
REPRESENTATIONS OF FINITE GROUPS

This is a preliminary version of a revised version of the chapter on group represen-
tations. I don’t want to include it yet in the full course notes because some of you may
have been using the current version of the notes and the switch to a new version may
be confusing.

The notes below follow the presentation of the material as we have done it this year in
class. There are probably typos, hopefully all self-evident and easily fixable. However,
if you note any typos, I will be grateful if you let me know.

– Eyal Goren
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1. REPRESENTATIONS OF FINITE GROUPS

In this chapter, we only consider finite groups G and finite dimensional complex vector spaces
V. The theory of representations of infinite groups and infinite-dimensional representations is
vast, and important, but is too advanced for this course. We should mention that even if one is
interested in representation of Lie groups, which arise often in physics, for example the groups
GLn(C), Un(C), the theory of representations of finite groups plays an important role.

Group representations are intimately related to understanding how groups acts on sets. In
our current setting, the set is a complex vector space and the group acts through very particular
symmetries – invertible linear transformations. Thus, this topic can be viewed as a natural
continuation of our study of groups actions.

Group representations are a subject with many applications to other branches of mathematics,
and outside mathematics, for example for computer science, physics, chemistry, and electrical
engineering. We will see some of those at the end of this chapter. It is also a topic that is a
beautiful marriage of linear algebra and group theory, thus connecting two courses that are
usually not taken together.

1.1. First definitions. A linear representation of a (finite) group G is a homomorphism

ρ : G → GL(V) := {T : V → V : T is an invertible linear transformation},

where V is a finite dimensional complex vector space. We will usually drop the adjective “lin-
ear”. We note that GL(V) is a group under composition of linear maps. We will denote such
a representation by (ρ, V), where the group G is understood from the context. When we feel
confident enough, we may just denote it ρ, or V, depending which notation seems more useful
at that point.

A very important notion is when are two representations isomorphic. Given two representa-
tions (ρi, Vi) of G we define

HomG(V1, V2) = {T : V1 → V2 linear : T ◦ ρ1(g) = ρ2(g) ◦ T, ∀g ∈ G}.

We note that there is no assumption that T is invertible, or even that dim(V1) = dim(V2); in
particular, we always have that the zero map is an element of HomG(V1, V2). Further, under
addition of linear maps and multiplication by a scalar, HomG(V1, V2) is a complex vector space.
We shall refer to elements of it as homomorphisms of representations, or G-homomorphisms.

Having made this definition, the notion of an isomorphism (ρ1, V1) ∼= (ρ2, V2) is clear: these
are linear maps T ∈ HomG(V1, V2) that are invertible. In that case, the inverse map always
satisfies T−1 ∈ HomG(V2, V1).

Main Goal: Classify representations of G up to isomorphism.

(We will make this more precise later on).

Given a representation (ρ, V), choose an isomorphism T : V → Cn (n = dim(V)) and let

τ : G → GL(Cn), τ(g) = T ◦ ρ(g) ◦ T−1.
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It is easily verified that
(ρ, V) ∼= (τ, Cn),

where the isomorphism is the map T itself. Therefore, every isomorphism class of represen-
tations is represented by some (τ, Cn). How unique is τ? It is unique up to conjugation by
elements of GL(Cn): for any T1 ∈ GL(Cn) we have

τ ∼= τ1,

where
τ1(g) = T1 ◦ τ(g) ◦ T−1

1 .
(this reflects the fact that we had to choose an isomorphism T : V → Cn and the freedom in this
choice is precisely modifying T to T1 ◦ T).

It follows that we can make everything more concrete by using the natural identification

GL(Cn) = GLn(C),

obtained by representing any linear transformation T by its matrix [T] relative to the usual basis
of Cn. Thus, we may think about a representation also as a homomorphism

τ : G → GLn(C).

The homomorphism rule is τ(xy) = τ(x)τ(y), where on the right we find matrix multiplication.
When do two such homomorphisms define isomorphic representations? For any invertible

matrix M ∈ GLn(C), we have

τ ∼= ρ, ρ(g) = Mτ(g)M−1, ∀g ∈ G,

and conversely. This may be a confusing point, so let’s repeat it: we are allowed to choose any
matrix M ∈ GLn(C), but once we made the choice the relation ρ(g) = Mτ(g)M−1 should hold
for all g ∈ G with the same M.

Although we arrived finally at a rather concrete model for representations, the general point
of view ρ : G → GL(V) is very useful as often the vector space V doesn’t have a natural basis.

We now come to one of the key notions of this whole subject: the character of a representation.
Given a representation

ρ : G → GL(V),
we define its character χρ as follows:

χρ : G → C, χρ(g) = Tr(ρ(g)).

It is important to note that χρ is simply a function; it associate to each element g the trace of the
linear operator ρ(g). Usually it will not have any multiplicative properties.

The notion of a character will turn out to be central for the whole theory and we will study
many properties of characters. For now, we only give a few basic facts.

Lemma 1.1.1. (1) χρ only depends on the isomorphism class of ρ.
(2) χρ is constant on conjugacy classes in G.
(3) χ(1) = dim(V).

Proof. To calculate the trace of an operator ρ(g) one needs to choose a basis B for V and represent
ρ(g) by a matrix [ρ(g)]B. If we choose another basis, say C, then the matrices of ρ(g) in the two
bases are related by

[ρ(g)]C = M[ρ(g)]B M−1,
where M is the change of basis matrix. Note that if we pass from ρ to an isomorphic representa-
tion, say (τ, W),

τ(g) = Tρ(g)T−1
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then once more
[τ(g)]C = M[ρ(g)]B M−1,

where now C is a basis of W and M is the matrix representing T relative to the two bases B, C.
Thus, in both cases, we have to show that

Tr(M[ρ(g)]B M−1) = Tr([ρ(g)]B).

This is well known (it follows from the formula Tr(MN) = Tr(NM) that one proves by writing
down the product of the matrices explicitly and calculating the trace).

The proof that χρ is constant on conjugacy classes is very similar. Relative to some basis B we
have

Tr([ρ(hgh−1)]B) = Tr([ρ(h)ρ(g)ρ(h)−1]B) = Tr([ρ(h)]B[ρ(g)]B[ρ(h)−1]B) = Tr([ρ(g)]B).

Finally, we have χρ(1G) = Tr(IdV) = Tr(Idim(V) = dim(V), where we denote by IdV the
identity operator on V and by Id the d× d identity matrix. �

2. EXAMPLES

We now discuss some relatively simple examples. Despite appearances, perhaps, they will
turn out to be very important and will make frequent appearances. Study them carefully!

2.1. 1-dimensional representations. A 1-dimensional representation of G could be thought of
simply as a homomorphism

ρ : G → C×.

Indeed, GL1(C
×) = C×. Note that in this case if ρ ∼= τ then, since C× is commutative, we

actually have ρ = τ. Also, since the trace of a 1× 1 matrix is (α) is just α it follows that

χρ = ρ.

For these reasons, 1-dimensional representations are also called 1-dimensional characters, or
multiplicative characters .

Let
G∗ = Hom(G, C×).

We make two observations: First, G∗ is a group under the rule

(ρ · τ)(g) = ρ(g) · τ(g).

Second, if we let S1 = {z ∈ C× : |z| = 1} denote the unit circle in C then

G∗ = Hom(G, S1).

Indeed, if g ∈ G is of order d, ρ ∈ G∗, then ρ(g)d = ρ(1G) = 1 which implies that ρ(g) is
necessarily a root of unity. The group G∗ is called the character group of G.

Lemma 2.1.1. There is a natural isomorphism

G∗ ∼= (Gab)∗,

where, as usual, Gab = G/G′ is the abelianization of G.



6 REPRESENTATIONS OF FINITE GROUPS

Proof. We have seen that any homomorphism G → A, where A is an abelian group, factors
uniquely through Gab (see ??). In particular, given any homomorphism f : G → C× there is a
unique homomorphism F : Gab → C× such that the following diagram commutes (π being the
natural map G → G/G′):

G
f

//

π

  A
AA

AA
AA

C×

Gab

F
=={{{{{{{{

,

and conversely. �

We will revisit this example later on. We will rely on Exercise ?? that you are encouraged to do
at this point.

