry fee when the surplus is larger. Due to the simplicity and
strong strategyproofness, SPEMs have been widely adopted in the real world, for
example, by Amazon Prime and Costco. We have indeed obtained a stronger result,
that is, we only need to use the following two special types of SPEMs to obtain the
approximation result in Theorem 1: the rationed sequential posted price mechanisms
and the anonymous sequential posted price with entry fee mechanisms.

Rationed sequential posted price mechanisms (RSPM). The entry fee is
0 for every buyer, and every buyer is allowed to purchase at most one item.

Anonymous sequential posted price with entry fee mechanisms (ASPE).
The item prices are anonymous, that is every buyer faces the same collection of item
prices {pj}. The mechanism may have nonzero entry fee.

Theorem 2. Either a rationed sequential posted price mechanism or an se-
quential anonymous posted price with entry fee mechanism can achieve a constant

fraction (or Ω
(

1
logm

)
) of the optimal BIC revenue when the buyers’ valuation dis-

tributions are XOS (or subadditive) over independent items.

In our specification of a SPEM (Mechanism 1), we assume that the buyers arrive
in lexicographical order. This assumption is not necessary, and Theorem 2 holds
for arbitrary arrival order. In other words, we can construct a set of item prices
{pij}i∈[n],j∈[m] and a collection of entry fee functions {δi(·)}i∈[n] that are oblivi-
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ous to the arrival order, such that the corresponding SPEM guarantees the same
constant factor approximation as in Theorem 2 for any arrival order.

2. OUR MODEL

We consider revenue maximization in combinatorial auctions with n independent
buyers and m heterogenous items. Each buyer has a valuation that is subadditive
over independent items (see Definition 1). We denote buyer i’s type ti as
〈tij〉mj=1, where tij is buyer i’s private information about item j. Note that this
information need not be a scalar. We refer the readers to Example 1 for more
concrete examples.

For each i, j, we assume tij is drawn independently from the distribution Dij .
Let Di = ×mj=1Dij be the distribution of buyer i’s type and D = ×ni=1Di be the
distribution of the type profile. We use Tij (or Ti, T ) and fij (or fi, f) to denote
the support and density function of Dij (or Di, D). When buyer i’s type is ti, her
valuation for a set of items S is denoted by vi(ti, S).

Definition 1. [Rubinstein and Weinberg 2015] For every buyer i, whose type
is drawn from a product distribution Fi =

∏
j Fij, her distribution Vi of valuation

function vi(ti, ·) is subadditive over independent items if:

—vi(·, ·) has no externalities, i.e., for each ti ∈ Ti and S ⊆ [m], vi(ti, S) only
depends on 〈tij〉j∈S, formally, for any t′i ∈ Ti such that t′ij = tij for all j ∈ S,
vi(t
′
i, S) = vi(ti, S).

—vi(·, ·) is monotone, i.e., for all ti ∈ Ti and U ⊆ V ⊆ [m], vi(ti, U) ≤ vi(ti, V ).

—vi(·, ·) is subadditive, i.e., for all ti ∈ Ti and U, V ⊆ [m], vi(ti, U ∪ V ) ≤
vi(ti, U) + vi(ti, V ).

We use Vi(tij) to denote vi(ti, {j}), as it only depends on tij. When vi(ti, ·) is
XOS (or constrained additive) for all ti ∈ Ti, we say Vi is XOS (or constrained
additive) over independent items.

We focus on the following valuation classes.

Definition 2. We define several classes of valuations formally. Let t be the
type and v(t, S) be the value for bundle S ∈ [m].

—Constrained Additive: v(t, S) = maxR⊆S,R∈I
∑
j∈R v(t, {j}), where I ⊆ 2[m]

is a downward closed set system over the items specifying the feasible bundles.
In particular, when I = 2[m], the valuation is an additive function; when
I = {{j} | j ∈ [m]}, the valuation is a unit-demand function; when I is a
matroid, the valuation is a matroid rank function. An equivalent way to
represent any constrained additive valuations is to view the function as additive
but the buyer is only allowed to receive bundles that are feasible, i.e., bundles in
I. To ease notations, we interpret t as an m-dimensional vector (t1, t2, · · · , tm)
such that tj = v(t, {j}).

—XOS/Fractionally Subadditive: v(t, S) = maxi∈[K] v
(i)(t, S), where K is

some finite number and v(i)(t, ·) is an additive function for any i ∈ [K].