Example 2.1.2. The alternating groups An for n ≥ 5 have only one 1-dimensional representation,
which is the trivial representation 11. For any group G the trivial representation 11 is the 1-
dimensional representation

G → C×, g 7→ 1, ∀g ∈ G.

Its character, also denoted 11, is the constant function 1.
The symmetric groups Sn, for n ≥ 5, have only two 1-dimensional characters, 11 and sgn.

Indeed, the only non-trivial normal subgroup of Sn, for n ≥ 5, is An and, as Sn/An ∼= {±1} is
abelian, it must be that Sab

n
∼= {±1}. The group {±1} has precisely two homomorphisms to C×,

the trivial one and the identity one.

Example 2.1.3. The commutator subgroup of D4 is {1, x2}. Indeed, [x, y] = x2 and so the com-
mutator subgroup contains 〈x2〉. On the other hand, x2 commutes with x and y and is therefore
a central element and thus 〈x2〉 is a normal subgroup. As D4/〈x2〉 has order 22 it is abelian and
it follows that 〈x2〉 ⊇ D′4 and we get equality: D′4 = 〈x2〉. We think about the abelianization as

Dab
4 = {1, x̄, ȳ, xy}

with x̄ȳ = ȳx̄ and the square of every element is 1; it is a group isomorphic to (Z/2Z)2. As
every element has order 2, every multiplicative character of Dab

4 takes values in {±1}. It is not
hard to show that there are 4 possibilities as described in the following table.

1 x̄ ȳ xy
ρ1 = 11 1 1 1 1

ρ2 1 -1 1 -1
ρ3 1 1 -1 -1
ρ4 1 -1 -1 1

2.2. The regular representation ρreg. Let G be a group. We define a vector space V with a basis
{eg : g ∈ G}. Often V is called the group ring of G and denoted C[G]. A vector in V is a sum

∑
g∈G

ag · eg,

with ag complex numbers. We can also think about V as

{∑
g∈G

ag · [g] : ag ∈ C}.
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The two notations are equivalent – the symbol [g] corresponds to the notation eg. In the second
notation, we can see that C[G] has a ring structure, where

(∑
g∈G

ag · [g]) + (∑
g∈G

ag · [g]) = ∑
g∈G

(ag + bg) · [g],

and

(∑
g∈G

ag · [g])(∑
g∈G

bg · [g]) = ∑
g∈G

(∑
s∈G

ags−1 bs) · [g].

However, the ring structure will not be important until much later.
The group G acts on this vector space and this representation is called the regular represen-

tation and denoted ρreg. We have

ρreg : G → GL(V), ρreg(g)(eh) = egh, ∀g, h ∈ G.

In the other notation,

ρreg(g)(∑
s∈G

as[s]) = [g](∑
s∈G

as[s]) = ∑
s∈G

as[gs].

The character χreg of ρreg is very simple:

(1) χreg(g) =

{
]G, g = 1g;
0, else.

The proof is simple: if {e1, . . . , en} is a basis for a vector space W, and T : W →W is a linear
transformation, write

T(ei) =
n

∑
a=1

baea, ba ∈ C.

Then, the contribution to Tr(T) from the vector ei is bi. Now, to calculate Tr(ρreg(g)) we see that
the contribution from the vector eh is the coefficient of eh in ρreg(g)(eh). As ρreg(g)(eh) = egh, this
contribution is 0 from every h if g 6= 1, and is 1 from every h if g = 1.

2.3. Direct sum. Let (ρ, V1), (ρ2, V2) be two representations of the group G. We define the direct
sum of the representations: the vector space is V1 ⊕V2 and

ρ1 ⊕ ρ2 : G → GL(V1 ⊕V2), (ρ1 ⊕ ρ2)(g)(v1, v2) := (ρ1(g)(v1), ρ2(g)(v2)).

If we represent ρi as homomorphisms,

ρi : G → GLni(C) (ni = dim(Vi)),

then

ρ1 ⊕ ρ2 : G → GLn1+n2(C), (ρ1 ⊕ ρ2)(g) =
(

ρ1(g) 0
0 ρ2(g)

)
.

It is then clear that

χρ1⊕ρ2(g) = χρ1(g) + χρ2(g).
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3. SUBREPRESENTATIONS AND IRREDUCIBLE REPRESENTATIONS

3.1. Subrepresentions. Let (ρ, V) be a representation of G. Let U ⊆ V be a subspace such that

ρ(g)(u) ∈ U, ∀g ∈ G, ∀u ∈ U.

That is, U is invariant under all the linear maps {ρ(g) : g ∈ G}. Then U is called a subrepresen-
tation of V; we have

ρ|U : G → GL(U), ρ|U(g) := ρ(g)|U .

Example 3.1.1. {0} and V are always sub-representations. We refer to them as trivial subrepre-
sentations.

Example 3.1.2. The standard representation ρstd of Sn.

Let n ≥ 2. We consider Sn as contained in GLn(C) in such a way that

σ(ei) = eσ(i), i = 1, 2, . . . , n.

This is called the standard n-dimensional representation of Sn. For example, for n = 3,

(12)↔

0 1 0
1 0 0
0 0 1

 , (123)↔

0 0 1
1 0 0
0 1 0

 .

Let χstd be the character of ρstd. In our example of n = 3 we have χstd(12) = 1, χstd(123) = 0.

Proposition 3.1.3. We have

(2) χstd(σ) = ] fixed points of σ.

Proof. The contribution to Tr(ρstd(σ)) coming from the basis vector ei is the coefficient of ei in
ρstd(σ)(ei) = eσ(i), which is 1 is σ(i) = i and 0 if σ(i) 6= i. Summing over all i, we find the
statement in the proposition. �

Consider now the subspaces
U1 := {(a, . . . , a) : a ∈ C},

and

U0 := {(x1, . . . , xn) :
n

∑
i=1

xi = 0, xi ∈ C}.

The space U1 is just the trivial representation 11 of Sn, and U0 is also a representation of Sn that
we denote ρstd,0. As dim(U1) + dim(U0) = n and U1 ∩U0 = {0}, we find:

ρstd = 11⊕ ρstd,0.

3.2. Irreducible representations and Maschke’s Theorem. A representation (ρ, V) of G is called
irreducible if its only subrepresentations are {0} and V, and V 6= 0.

Proposition 3.2.1. The representations 11 and ρstd,0 are irreducible representations of Sn. Thus, we have
a decomposition of ρstd as a sum of irreducible representations.

Proof. Clearly 11 is irreducible for dimension reasons – there aren’t any non-trivial subspaces;
this is true for any group G and any 1-dimensional representation of it.

The proof for U0 is slightly involved; we will give another proof later, much more elegant, as
an application of character theory.

We assume that n > 2. The case n = 2 is easy as U0 is 1-dimensional.
Let U′ ⊆ U0 be a non-zero sub-representation. Let x = (x1, . . . , xn) be a non-zero vector

in U′. If x has precisely two zero elements, by multiplying x by a scalar we may assume that
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x = (0, . . . , 0, 1, 0 . . . , 0,−1, 0, . . . , 0). Then, by acting by Sn we see that every vector of the form
ei − ej (where ei are the standard basis) is also in U′. But these vectors span U0 and it follows
that U′ = U0.

Thus, it remains to prove that U′ always contains such a vector. Let x ∈ U′ be a non-zero
vector. If x has more than 2 non-zero coordinates, we show that there is vector y ∈ U′ that is not
zero and has fewer non-zero coordinates. This suffices to reduce to the case considered above.

Assume therefore that x has at least 3 non-zero coordinates. First, by rescaling we may assume
that one of these coordinates is 1. Then, as ∑ xi = 0, there exists a non-zero coordinate that is
not equal to 1. By applying a permutation to x we may assume that

x = (1, x2, x3, . . . , xn),

where x2 6= 1 and is non-zero and also x3 6= 0. In this case, also the vector

x′ =
1
x2

(x2, 1, x3, . . . , xn),

belongs to U1. Therefore, also

y = x− x′ = (0, x2 −
1
x2

, x3(1−
1
x2

), . . . , xn(1−
1
x2

)),

belongs to U′ and this vector has fewer non-zero coordinates, yet is not zero (consider its third
coordinate). �

Theorem 3.2.2 (Maschke). Every non-zero representation (ρ, V) decomposes as a direct sum of irre-
ducible representations.

Remark 3.2.3. We will later prove that such a direct sum decomposition is unique, up to iso-
morphism and re-ordering of the summands. We can now make our goal in this chapter more
precise:

Goal. Classify the irreducible representations of a group G. Find effective methods to determine
the decomposition of a representation into irreducible representations.

Proof. (Maschke’s Theorem) We begin with a lemma that shows that we can always define an
inner product of V relative to which ρ(g) is a unitary matrix for any g ∈ G.

Lemma 3.2.4. There is an inner product

〈·, ·〉 : V ×V → C,

such that

〈gv, gu〉 = 〈u, v〉, ∀g ∈ G, ∀u, v ∈ V.

(To simplify notation we write gv for ρ(g)(v).)

Proof. (Lemma) Let (·, ·) be any inner product on V. Define,

〈v, u〉 = 1
]G ∑

g∈G
(gv, gu).
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The verification that this is an inner product is straightforward and we omit it. To check that ρ
is a unitary representation relative to this inner product we calculate:

〈gv, gu〉 = 1
]G ∑

h∈G
(hgv, hgu)

=
1
]G ∑

h∈G
(hv, hu)

= 〈v, u〉,
where we used that when h runs over G so does hg. �

We now get to the proof of the theorem. We prove it by induction on dim(V).
If dim(V) = 1 then V is irreducible and there is nothing to prove. In general, if V is irreducible

there is nothing to prove. Otherwise, V has a subrepresentation 0 6= U 6= V. Let 〈v, u〉 be a G-
invariant inner product on V, as in the Lemma. Then

V = U ⊕U⊥.

We only need to show that

U⊥ := {v ∈ V : 〈v, u〉 = 0, ∀u ∈ U}
is a subrepresentation. Let g ∈ G and v ∈ U⊥. For any u ∈ U we have

〈gv, u〉 = 〈v, g−1u〉 = 0,

because g−1u ∈ U as U is a subrepresentation. It follows that gv ∈ U⊥.
By induction,

U = W1 ⊕ · · · ⊕Wa, U⊥ = Wa+1 ⊕ · · · ⊕Wb,
for some irreducible representations Wi of G. Then,

V = U ⊕U⊥ = W1 ⊕ · · · ⊕Wb

is a sum of irreducible representations too. �

3.3. The projection on VG. Let (ρ, V) be a representation of G. Let

VG = {v ∈ V : ρ(g)(v) = v, ∀g ∈ G}.
Then VG is a subrepresentation on which G acts trivially. It’s the space of invariant vectors.

Lemma 3.3.1. Let

(3) π(v) =
1
]G ∑

g∈G
ρ(g)(v).

Then π ∈ HomG(V, VG) and is a projection on the subspace VG.

Proof. As π is a sum of linear maps it is certainly a linear map from V to V. We first show that
Im(π) ⊆ VG. We need to show that all h ∈ G, v ∈ V we have ρ(h)(π(v)) = π(v). Indeed,
ρ(h)(π(v)) = 1

]G ∑g(ρ(h) ◦ ρ(g))(v) = 1
]G ∑g ρ(hg)(v) = 1

]G ∑g ρ(g)(v) = π(v).
To show π is a projection, we need to verify that π is the identity on VG. But, for v ∈ VG we

have π(v) = 1
]G ∑g ρ(g)(v) = 1

]G ∑g v = v.
Finally, we check that π is a homomorphism of representations. As G acts trivially on VG this

boils down to verifying that π(ρ(h)v) = π(v). We calculate: π(ρ(h)(v)) = 1
]G ∑g ρ(g)(ρ(h)v) =

1
]G ∑g ρ(gh)(v) = 1

]G ∑g ρ(g)(v) = π(v). �

The following corollary will be used several times in the sequel:
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Corollary 3.3.2 (Projection Formula). We have

(4) dim(VG) =
1
]G ∑

g
χρ(g).

In words, the dimension of the subspace of invariant vectors is the average value of the character χρ.

Proof. We have a decomposition,
V = VG ⊕Ker(π).

In this decomposition we can write
π = IdVG ⊕ 0.

Thus, Tr(π) = dim(VG). But on the other hand,

Tr(π) =
1
]G ∑

g
Tr(ρ(g)) =

1
]G ∑

g
χρ(g).

�

4. SCHUR’S LEMMA AND ORTHOGONALITY OF CHARACTERS

4.1. The dual representation and the two Homs. Let (ρ, V) be a representation of G. For
any linear operator ρ(g) : V → V we have the dual operator ρ(g)t : V∗ → V∗, where V∗ =
Hom(V, C) is the dual vector space to V. Recall that ρ(g)t is defined by

ρ(g)t(φ) = φ ◦ ρ(g), φ ∈ V∗.

Further, if {e1, . . . , en} are a basis for V and {φ1, . . . , φn} is the dual basis for V (the basis that
satisfies φi(ej) = δij) then in terms of matrices we have

[ρ(g)t]{φi} = ([ρ(g)]{ei})
t.

Define the dual representation ρ∗

ρ∗ : G → GL(V∗), ρ∗(g) = (ρ(g−1))t.

Proposition 4.1.1. ρ∗ is a representation of G and its character satisfies χρ∗ = χ̄ρ. That is,

χρ∗(g) = χρ(g) := χρ(g), ∀g ∈ G.

Proof. The proof is easy, but reveals two properties that are very important, and general, and so
we record them here as a lemma.

Lemma 4.1.2. Let (ρ, V) be a representation of G. Then:
(1) Every ρ(g) is diagonalizable.
(2) Every eigenvalue of ρ(g) is a root of unity of order dividing d, where d is the order of g in G.

Proof. Let d be the order of g. As ρ is a homomorphism ρ(g)d = ρ(gd) = ρ(1G) = IdV . It follows
that ρ(g) solves the polynomial xd − 1, which is a separable polynomial (i.e., it has distinct
roots over C). Therefore, also the minimal polynomial of ρ(g) is a separable polynomial and,
consequently, ρ(g) is diagonalizable. Let’s write

ρ(g) ∼ diag(α1, . . . , αn),

where n = dim(V) and αi are d-th roots of unity. �
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Note that in general the basis in which ρ(g) is diagonal depends on g; we cannot, in general,
diagonalize all ρ(g) simultaneously. However, ρ(g−1) = ρ(g)−1 is given in the same basis by

diag(α−1
1 , . . . , α−1

n ) = diag(α1, . . . , αn),

because the αi are roots of unity. Thus,

(5) χρ(g−1) = ∑
i

αi = χρ(g).

To finish the proof of the Proposition it only remains to check that ρ∗ is a representation. We
have:

ρ∗(gh) = (ρ(gh)−1)t = (ρ(h−1)ρ(g−1))t = (ρ(g−1))t · (ρ(h−1))t = ρ∗(g) · ρ∗(h).
�

We now discuss “the two Homs” and engage in a very technical calculation. However, the
results will be absolutely essential to proving one of the most important theorems concerning
representations: orthogonality of characters.

Let (ρ, V), (τ, W) be two representations of the group G. We have already defined (all maps
appearing below are understood to be linear)

HomG(V, W) = {T : V →W : T ◦ ρ(g) = τ(g) ◦ T, ∀g ∈ G}.
We also have the more naive

Hom(V, W) = {T : V →W}.

Proposition 4.1.3. HomG(V, W) is a linear representation σ of G, where

σ(g)(T) = τ(g) ◦ T ◦ ρ(g)−1, T ∈ Hom(V, W).

Remark 4.1.4. Note the following:
(1) dim(Hom(V, W)) = dim(V) · dim(W). This can be seen by choosing bases for the two

vector spaces and representing the linear maps as matrices. See also the proof for the
character formula below.

(2) We have the following relationship between the two Homs:

HomG(V, W) = Hom(V, W)G.

(3) Consider the special case where (τ, W) = (11, C). In this case

Hom(V, W) = V∗,

and the new representation σ we have now defined on it is:

σ(g)(φ) = τ(g) ◦ φ ◦ ρ(g−1) = φ ◦ ρ(g−1) = ρ(g−1)t(φ) = ρ∗(φ).