—Subadditive: v(t, S1 ∪ S2) ≤ v(t, S1) + v(t, S2) for any S1, S2 ⊆ [m].
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Note that when a buyer has constrained additive valuation, her value for a bundle
is still linear over the items as long as the bundle is feasible. Such linearity no
longer holds when we consider more general valuations such as XOS or subadditive
functions. Next, we provide a few examples of various valuation distributions which
are over independent items (Definition 1):

Example 1. t = {tj}j∈[m] where t is drawn from
∏
j Dj,

—Additive: tj is the value of item j. v(t, S) =
∑
j∈S tj.

—Unit-demand: tj is the value of item j. v(t, S) = maxj∈S tj.

—Constrained Additive: tj is the value of item j. v(t, S) = maxR⊆S,R∈I
∑
j∈R tj.

—XOS/Fractionally Subadditive: tj =
{
t
(k)
j

}
k∈[K]

encodes all the possible values

associated with item j, and v(t, S) = maxk∈[K]

∑
j∈S t

(k)
j .

3. BACKGROUND ON DUALITY

In this section, we provide some basic background on the Cai-Devanur-Weinberg
duality framework [Cai et al. 2016], which will be helpful for the readers to under-
stand the major contributions of [Cai and Zhao 2017]. Readers who are familiar
with the duality framework can consider skipping this section.

We first formulate the revenue maximization problem as an LP (see Figure 1).
For all buyers i and types ti ∈ Ti, we use pi(ti) as the interim price paid by buyer
i and σiS(ti) as the interim probability of receiving the exact bundle S. To ease
the notation, we use a special type ∅ to represent the choice of not participating
in the mechanism. More specifically, σiS(∅) = 0 for any S and pi(∅) = 0. Now
a Bayesian IR (BIR) constraint is simply another BIC constraint: for any type ti,
buyer i will not want to lie to type ∅. We let T+

i = Ti ∪ {∅}.
Next, we take the partial Lagrangian dual of the LP by lagrangifying the BIC

constraints. Let λi(ti, t
′
i) be the Lagrange multiplier associated with the BIC con-

straint that when buyer i’s true type is ti she will not prefer to lie to another type
t′i. As shown in [Cai et al. 2016], the dual solution has finite value if and only
if the dual variables λi form a valid flow for every buyer i. The reason is that
the payments pi(ti) are unconstrained variables, therefore the corresponding coef-
ficients in the dual problem must be 0 in order for the dual to have finite value.
It turns out that when all these coefficients are 0, the dual variables λ satisfy
fi(ti) +

∑
t′i∈Ti

λi(t
′
i, ti)−

∑
t′i∈T

+
i
λi(ti, t

′
i) = 0 for every buyer i and every type ti

of hers. If we consider a graph with

—super source s and a super sink ∅, along with a node ti for every type ti ∈ Ti,
—an edge from s to ti with flow fi(ti) for all ti ∈ Ti,
—an edge from ti to t′i with flow λi(ti, t

′
i) for all ti ∈ Ti and t′i ∈ T

+
i (including the

super sink),

then the above equation makes sure that the inflow equals to the outflow at every
node ti. Therefore, we only consider dual variables λ that correspond to a flow.
For every flow λ, we can define a virtual valuation function.
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Definition 3. (Virtual Value Function) For each flow λ, we define a corre-
sponding virtual value function Φλ(·), such that for every buyer i, every type ti ∈ Ti
and every set S ⊆ [m],

Φλi (ti, S) = vi(ti, S)− 1

fi(ti)

∑
t′i∈Ti

λi(t
′
i, ti) (vi(t

′
i, S)− vi(ti, S)) .

Variables:

— pi(ti), for all buyers i and types ti ∈ Ti, denoting the expected price paid by buyer i when

reporting type ti over the randomness of the mechanism and the other buyers’ types.

— σiS(ti), for all buyers i, all bundles of items S ⊆ [m], and types ti ∈ Ti, denoting the probability
that buyer i receives exactly the bundle S when reporting type ti over the randomness of the

mechanism and the other buyers’ types.

Constraints:

—
∑

S⊆[m] σiS(ti)·vi(ti, S)−pi(ti) ≥
∑

S⊆[m] σiS(t′i)·vi(ti, S)−pi(t′i), for all buyers i, and types

ti ∈ Ti, t′i ∈ T
+
i , guaranteeing that the reduced form mechanism (σ, p) is BIC and Bayesian IR.