Namely, we just get the dual representation again.

Proof. There is actually quite a bit to verify here. We only indicate what should be verified and
leave the verification as an exercise.

• As Hom(V, W) is a complex vector space, we need to verify that for every g ∈ G, σ(g)
is an endomorphism of that space. Namely, that indeed τ(g) ◦ T ◦ ρ(g−1) is a linear map
from V to W, and that

T 7→ τ(g) ◦ T ◦ ρ(g−1),
is linear in T. This just establishes that σ(g) is a linear map from the vector space
Hom(V, W) to itself.
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• Next, one needs to verify that σ(gh) = σ(g) ◦ σ(h). This shows that we have a multi-
plicative map G → End(Hom(V, W)). But note that since every element in G is invertible
and σ(1) is the identity map, automatically σ(g) is invertible (because σ(g) ◦ σ(g−1) =
σ(1) = Id, etc.). Thus, it follows that we get a homomorphism

σ : G → GL(Hom(V, W)).

�

Theorem 4.1.5. The character χσ of the representation (σ, Hom(V, W)) is given by the formula

χσ = χτ · χ̄ρ.

Proof. We first find a convenient basis for Hom(V, W). Let

B = {e1, . . . , en}, C = { f1, . . . , fm},
be bases for V and W, respectively. Let

B∗ = {e∗1 , . . . , e∗n},
be the dual basis for V∗. So, e∗i (ej) = δij (Kronecker’s delta).

We introduce the following notation: for φ ∈ V∗ and w ∈W, we let the symbol1

φ⊗ w

denote the element of Hom(V, W) given by

v 7→ φ(v) · w.

We quickly check that it is indeed a linear map: We have (φ⊗w)(α1v1 + α2v2) = φ(α1v1 + α2v2) ·
w = (α1φ(v1) + α2φ(v2)) · w = α1φ(v1) · w + α2φ(v2) · w = α1 · (φ⊗ w)(v1) + α2 · (φ⊗ w)(v2).

In particular, we have the maps e∗i ⊗ f j. It turns out that these maps have very simple repre-
sentation as matrices. Using the bases B, C , we have an identification

Hom(V, W) ∼= Mm×n(C),

by sending any linear transformation to its matrix representation relative to these bases. Since
we have (e∗i ⊗ f j)(e`) = δi` f j, it follows that e∗i ⊗ f j is represented by the elementary matrix Eij
that has all entries equal to zero, except for the ij entry that is equal to 1:

e∗i ⊗ f j ↔ Eij.

As every matrix (mij) ∈ Mm×n(C) ∼= Hom(V, W) is equal to ∑ij mijEij, we find:

Conclusion: {e∗i ⊗ f j : 1 ≤ i ≤ n, 1 ≤ j ≤ m} is a basis for Hom(V, W).

We can calculate Tr(σ(g)) by finding the action of σ(g) on this basis. Let us introduce notation:

τ(g) = (hij)
m
i,j=1, ρ(g−1) = (gij)

n
i,j=1.

Then,

σ(g)(e∗j ⊗ fi) = (hij)Eij(gij) =

h11 . . . h1m
. . . . . . . . .
hm1 . . . hmm

 0 . . . 0
gj1 . . . gjn
0 . . . 0

 = (rab).

The matrix on the right has all entries equal to zero except for its i-th row, which is equal to
(gj1, gj2, . . . , gjn). The result is a matrix (rab) whose ab entry is

rab = haigjb.

1The choice of notation is not accidental. There is a theory of tensor products that operates in the background, but
we will not discuss it in this course.
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In particular,
rij = hiigjj.

Namely, we have
σ(g)(Eij) = ∑

a,b
haigjbEab.

The contribution to the trace of σ(g) coming from the basis vector e∗j ⊗ fi = Eij is hiigjj. Thus,

Tr(σ(g)) = ∑
i,j

hiigjj = (∑
i

hii)(∑
j

gjj) = Tr(τ(g)) · Tr(ρ(g−1)).

But, we have seen that Tr(ρ(g−1)) = χρ(g−1) = χρ(g). Therefore, we conclude that

χσ = χτ · χ̄ρ.

�

4.2. Schur’s Lemma. Before proving Schur’s lemma, we establish some general properties of
homomorphisms of representations.

Lemma 4.2.1. For any two representations (ρ, V), (τ, W) of G and any T ∈ HomG(V, W) we have
that Ker(T) is a subrepresentation of V, and Im(T) is a subrepresentation of W.

Proof. Let v ∈ Ker(T) and g ∈ G. We have

T(ρ(g)(v)) = τ(g)(T(v)) = τ(g)(0) = 0.

It follows that Ker(T) is a subrepresentation of V.
Let w ∈ Im(T) and choose v ∈ V such that T(v) = w. Then:

τ(g)(w) = τ(g)(T(v)) = T(ρ(g)(v)) ∈ Im(T).

It follows that Im(T) is a subrepresentation of W. �

Lemma 4.2.2 (Schur). Let (ρ, V), (τ, W) be two irreducible representations of G. Then

(6) HomG(V, W) ∼=
{

C, (ρ, V) ∼= (τ, W);
0, else.

Proof. Let T ∈ HomG(V, W) and suppose T 6= 0. Then Ker(T) 6= V. However, Ker(T) is
a subrepresentation of V and V is irreducible. It follows that Ker(T) = 0 and so that T is
injective. Since V is not zero (by definition), Im(T) 6= 0 and since W is irreducible, and Im(T)
is a subrepresentation, Im(T) = W. Thus, T is surjective. It follows that T is an isomorphism.
Therefore, if HomG(V, W) 6= 0 (and V, W are irreducible) we have (ρ, V) ∼= (τ, W).

It remains to show that if (ρ, V) ∼= (τ, W) then HomG(V, W) is a 1-dimensional vector space.
Choose, any non-zero T ∈ HomG(V, W). We saw that T is then an isomorphism. We get an
isomorphism

HomG(V, W) ∼= EndG(V), S 7→ T−1 ◦ S,
and thus it is enough to prove that

EndG(V) ∼= C.
Let then R ∈ EndG(V) and let λ be an eigenvalue of R. As λ · Id ∈ EndG(V), it follows that
R− λ · Id ∈ EndG(V) and it follows that Ker(R− λ · Id) is a subrepresentation of V. Since every
eigenvalue has at least one non-zero eigenvector, we have that Ker(R− λ · Id) 6= 0 and, as V is
irreducible, we must have

Ker(R− λ · Id) = V.
This means that R = λ · Id. This provides the isomorphism EndG(V) ∼= C. �
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Remark 4.2.3. Note that the final isomorphism EndG(V) ∼= C can be given by

(7) R 7→ 1
dim(V)

· Tr(R).

4.3. The space of class functions. Let G be a finite group and denote by h(G) the class number
of G. It appeared before in §??. By definition, h(G) is the number of conjugacy classes in G.

Example 4.3.1. • If G is abelian, h(G) = ]G.
• If G = Sn, h(G) = p(n) (the partition function of n).

A function f : G → C is called a class function if

f (hgh−1) = f (g), ∀g, h ∈ G.

Namely, if f is constant on each conjugacy class. We let Class(G) denote the space of class
functions. It is a complex vector space of dimension h(G). If φ ∈ Class(G), define a function
φ̄ ∈ Class(G) by

φ̄(g) := φ(g)
(where on the right we are simply taking the complex conjugate of φ(g)).

We make Class(G) into a hermitian space by defining an inner product on it:

〈φ, ψ〉 :=
1
]G ∑

g∈G
φ(g) · ψ̄(g).

It is easy to verify that this is an inner product; we leave that as an exercise. We also define
‖φ‖ to be the non-negative real number satisfying ‖φ‖2 := 〈φ, φ〉. Our main motivation is the
following key example.

Example 4.3.2. For any representation (ρ, V) of G, its character χρ ∈ Class(G).

Example 4.3.3. Let 1 ≤ r ≤ n be integers. Define φr : Sn → C by φ(σ) equal to the number
of cycles of length r appearing in the decomposition of σ as a product of disjoint cycles. The
function φr is a class function.