— σ ∈ P (D), guaranteeing σ is feasible.

Objective:

— max
n∑

i=1

∑
ti∈Ti

fi(ti) · pi(ti), the expected revenue.

Fig. 1. A Linear Program (LP) for Revenue Optimization.

Duality implies that for any virtual valuation function Φλ and any BIC mecha-
nism M , the revenue of M is upper bounded by the virtual welfare of M w.r.t. Φλ.
The two quantities are equal if M is the optimal mechanism and λ is the optimal
dual.

Theorem 3. (Virtual Welfare ≥ Revenue [Cai et al. 2016]) For any flow λ and
any BIC mechanism M = (σ, p), the revenue of M is ≤ the virtual welfare of σ
w.r.t. the virtual valuation Φλ(·).

n∑
i=1

∑
ti∈Ti

fi(ti) · pi(ti) ≤
n∑
i=1

∑
ti∈Ti

fi(ti)
∑
S⊆[m]

σiS(ti) · Φλi (ti, S)

Let λ∗ be the optimal dual variables and M∗ = (σ∗, p∗) be the revenue optimal
BIC mechanism, then the expected virtual welfare with respect to Φλ

∗
under σ∗

equals to the expected revenue of M∗.

3.1 Canonical Flow and Decomposition

Theorem 3 shows that every flow induces an upper bound for the optimal revenue,
but which one should we use to generate our benchmark? If we choose the optimal
flow, then the benchmark becomes too complex for us to analyze. If we choose
a flow that is easy to analyze, then the induced benchmark may be too high and
not within a constant factor of the optimal revenue. The challenge is how to strike
the right balance between optimality and simplicity. The main contribution of [Cai

ACM SIGecom Exchanges, Vol. 17, No. 1, November 2018, Pages 39–53



Simple Mechanisms for Subadditive Buyers via Duality · 45

et al. 2016] is to provide a canonical way of setting the flow that give rise to a
close to optimal and mathematically analyzable benchmark for additive and unit-
demand valuations. In this section, we use the setting of a single additive buyer
as a running example to present this canonical flow/dual. For simplicity, we will
assume the type space is a m-dimensional bounded integer lattice ×mj=1[H]. The
readers will soon realize that the same flow can be easily extended to the general
case.

As the buyer is additive, we will use a m-dimensional vector t to denote her type,
and tj is her value for item j. We partition the type set into m regions, where region
Rj contains all types t such that j = argmaxk{tk} (break ties lexicographically).
Consider the following implicitly defined flow (see Figure 2): for any type t in Rj ,
if t′ = (tj − 1; t−j), i.e. the type that takes t’s favorite item and decreases the value
by 1 is still in Rj , then t sends all of its incoming flow into t′ and it is the only type
that sends flow into t′. If t′ is not in Rj , then t sends all its incoming flow to the
super sink.
Key property of the induced virtual valuation: so what Φλ does this flow

induce? It is not immediate to see, but some inductive calculation yields that for
every item j and every type t in region Rj : Φλ(t, S) =

∑
k∈S\{j} tk +ϕj(tj) · 1[j ∈

S], where ϕj(tj) = tj − 1−Fj(tj)
fj(tj)

, Myerson’s single-dimensional virtual value for

Dj [Myerson 1981]. In other words, the virtual valuation is also additive over the
items, where the virtual value of the buyer’s favorite item j is just the Myerson’s
virtual value w.r.t. distribution Dj and the virtual value for any non-favorite item
k is just its true value tk. The corresponding virtual welfare is a strong enough
benchmark for us to recover the result in [Babaioff et al. 2014]. To provide more
intuition about why this benchmark is useful, consider a simpler flow where every
type sends all of its inflow to the super sink directly. The induced virtual valuation
is the same as the real valuation, and therefore the optimal social welfare is the
benchmark, which can be infinitely times larger than the optimal revenue. The key
property of the canonical flow is that it turns the value of the favorite item into
the Myerson’s virtual value, which substantially lowers the benchmark. As we will
see soon, this property no longer holds for XOS/subadditive valuations. Restoring
this key property is one of the major contributions of [Cai and Zhao 2017].