4.4. Orthogonality of characters. We now come to the theorem making characters into a highly
powerful tool in the study of representations.

Theorem 4.4.1 (Orthogonality of characters). Let (ρ, V), (τ, W) be two irreducible representations
of G. Then:

(1) ρ 6∼= τ then 〈χρ, χτ〉 = 0.
(2) ‖χρ‖ = 1.

Otherwise said, the characters of the irreducible representations of a group G form an orthonormal set in
the space of class functions Class(G).

Remark 4.4.2. We will prove in Theorem 7.1.1 below that, in fact, the characters of irreducible
representations form an orthonormal basis for Class(G).

Proof. Let us write U = Hom(V, W). We have seen that (σ, U) is a representation of G, where

σ : G → GL(U), σ(g)(T) = τ(g) ◦ T ◦ ρ(g−1),

and, by Theorem 4.1.5,
χσ = χτ · χ̄ρ.
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By Schur’s Lemma,

dim(UG) = dim(HomG(V, W)) =

{
1, ρ ∼= τ;
0, ρ 6∼= τ.

On the other hand, by the Projection Formula (Corollary 3.3.2), we have

dim(UG) =
1
]G ∑

g∈G
χσ(g) =

1
]G ∑

g∈G
χτ(g) · χ̄ρ(g) = 〈χρ, χτ〉.

The theorem follows. �

Corollary 4.4.3. Let h be the number of irreducible characters of G, up to isomorphism. We have

h ≤ h(G).

In words, the number of irreducible representations of G is at most its class number. (We will see later
that h = h(G).)

The following notation will be used repeatedly. Let

ρ1, . . . , ρh,

be representatives to the isomorphism classes of irreducible representations of G. More pre-
cisely, we should say, let {(ρi, Vi) : i = 1, . . . , h} be representatives to the isomorphism classes of
irreducible representations of G, but this is heavier notation that we will usually avoid. In the
same vain, given a representation (ρ, V) instead of saying that

(ρ, V) ∼= (ρ1, V1)
⊕a1 ⊕ · · · ⊕ (ρh, Vh)

⊕ah ,

we will simply write
ρ ∼= ρa1

1 ⊕ · · · ⊕ ρah
h .

(Here the ai are non-negative integers and the notation (ρ1, V1)
⊕a1 means the direct sum of

(ρ1, V1) with itself a1 times, which is declared to be 0 if a1 = 0.) We will also use the notation

di = dim(ρi), χi = χρi .

Finally, whenever we view ρi as homomorphisms

ρi : G → GLdi(C),

we will assume that {ρi(g) : g ∈ G} are unitary matrices, which can always be arranged, as we
have seen while proving Maschke’s theorem.

4.5. Unique decomposition. We now prove that the decomposition provided by Maschke’s
theorem is unique.

Theorem 4.5.1. Let ρ be a representation of G. Then there are unique non-negative integers mi such that

ρ ∼= ρm1
1 ⊕ · · · ⊕ ρmh

h .

Proof. By Maschke’s theorem, such mi always exist. Then, by using the formula for the character
of a direct sum (§2.3), we have

χρ =
h

∑
i=1

mi · χi.

On the other hand, we can use this formula to deduce by orthogonality of characters that

〈χρ, χj〉 = 〈
h

∑
i=1

mi · χi, χj〉 = mj.

That shows that the multiplicities mi are determined uniquely by ρ. �
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We will refer to the mi as the multiplicity of the irreducible representation ρi in ρ.

Corollary 4.5.2. We have an isomorphism (ρ, V) ∼= (τ, W) if and only if χρ = χτ. In words, the
isomorphism class of a representation is completely determined by its character.

Proof. One of the first properties of characters we proved was that the character depends only
on the isomorphism class. So, the “only if” is clear. Suppose now that χρ = χτ, then for every χj
we have 〈χρ, χj〉 = 〈χτ, χj〉 =: mj. We have seen that then both representations are isomorphic
to ρm1

1 ⊕ · · · ⊕ ρmh
h , hence to each other. �

5. SOME FURTHER THEOREMS AND EXAMPLES

Before proving some additional “big theorems”, we study some examples and prove some
easier results that will give us a better sense of the whole subject.

5.1. Decomposition of the regular representation. Recall from § 2.2 the regular representation
ρreg of a group G. It is the representation on the vector space C[G] that has basis {eg : g ∈ G},
and

ρreg(h)(eg) = ehg, ∀g, h ∈ G.

We have calculated there that

χreg(g) =

{
]G, g = 1G;
0, else.

Let us now find the decomposition of the regular representation into irreducible representations.
As we have seen, the multiplicity mi of χi is given by

mi = 〈χreg, χi〉.

This is easy to calculate:

〈χreg, χi〉 =
1
]G ∑

g
χreg(g) · χ̄i(g) =

1
]G

χreg(1g) · χ̄i(1g) = di,

where di = dim(Vi), as per our conventions. We conclude the following proposition.

Proposition 5.1.1. We have

(8) ρreg = ⊕h
i=1ρdi

i , χreg =
h

∑
i=1

diχi.

Namely, every irreducible representation appears in the regular representation with multiplicity equal to
its dimension.

By calculating the dimensions of both sides in the isomorphism (8), we conclude:

Corollary 5.1.2. We have

(9) ]G =
h

∑
i=1

d2
i .
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5.2. Criterion for being irreducible. An easy consequence of orthogonality of characters is the
following useful result.

Corollary 5.2.1. A representation (ρ, V) is irreducible if and only if

‖χρ‖ = 1.

Proof. Let us write
χρ = ∑

i
mi · χi,

for non-negative integers mi. By orthogonality of characters (Pythagoras), we have

‖χρ‖2 = ∑
i

m2
i .

Thus, ‖χρ‖ = 1 if and only if there exists a unique i0 such that i0 = 1 and all the rest of 0. But
this is exactly the cases where ρ is irreducible. �

Remark 5.2.2. A very similar argument gives that ‖χρ‖2 = 2 if and only if ρ is a sum of two
distinct irreducible representations, and that ‖χρ‖2 = 3 if and only if ρ is a sum of three distinct
irreducible representations. However, when ‖χρ‖2 = 4 the pattern breaks down, and ρ could
be either the sum of four distinct irreducible representations, or isomorphic to two copies of a
single irreducible representation.

5.3. Another look at the standard representation of Sn. We take another look here at the stan-
dard representation of Sn, n ≥ 2, introduced in Example 3.1.2. Recall that this is an n-dimensional
representation ρstd of Sn whose character χstd satisfies

χstd(σ) = I(σ) = ] fixed points of σ.

It is clear that the space of invariant vectors is (Cn)Sn = U1 in the notation of that example
and, in particular, dim((Cn)Sn) = 1. The projection formula gives another way to calculate this
dimension and we get

1
n! ∑

σ∈Sn

χstd(σ) =
1
n! ∑

σ∈Sn

I(σ) = 1.

(Note that the latter formula can also be deduced by apply CFF.) This has the pleasant interpre-
tation that the expected number of fixed points for a randomly chosen permutation is 1.

Let us use the notation T = {1, 2, . . . , n}. Then we can say that

‖χstd‖2 =
1
n! ∑

σ∈Sn

(] fixed points of σ on T)2.

Lemma 5.3.1. ‖χstd‖2 = 2.

Proof. Consider the action of Sn on T × T given by

σ(i, j) = (σ(i), σ(j)).

It is clear that Sn has two orbits on T× T. Namely, {(i, i) : i ∈ T} and {(i, j) : i 6= j ∈ T}. On the
other hand, σ fixes (i, j) if and only if σ(i) = i and σ(j) = j. Thus,

] fixed points of σ on T × T = (] fixed points of σ on T)2.

We apply the CFF to the action of Sn on T × T to conclude that

2 =
1
n! ∑

σ

] fixed points of σ on T × T =
1
n! ∑

σ

(] fixed points of σ on T)2 = ‖χstd‖2.

�
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As we have seen, this implies that ρstd is a sum of two distinct irreducible representations
(Remark 5.2.2). But, we also know that

ρstd = 11⊕ ρstd,0.

Therefore, we conclude that ρstd,0 is irreducible. This argument is a much more elegant, I think,
than the proof we previously gave.