4. PROOF SKETCH AND MAIN CONTRIBUTIONS

In this section, we sketch the proof of our result. Along the way, we also discuss
three major challenges that we faced and how we addressed them.

4.1 Extending the canonical flow to subadditive valuations

The first step of the proof is to find a suitable benchmark for the optimal revenue.
Let’s start with the canonical flow that we defined in Section 3.1 and see what
goes wrong when the valuation is no longer linear over the items. We use a single
subadditive bidder to illustrate the difficulty. We first divide the type space into m
regions in a similar way, where region Rj contains all types t with V (tj) ≥ V (tk)
for all k 6= j, i.e. winning item j is better than winning any other item. If the
valuation is additive, the contribution to the virtual value function Φλ(t, S) from
any type t′ ∈ Rj is λ(t′, t)(v(t′, S) − v(t, S)) which is either 0 when j /∈ S or
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Fig. 2. An example of the canonical flow for an additive buyer with two items.

λ(t′, t)(t′j − tj). Importantly, the contribution does not depend on tk for any k 6= j.
This is the crucial property that allows us to replace the value of the favorite
item by the corresponding Myerson’s virtual value in the virtual valuation induced
by the canonical flow Φλ(t, ·) for additive valuations. This property continues to
hold for any valuation that is constrained additive. However, for XOS/subadditive
valuations, λ(t′, t) (v(t′, S)− v(t, S)) heavily depends on t−j , even if t′−j = t−j . For
example, when the valuation is XOS, the additive function that has attained the
maximum value may be different under t and t′. As a result, the difference v(t′, S)−
v(t, S) depends on t−j . Unfortunately, this dependency completely destroys the
structure of the induced benchmark and makes it impossible to analyze.

Valuation Relaxation. To overcome this difficulty, we take a different approach.
Instead of directly studying the dual of the original problem, we first relax the
valuation to ṽ(t, S) = v(t, S\{j}) + V (tj) if t ∈ Rj . The relaxation is inspired
by [Rubinstein and Weinberg 2015] and can be viewed as “forcing” the valuation
to be additive across the favorite item and all the other items. Next, we apply
the canonical flow to the relaxed valuation. With some easy calculation, it is not
hard to see that λ(t′, t)(ṽ(t′, S)− ṽ(t, S)) is either 0 or λ(t′, t)(V (t′j)− V (tj)), and
the induced benchmark resembles the appealing format in Section 3.1. However,
this benchmark is only an upper bound of the optimal revenue for ṽ. Since ṽ(t, S)
dominates v(t, S) for any t and S, it seems that the optimal revenue for ṽ should
be at least as high as the optimal revenue for v. However, we have examples
from [Hart and Reny 2012] showing that this intuitive revenue monotonicity does
not always hold. To relate the optimal revenue under ṽ and v, we apply a different
technique known as the ε-BIC to BIC reduction [Hartline and Lucier 2010; Hartline
et al. 2011; Bei and Huang 2011; Daskalakis and Weinberg 2012] to show that the
optimal revenue under ṽ is within a constant factor of the optimal revenue under
v. Combining these two steps, we obtain a benchmark for subadditive valuations.
Using our benchmark, we improve the approximation ratio for a single subadditive
buyer from 338 [Rubinstein and Weinberg 2015] to 40.
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4.2 An adaptive dual via ex-ante relaxation

So far, our discussion of the dual has focused on a single buyer setting. How do we
handle multiple buyers? A natural idea is to set the dual variables λi for each buyer
i equal to the canonical flow for a single buyer. Unfortunately, we can construct an
example where the induced upper bound is unboundedly larger than the optimal
revenue even when all buyers have additive valuations. The main reason that the
canonical dual works in single buyer setting is because it converts the value of
the favorite item into Myerson’s virtual value, which substantially decreases the
upper bound. If every buyer simply applies the single buyer canonical flow in the
multi-buyer case, each buyer converts the value of her favorite item into Myerson’s
virtual value. However, this is a bad idea. Remember that the upper bound is the
virtual welfare. Since it is possible that all buyers end up having the same favorite
item, only the buyer who actually receives the favorite item can use her saving
in the virtual valuation to reduce the upper bound. In such a scenario, a more
effective way to decrease the upper bound will be to have buyers choose different
items as their favorite items. This is exactly the reasoning behind the example and
why applying the single buyer canonical dual to every buyer fails in multi-buyer
settings. How do we design a canonical dual for multiple buyers? Note that the
problem we face here can intuitively be thought of as the supply of the “favorite”
items does not meet the demand. To balance the supply and demand, we use a
basic economic approach – introducing prices.

We use β = {βij}i∈[n],j∈[m] ∈ Rnm≥0 to denote the prices4, and we define a multi-

buyer canonical flow λ(β) for every set of prices β. For simplicity, we only describe
the flow for additive valuations (see Figure 3 for an example), but it can be gen-
eralized to subadditive valuations by combining the valuation relaxation technique
described in Section 4.1 [Cai and Zhao 2017]5. Based on β, we partition the type

set Ti of each buyer i into m + 1 regions: (i) R
(βi)
0 contains all types ti such that

tij < βij for all j ∈ [m]. (ii) R
(βi)
j contains all types ti such that tij − βij ≥ 0

and j is the smallest index in argmaxk{tik − βik}. Intuitively, if we view βij as the

price of item j for buyer i, then R
(βi)
0 contains all types in Ti that cannot afford

any item, and any R
(βi)
j with j > 0 contains all types in Ti whose “favorite” item

is j. For every type ti in region R
(βi)
0 , the flow goes directly to the super sink. For

every region R
(βi)
j with j > 0, the flow is similar to the single buyer canonical flow

in region Rj . In particular, λ
(β)
i (ti, t

′
i) > 0 only if ti and t′i are both in R

(βi)
j and

only differ in the j-th coordinate.
Every β induces a benchmark for the optimal revenue, but which one should

we use? In [Cai et al. 2016], the choice of β was inspired by the prices in the
VCG mechanism, and the corresponding optimal virtual welfare was used as the
benchmark for the optimal revenue when the valuations are either additive or unit-
demand. Unfortunately, the benchmark induced by this VCG inspired β becomes

4The β is only used to define the flow. It should not to be confused with the posted prices
{pij}i∈[n],j∈[m] in the sequential posted price with entry fee mechanism.
5In [Cai and Zhao 2017], we apply the multi-buyer canonical flow on the relaxed valuation ṽ to

obtain the benchmark.
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Fig. 3. An example of the canonical flow for multiple additive buyers with two items.

extremely complex and almost impossible to analyze, even when we only move
slightly beyond additive or unit-demand valuations. In particular, the benchmark
is already too involved to bound when the buyers’ valuations are k-demand6.

In [Cai and Zhao 2017], we propose a more flexible approach. In [Cai et al.
2016], the β and the corresponding flow λ(β) are chosen up front, then for every

mechanism M , they use M ’s virtual welfare under the virtual valuation Φλ
(β)

(·)
as the upper bound of the revenue of M . In [Cai and Zhao 2017], we take a more
flexible approach to obtaining the upper bound. Instead of using a fixed β, we tailor
a special β(M) for every mechanism M , such that tij is above price β(M)ij with
probability equal to 1

2 of buyer i’s ex-ante probability of winning item j in M7. The
choice of β(M) is inspired by Chawla and Miller’s ex-ante relaxation [Chawla and
Miller 2016]. According to Theorem 3, M ’s virtual welfare under virtual valuation

Φλ
β(M)

(·) is still a valid upper bound of M ’s revenue. Since the virtual valuation is
designed specifically for M , the induced virtual welfare is much easier to analyze.
Indeed, the adaptiveness of the upper bound is crucial for our analysis when buyers
have complex valuations such as XOS functions. We will point out exactly why this
is critical in our proof in the next section.

4.3 New mechanism and analysis for the core

With the tools in Section 4.1 and 4.2, we can derive an upper bound of the optimal
revenue for multiple subadditive buyers. The third and probably the most impor-
tant contribution of our paper is a novel analysis of this upper bound and a new
mechanism. Similar to prior work, we break the upper bound into three different
terms – Single, Tail and Core – and bound them separately.