5.4. The character group G∗ and twisting. Recall from §2.1 the set

G∗ = Hom(G, C×),

which is group under
(φ1 · φ2)(g) = φ1(g) · φ2(g).

For a 1-dimensional representation there is no difference between the representation and its
character. The following properties are not hard to prove and the details are left as an exercise:

(1) We have a canonical isomorphism

(G1 × · · · × Ga)
∗ = G∗1 × · · · × G∗a .

It is given by
f 7→ ( f |G1 , . . . , f |Ga),

where we identify Gi with {1} × · · · × Gi × · · · × {1}. The inverse isomorphism is given
by

( f1, . . . , fa) 7→ f1 × · · · × fa,
where

( f1 × · · · × fa)(g1, . . . , ga) = f1(g1) f2(g2) · · · fa(ga).

(2) We have a canonical isomorphism G∗ ∼= (Gab)∗.
(3) We have a canonical isomorphism

(Z/nZ)? ∼= µn,

where µn = {ej·2πi/n : j = 0, 1, . . . , n − 1} is the multiplicative group of n-th roots of
unity in C. (Don’t confuse (Z/nZ)? with (Z/nZ)×.) The isomorphism is given by

f 7→ f (1) ∈ µn,

and
ζ 7→ f ∈ (Z/nZ)?, f (a) := ζa.

As every finite abelian group is isomorphic to a product of groups of the form Z/nZ, we have
a method to determine G∗ for any finite group G:

• Calculate Gab. Any f : Gab → C× induces an element of G∗, i.e., f ◦π, where π : G → Gab

is the canonical homomorphism. All multiplicative characters of G arise this way.
• Write Gab ∼= Z/n1Z× · · · ×Z/naZ. Use that (Z/n1Z× · · · ×Z/naZ)∗ ∼= (Z/n1Z)∗ ×
· · · × (Z/naZ)∗.
• Use the identification (Z/nZ)∗ ∼= µn.

In particular, we conclude that if G is a finite abelian group then

]G = ]G∗ = h(G).

Even better, we can conclude the following corollary of unique decomposition. (For another
proof, see the exercises).
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Corollary 5.4.1. Every irreducible representation of an abelian group G is 1-dimensional and there are
]G of them. Every n-dimensional representation of G is isomorphic to a representation of the form

ρ : G → GLn(C), g 7→

α1(g)
. . .

αn(g)

 ,

for some αi ∈ G∗.

5.5. Twisting. Let (ρ, V) be a representation of G and let α : G → C× be a 1-dimensional repre-
sentation of G. Then Hom((α, C), (ρ, V)) is a representation of G of the same dimension and its
character, by Theorem 4.1.5, is just

χρ · ᾱ.

As ᾱ : G → C× is likewise a 1-dimensional representation, we conclude that also χρ · α is a char-
acter. We call the operation χρ 7→ χρ · α twisting the representation ρ by the character α. We
proved the first part of the following proposition.

Proposition 5.5.1. For any character χ of G and any 1-dimensional character α of G, also χ · α is a
character. Moreover, if χ is irreducible, so is χ · α.

Proof. It is not hard to give a direct simple proof of the second part, but let us use characters
instead. We have

‖χα‖2 =
1
]G ∑

g
χ(g)α(g)ᾱ(g)χ̄(g).

However, because α is 1-dimensional, α(g) is a root of unity and we find

‖χα‖2 =
1
]G ∑

g
χ(g)χ̄(g) = ‖χ‖2 = 1.

Thus, by Corollary 5.2.1, χ is irreducible. �

Remark 5.5.2. It is possible that χ · α = χ even if α 6= 11. In fact, this happens quite often, for
example in cases that G has a unique irreducible representation of a given dimension. Nev-
ertheless, in general, twisting by 1-dimensional characters is a very useful method to get new
irreducible representations from known ones.

6. CHARACTER TABLES

The character table of a group G is one of the best ways to get insight into the structure of G
and its action on vector spaces. There are whole books written on this subject.2 In this section we
will study various properties of the character table. Our treatment is by no means exhaustive,
or complete (we will mention a few properties that we will not prove).

The characters table of G has rows for every irreducible representation of G, and columns for
every conjugacy class of G. We reserve the first row for the character 11 and the first column
for the conjugacy class of the identity (often we will write a representative element for each
conjugacy class, and indicate below the conjugacy class how many elements it contains). The
table entry corresponding to a character χ and a conjugacy class c is just χ(c). By that we mean
χ(x) for any x ∈ c; the choice of x doesn’t influence the value χ(x). So, for example, the character
table of S3 is the following:
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1 (12) (123)
1 3 2

χ1 = 11 1 1 1
χ2 1 -1 1
χ3 2 0 -1

TABLE 1. Character table of S3

We see the three representatives 1, (12), (123) to the distinct conjugacy classes of S3 and their
sizes indicated by 1, 3, 2. We see 3 irreducible characters. The first one is the trivial character 11,
the second is the sign homomorphism sgn : S3 → C×, and the third is the character χstd,0.

We will usually use the notation χi for the rows and ci for the columns. We use the notation
introduced before: χi is the character of the irreducible representation ρi that has dimension di.

6.1. First properties of the character table.

Theorem 6.1.1. The character table of G has the following properties:
(1) The number of rows equals to the number of columns.
(2) The sum of the squares of the entries of the first column is the cardinality of the group.
(3) The number of rows with 1 in the first column is equal to ]Gab.
(4) Every entry in the first column is an integer dividing ]G.
(5) The “weighted” inner-product of distinct rows is 0. The weighted self-product of a row is equal

to ]G (here the weights are the cardinality of conjugacy classes).
(6) The “weighted” sum of the rows is the vector (]G, 0, . . . , 0) (here the weights are the dimensions

of the representations).

The proof consists of references to theorems we proved, or will prove shortly.

Proof. (1) is the statement that the number of irreducible characters h is actually equal to h(G).
We mentioned this before and will prove it in Theorem 7.1.1 below.

(2) is Corollary 5.1.2: ]G = ∑h
i=1 d2

i
(3) states the the irreducible characters of dimension 1 are 1-dimensional characters g→ C×,

and ]G∗ = ](Gab)∗ (Lemma 2.1.1).
(4) is a theorem we will not prove because it requires some notions from algebraic number

theory, but it is useful to know.
(5) is just orthogonality of characters (Theorem 4.4.1). If we use the fact that characters are

class functions, we may write

〈χi, χj〉 =
1
]G ∑

g∈G
χi(g)χ̄j(g) =

1
]G

h

∑
i=1
|ci| · χi(ci)χ̄j(ci).

We find that if i 6= j then the weighted inner-product of the rows, ∑h
i=1 |ci|χi(ci)χ̄j(ci), is equal

to 0, and if i = j it is equal to ]G.
(6) is just a restatement of the decomposition of the regular representation: χreg = ∑h

i=1 diχi
(Proposition 5.1.1). �

2For example: I. Martin Isaacs, “Character Theory of Finite Groups”, Dover 1994.
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6.2. Examples of character tables.

6.2.1. The character table of Z/nZ. Recall that every irreducible representation of an abelian
group is a multiplicative character and that we have

(Z/nZ)∗ ∼= µn.

We usually denote the corresponding characters ρ0, . . . , ρn−1 in this case, because if we let ζ =
e2πi/n then we have

ρi(a) = ζai.

(This notation is slightly in odds with the usual convention of denoting the irreducible charac-
ters of a group G by χ1, . . . , χh.) We find the following table

0 1 2 n− 1
ρ0 = 11 1 1 1 . . . 1
ρ1 1 ζ ζ2 . . . ζn−1

ρ2 1 ζ2 ζ4 . . . ζ2(n−1)

...
...

ρn−1 1 ζn−1 ζ2(n−1) . . . ζ(n−1)2

TABLE 2. Character table of Z/nZ

Note that property (6) in Theorem 6.1.1 gives us the very useful fact in complex analysis: For a
root of unity ζ of order n, we have ∑n−1

i=0 ζai = 0 for every a 6≡ 0(n).