Both the Single and Tail can be covered by the revenue of a few RSPMs,
and the analysis is relatively standard by now, so we will focus on the analysis of
the Core. When the buyers are additive or unit-demand, the Core is not too
difficult to analyze, but it soon becomes a monster once we go beyond these two

6The valuation is k-demand is a constrained additive function, where the buyer can enjoy at most

k items.
7The particular choice of 1

2
is not critical.
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basic valuation functions. For example, the tools in [Cai et al. 2016] can handle
additive or unit-demand buyers, but are insufficient to tackle the Core even when
the buyers have k-demand valuations, a very special case of matroid rank valua-
tions. Rubinstein and Weinberg [Rubinstein and Weinberg 2015] showed how to
approximate the Core for a single subadditive buyer using grand bundling, but
their approach is limited to a single buyer. Yao [Yao 2015] showed how to approxi-
mate the Core for multiple additive buyers using a VCG with per buyer entry fee
mechanism, but again it is unlikely his approach can be extended to even multiple
k-demand buyers. Chawla and Miller [Chawla and Miller 2016] finally broke the
barrier. They showed how to bound the Core for matroid rank valuations using
a sequential posted price mechanism by applying the online contention resolution
scheme (OCRS) developed by Feldman et al. [Feldman et al. 2016]. The connec-
tion with OCRS is an elegant observation, and one might hope the same technique
applies to more general valuations. Unfortunately, OCRS is only known to exist for
special cases of downward closed constraints, and as we will explain, the approach
by Chawla and Miller cannot yield any constant factor approximation for general
constrained additive valuations.

As all results in the literature [Chawla et al. 2010; Yao 2015; Cai et al. 2016;
Chawla and Miller 2016] only study matroid rank valuations, for simplicity, we
will restrict our attention to a similar but more general class – the constrained
additive valuations – in the comparison, but our approach also applies to XOS and
subadditive valuations.

We provide a 100 feet overview of the approach by Chawla and Miller [Chawla
and Miller 2016]. Essentially, all analyses prior to [Cai and Zhao 2017] follow the
same path. The Core is the optimal social welfare obtainable from a truncated
version of v. In particular, the truncated valuation of a feasible set S is v′i(ti, S) =∑
j∈S tij · 1[tij ≤ βij + ci], where {βij}i∈[n],j∈[m] is the set of prices we use in

Section 4.2 to define the canonical dual, and {ci}i∈[n] is a set of thresholds used to
separate the Core from the Tail. We will not define {ci}i∈[n], as it is not important
for our discussion. We use β+c to denote the set {βij +ci}i∈[n],j∈[m]. The analysis
in [Chawla and Miller 2016] first separates the Core into two parts: (i) the lower
core: the welfare obtained from values below β, and (ii) the upper core: the welfare
obtained from values between β and β + c8. It is not hard to show that the upper
core is upper bounded by the revenue of a two-part tariff mechanism9. In particular,
only the revenue from the entry fees is used in the analysis to cover the upper core,
while the revenue from the posted prices is ignored. Due to the choice of β (similar
to the way we choose β(M) as described in Section 4.2), the lower core is upper
bounded by

∑
i,j βij · Prtij [tij ≥ βij ]. When every buyer’s feasibility constraint is

a matroid, one can use the OCRS from [Feldman et al. 2016] to design a sequential

8In particular, if buyer i is awarded a bundle S that is feasible for her, the contribution to the

lower core is
∑

j∈S min {βij , tij} · 1 [tij < βij + ci] and the contribution to the upper core is∑
j∈S (tij − βij)+ · 1 [tij < βij + ci]

9A two-part tariff mechanism also has an entry fee component and a item pricing component, but
it is different from SPEM. In particular, it charges all buyers the entry fees up front and then the

buyers can enter the mechanism sequentially. In other words, a buyer needs to decide whether to

pay the entry fee before she knows what items are still available, as she may not be the first to
enter. As a result, the two-part tariff mechanism is only BIC but not DSIC.
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posted price mechanism to approximate this quantity. However, we constructed

an example where
∑
i,j βij ·Prtij [tij ≥ βij ] is Ω

( √
m

logm

)
times larger than even the

optimal social welfare when the buyers have general downward closed feasibility
constraints. Readers can find the example in the full version of our paper [Cai and
Zhao 2016]. Hence, such approach cannot yield any constant factor approximation
for general constrained additive valuations.

We take a different path. Instead of decomposing the Core and bound the two
parts separately, we analyze it as a whole and use our new mechanism, the SPEM,
to approximate it. Remember that for every mechanism M , we tailor a dual for
M and use the corresponding virtual welfare under M ’s as the upper bound for
M ’s revenue. The Core part of the upper bound is M ’s social welfare w.r.t. the
truncated valuation v′. Our goal is to show that for any mechanism M , we can
design a SPEM to extract a constant fraction of M ’s social welfare under v′ as
revenue.