6.2.2. The character tables of (Z/2Z)2, Z/3Z×Z/5Z and (Z/3Z)2. Multiplying two copies of
the character table of Z/2Z we find

0 1
11 1 1
ρ1 1 -1

× 0 1
11 1 1
ρ1 1 -1

=
(0,0) (1,0) (0, 1) (1,1)

11× 11 1 1 1 1
11× ρ1 1 1 -1 -1
ρ1 × 11 1 -1 1 -1
ρ1 × ρ1 1 -1 -1 1

TABLE 3. Character table of (Z/2Z)2

Similarly, for any abelian group G ∼= Z/n1Z× · · · ×Z/naZ we can multiply the character
tables for each Z/niZ to find the character table of G. This rests on our results

G∗ ∼= (Z/n1Z)∗ × · · · × (Z/naZ)∗ ∼= µn1 × · · · × µna ,

and the concrete description of the character table of Z/nZ.
It is not efficient to use this method for G = Z/3Z×Z/5Z because by CRT we have G ∼=

Z/15Z which is a cyclic group for which we already have a nice description. But, for example,
for the case G = (Z/3Z)2 it is useful, and we find the following 9× 9 table (ω = e2pii/3):
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0 1 2
11 1 1 1
ρ1 1 ω ω2

ρ2 1 ω2 ω

×
0 1 2

11 1 1 1
ρ1 1 ω ω2

ρ2 1 ω2 ω

=

(0,0) . . . (1, 2) . . . (a, b)
11× 11 1 1 1
...
ρ1 × ρ2 1 ω2 ωa+2b

...
...

...
ρi × ρj 1 ωi+2j ωai+bj

...
...

...

TABLE 4. Character table of (Z/3Z)2

6.2.3. The character table of S3. We have h(S3) = p(3) = 3 and so there are 3 conjugacy classes
and we take as representatives 1, (12), (123). Their sizes are 1, 3, 2, respectively. We have

Sab
3 = S3/A3 ∼= Z/2Z,

and, in fact, we know two 1-dimensional characters: 11 and sgn. As we must have

]S3 = 6 = 11 + 11 + x2,

we conclude that the remaining irreducible representation of S3 is 2-dimensional. We happen
to know such a representation, namely, ρstd,0 and its character χstd,0 whose value on a permuta-
tion σ is the number of fixed points of σ minus 1. We therefore find the following table:

1 (12) (123)
1 3 2

χ1 1 1 1
χ2 1 -1 1
χ3 2 0 -1

TABLE 5. Character table of S3

Remark though that we didn’t really need to use our “lucky break” of knowing before-hand an
irreducible 2-dimensional representation. We could have solved for the remaining character:

χ3 =
1
2
(χreg − χ1 − χ2)

(Theorem 6.1.1).

6.2.4. The character table of D4. It requires some calculations but one find that

D′4 = {1, x2}, Dab
4 = {1, x̄, ȳ, x̄y},

and that every element of Dab
4 has order 2. Thus,

Dab
4
∼= Z/2Z×Z/2Z, x 7→ (1, 0), y 7→ (0, 1).

We also calculate “by hand” the conjugacy classes and find that they are given by

c1 = {1}, c2 = {x, x−1}, c3 = {x2}, c4 = {y, yx2}, c5 = {yx, yx−1}.
There isn’t a really quick way to do that, but one can note that since 〈x〉 is a normal subgroup,
conjugacy classes are either contained in it, or disjoint from it. At any rate, we now know
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that D4 has four 1-dimensional representations, “lifted” from (Z/2Z)2. That is, if χ is an irre-
ducible character of (Z/2Z)2 and f is the composition D4 → Dab

4 → (Z/2Z)2 then χ ◦ f is an
1-dimensional character of D4. In addition, D4 has one more irreducible representation and its
dimension x satisfies

8 = ]D4 = 12 + 12 + 12 + 12 + x2.
It follows that we are missing a 2-dimensional representation. Note that we can solve for the
missing character, say χ, using the result on the sum of the rows of the character table, but it is
also natural to wander whether the missing representation is provided by the action of D4 on
the plane (the action inducing the action of D4 on the square). In this representation ρpl , the
action of the representatives for conjugacy classes is given as follows:

1 =
(

1
1

)
, x =

(
1

−1
)

, y =
( −1

1

)
, x2 =

( −1
−1

)
, yx =

( −1
−1

)
.

We can now write the character table of D4. The last row is χpl = χρpl , which is indeed irre-
ducible because ‖χpl‖ = 1.

1 x y xy x2

1 2 2 2 1

11 1 1 1 1 1
ρ1 × 11 1 -1 1 -1 1
11× ρ1 1 1 -1 -1 1
ρ1 × ρ1 1 -1 -1 1 1
χpl 2 0 0 0 -2

TABLE 6. Character table of D4

Here is an application. The composition ρ defined by

D4 // S4
ρstd

// GL4(C) ,

(where the first arrow is the natural inclusion of D4 into S4, x 7→ (1234), y 7→ (24)) is a 4-
dimensional representation of D4. It is a bit hard to understand this action. In terms of matrices

x =

( 0 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0

)
, y =

( 1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0

)
.

However, we can decompose ρ into irreducible representations. A calculation gives

〈χρ, 11〉 = 1 , 〈χρ, ρ1 × 11〉 = 1, 〈χρ, χpl〉 = 1.

This tells us that
ρ ∼= 11⊕ (ρ1 × 11)⊕ ρplane.

That means that there is another basis for C4 in which the representation has the form

x =

( 1 0 0 0
0 −1 0 0
0 0 0 1
0 0 −1 0

)
, y =

( 1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 1

)
.

And a general element g of D4 will act by a matrix of the form(
1 0 0
0 ±1 0
0 0 ρpl(g)

)
.

It is much easier now to understand the action of D4.
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6.2.5. The character table of S4.

Here is a general principle. Let f : A→ B be a homomorphism of groups. Let ρ : B→ GL(V) be
a representation of B. Then ρ ◦ f is a representation of A and its character is simply

χρ◦ f = χρ ◦ f : A→ C.

In fact, we have used it several times before in the situation G → Gab → C× to lift 1-dimensional
characters of Gab to G.

Now, if f is surjective and ρ is irreducible then also ρ ◦ f is irreducible. Indeed, suppose that
U ⊆ V is a subrepresentation of ρ ◦ f . That is, for all a ∈ A we have ρ( f (a))(U) ⊆ U. Then,
as f is surjective, it follows that for all b ∈ B we have ρ(b)(U) ⊆ U. It follows that U is a
subrepresentation of ρ and so U = 0 or V.

Let us use this for the surjective homomorphism f : S4 → S3, whose kernel is K, the Kline group.
We have studied this homomorphism before. Using it, we can lift the characters of S3 to S4,
and so we easily find the first 3 rows of the character table of S4. (The conjugacy classes of Sn
correspond to the cycle type of permutations and that gives us the columns’ labels.) As there are
5 conjugacy classes, there are two additional irreducible representations. We know one of them,
ρstd,0, and we get the last row as either the twist ρstd,0 · sgn, or by solving the equation where the
sum of the rows with multiplicities is equal to the vector (24, 0, 0, 0, 0). At any rate, we find the
following.

1 (12) (123) (1234) (12)(34)
1 6 8 6 3

11 1 1 1 1 1
sgn 1 -1 1 -1 1
χ3 ◦ f 2 0 -1 0 2
χstd,0 3 1 0 -1 -1
χstd,0 · sgn 3 -1 0 1 -1

TABLE 7. Character table of S4

6.2.6. Character table of A4. The representatives for the conjugacy classes are 1, (12)(34), (123), (132).
There are therefore 4 irreducible representations. As A4/K is of order 3, it follows that A4/K ∼=
Z/3Z and that K ⊇ A′4. As A4 is not abelian, A′4 6= {1} and so contains some element of cycle
type (2, 2). But those form a single conjugacy class and A′4 is normal. It follows that A′4 = K.

We conclude that there are 4 irreducible representations, of which 3 are 1-dimensional, and
the last is 3-dimensional (as ]A4 = 12 + 12 + 12 + x2 only allows x = 3). Using the result about
the sum of rows we find the following character table:

1 (123) (132) (12)(34)
1 4 4 3

11 1 1 1 1
χ1 1 ω ω2 1
χ2 1 ω2 ω 1
χ 3 0 0 -1

TABLE 8. Character table of A4
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It turns out that the last character is just χstd,0|A4 . This is no coincidence. One can prove that for
n ≥ 4 the representation ρstd,0|An is an irreducible representation of An (Exercise ??).