We provide some intuition as to why a SPEM can approximate the Core well.
First, consider a sequential posted price mechanism M̃. A key property of posted
price mechanisms is that when buyer i’s valuation is subadditive over independent
items, her utility in the mechanism, which is her surplus from winning her favorite
bundle among the unsold items, is also subadditive over independent items. If
we can argue that her utility function under v′i is α-Lipschitz with some small α,
the concentration inequality for subadditive functions [Talagrand 1995; Schecht-
man 2003] allows us to set an entry fee for the buyer, so that we can extract a

constant fraction of her utility just through the entry fee. If we modify the M̃ by
introducing an entry fee for every buyer according to the concentration inequality
for subadditive functions, the new mechanism M̃′, which is a SPEM, should have
revenue that is a constant fraction of M̃’s social welfare. The reason is simple.
M̃’s welfare is simply its revenue plus the sum of the buyers’ utilities, and M̃′
can extract some extra revenue from the entry fees, which is a constant fraction of
the sum of the buyers’ utilities. Therefore, if there exists a sequential posted price
mechanism that achieves a constant fraction of M ’s social welfare under the trun-
cated valuation v′, the modified mechanism can obtain a constant fraction of the
Core as revenue. Surprisingly, when the buyers have XOS valuations, Feldman et
al. [Feldman et al. 2015] showed that there exists an anonymous sequential posted
price mechanism that always obtains at least 1

2 of the optimal social welfare with
a prophet inequality type argument. Hence, a SPEM, more specifically an ASPE
as the posted prices are anonymous, should approximate the Core well. However,
this intuition cannot be directly translated into a mathematical proof. Aside from
some small issues, the main technical hurdle is that the Lipschitz constant α of
the buyers’ utilities are too large for us to bound. In the next paragraph, we will
discuss how to use a new technique – the shifted core – to handle the Lipschitz
constant and turn the intuition into a proof.

Shifted Core. Instead of considering v′, we carefully construct a new valuation
v̂ that is always dominated by the true valuation v. In particular, it is also a
truncated version of v, but unlike v′ which is truncated at β + c, v̂ is truncated at
a different threshold. We consider the social welfare of M under v̂ and define it as
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Ĉore. This is called the shifted core as it is similar to the Core except that the
valuations are truncated at different places. Here we make use of the adaptiveness
of the dual. As we only care about the social welfare under M , and both v′ and
v̂ are chosen according to M , it turns out that when the two valuations are far
away from each other for some buyer i and item j, M does not allocate j to i too

often. As a result, we show that the difference between Ĉore and Core can be

bounded by the revenue of a RSPM. So it suffices to approximate Ĉore. But why is

Ĉore easier to approximate? The reason is two-fold: (i) thanks to the way that v̂ is
constructed, any buyer i’s surplus under v̂i is not only subadditive over independent
items, but also has a small Lipschitz constant τi. These Lipschitz constants are so
small that

∑n
i=1 τi and can be upper bounded by a constant number of RSPMs;

(ii) if we construct an ASPE with item prices similar to Feldman et al. [Feldman
et al. 2015] and the entry fee function δi(S) to be the median of buyer i’s surplus
for S over the randomness of ti

10, using a proof inspired by [Feldman et al. 2015],
we can show that the revenue from the posted prices plus the expected surpluses of

the buyers approximates the Ĉore. How can we approximate the buyers’ expected
surpluses? Again by the concentration inequality for subadditive functions, we can
bound buyer i’s expected surplus by her entry fee and τi. As v̂ is dominated by the
true valuation v, thus for any type ti of buyer i and any set of available items, the
surplus under the true valuation vi also dominates the surplus under v̂i. Remember
that the entry fee is the median of the surplus under v̂i, so buyer i must accept the
entry fee with probability at least 1/2. Hence, the revenue from the entry fees is at
least a constant fraction of the sum of buyers’ surpluses in the ASPE.

In all previous results, when the mechanism has an entry fee component, the
analysis can only makes use of the revenue from the entry fees. We proposed a new
mechanism SPEM, and by combining the concentration inequality for subadditive
functions with a prophet inequality type argument, our analysis take into account
both the revenue from the entry fees and the posted prices. This key improvement
allows us to approximate the Core.
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