6.3. Orthogonality of columns. In this subsection we show that the columns of the character
table enjoy an orthogonality property. We begin with some renormalization device to make the
argument more transparent, hopefully.

For every character χ of G (or even for every class function f ), we define a vector vχ ∈ Ch,
where h = h(G) is the number of conjugacy classes of G. Let c1, . . . , ch be the conjugacy classes
of G, and let

vχ = (

√
]c1

]G
· χ(c1), . . . ,

√
]ch

]G
· χ(ch))

The point of this construction is that for every two characters χ, ψ (or even any two class func-
tions) we have

〈χ, ψ〉 = 〈vχ, vψ〉,
where the inner-product on the left is the inner product of class-functions, and the inner-product
on the right is the usual inner-product in Ch. In fact, we have already noticed something very
similar – see the proof of part (5) of Theorem 6.1.1.

Let χ1, . . . , χh denote the irreducible characters of G. It follows that the rows of the following
matrix are orthonormal: 

vχ1

vχ2

...
vχh


.

But this implies that the columns of the same matrix are an orthonormal set too. Namely, for
any two conjugacy classses ca, cb we get that

h

∑
i=1

√
]ca

]G

√
]cb

]G
· χi(ca)χ̄i(cb) = δab.

Note that ](G)/](ca) = ]Cent(x) for any x ∈ Ca. Therefore, we conclude the following.

Proposition 6.3.1 (Orthogonality of columns). We have the following orthogonality properties of the
columns of the character table.

(1) If ca 6= cb are conjugacy classes then the product of the ca column with the cb column is 0. To be
precise:

h

∑
i=1

χi(ca)χ̄i(cb) = 0.

(2) For every conjugacy class ca the norm of the ca column is the cardinality of its centralizer. That
is,

h

∑
i=1
|χi(ca)|2 = ]Cent(x), x ∈ ca.

It follows that we can use the entries of the character table, more specifically we can use the
second part of the proposition, to figure out the size of conjugacy classes. We record it as a
corollary.

Corollary 6.3.2. The character table determines the size of the conjugacy classes.



REPRESENTATIONS OF FINITE GROUPS 27

7. THE IRREDUCIBLE CHARACTERS FORM A BASIS FOR CLASS(G)

In this section we fill a gap and prove that the irreducible characters of a group G form a basis
for Class(G). Nothing prevented us from proving it sooner; it just seemed more useful to see
some examples before developing the theory further.

7.1. Irreducible characters form a basis.

Theorem 7.1.1. Let G be a group and let χ1, . . . , χh be its irreducible characters. Then

{χ1, . . . , χh}

is an orthonormal basis for Class(G).

Proof. We begin with a lemma that constructs endomorphisms of representations.

Lemma 7.1.2. Let (ρ, V) be a representation of G and let α a class function. Then the linear operator

T = Tρ = ∑
g∈G

α(g)ρ(g) ∈ EndG(V).

Proof. The fact that T is a linear operator is clear, because α(g) are scalars and T is the sum of
the linear operators α(g)ρ(g). The point is that it commutes with ρ. We have

ρ(h) ◦ T ◦ ρ(h)−1 = ∑
g∈G

α(g)ρ(hgh−1) = ∑
g∈G

α(hgh−1)ρ(hgh−1).

The last equality is true because α is a class function. Now, g 7→ hgh−1 is a bijection of G (even
an automorphism) and hence

ρ(h) ◦ T ◦ ρ(h)−1 = ∑
g∈G

α(hgh−1)ρ(hgh−1) = ∑
g∈G

α(g)ρ(g) = T.

�

We know already that {χ1, . . . , χh} are an orthonormal set. To prove they form a basis we
need only show for β ∈ Class(G),

〈χi, β〉 = 0, ∀i =⇒ β ≡ 0.

Let α = β̄. It will of course be enough to prove α ≡ 0.

Let (ρ, V) be an irreducible representation. We claim the the operator

Tρ := ∑
g∈G

α(g)ρ(g) ∈ EndG((ρ, V))

is actually the zero operator. By Schur’s Lemma, we have EndG((ρ, V)) ∼= C under the map
T 7→ 1

dim(V)
Tr(T) (Equation (7)). If we apply to Tρ we find that

1
dim(V)

Tr(Tρ) = ∑
g∈G

α(g)Tr(ρ(g)) = ∑
g∈G

χρ(g)β̄(g) = ]G〈χρ, β〉 = 0.

And therefore Tρ = 0.
Note that the construction

ρ 7→ Tρ = ∑
g∈G

α(g)ρ(g)
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commutes with direct sums. Thus, we may conclude that for any representation (ρ, V) of G we
have Tρ = 0. In particular this holds of the regular representation. That is, we conclude that
∑g∈G α(g)ρreg(g) is the zero operator on C[G]. In this case, we must have

∑
g∈G

α(g)ρreg(g)(e1) = 0,

where e1 ∈ {eg : g ∈ G} is the basis vector indexed by the identity element of G. However,

∑
g∈G

α(g)ρreg(g)(e1) = ∑
g∈G

α(g)eg.

As {eg} is a basis, it follows that α(g) = 0 for all g ∈ G, as we wanted to show. �

7.2. Even more properties of the character table. We organize together all the properties of the
character table we have seen, implicitly or explicitly.

Theorem 7.2.1. Let G be a group with class number h. Let {χi : i = 1, . . . , h} be its irreducible
characters, di = dim(χi) = χi(1), and let {ca : a = 1, . . . , h} be the conjugacy classes of G. We assume
always that χ1 = 11 and c1 = {1g}.

The character table of G has the following properties:
(1) The number of rows equals to the number of columns.
(2) The sum of the squares of the entries of the first column is the cardinality of the group.
(3) The number of rows with 1 in the first column is equal to ]Gab.
(4) Every entry in the first column is an integer dividing ]G.
(5) The “weighted” inner-product of distinct rows is 0. The weighted self-product of a row is equal

to ]G (here the weights are the cardinality of conjugacy classes).
(6) The “weighted” sum of the rows is the vector (]G, 0, . . . , 0) (here the weights are the dimensions

of the representations).
(7) For any two columns ca, cb we have

h

∑
i=1

χi(ca)χ̄i(cb) = 0, a 6= b,

and
h

∑
i=1
|χi(ca)|2 = |Cent(x)|, x ∈ ca.

(8) If χi(ca) = α then χi(c−1
a ) = ᾱ where c−1

a is the conjugacy class {x−1 : x ∈ ca}. In particular,
the set of entries of the character table is closed under complex conjugation.

(9) If χi is 1-dimensional and χj is any other irreducible character, then χi · χj = χk for some
irreducible character χk (possibly equal to χj).

(10) |χi(g)| ≤ χi(1), with equality if and only if ρi(g) = α · Id for some root of unity α.
(11) If ca 6= cb then there is some character χi such that χi(ca) 6= χi(cb).

Proof. We have already proved properties (1) - (6) in Theorem 6.1.1 (only that now we have really
proved (1)). Property (7) is the orthogonality of columns proven in Proposition 6.3.1. Property
(8) was also mentioned before: we have seen that χi(x−1) = χi(x) (Equation 5). Property (9) is
of course the twisting operation we have studied in § 5.5. Property (10) follows from the fact
that χi(g) is a sum of di roots of unity and the absolute value is equal to di if and only if they
all point in the same direction. The last property follows from the fact that the {χi} form a basis
for the class functions and so for any given ca 6= cb a suitable linear combination of them should
have value 1 on ca and value 0 on cb. This is only possible if for some i, χi(ca) 6= χi(cb). �
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Character tables have even more properties. We mention an additional one, which is a theorem
of Burnside, just because it is so easy to state. We will not use it in this course: If di > 1 then χi
takes the value 0 for some conjugacy class.

8. USING THE CHARACTER TABLE TO FIND NORMAL SUBGROUPS

We will now see a beautiful application of character tables for the calculation of all normal
subgroups of a group G.

8.1. Normal subgroups and character kernels. Let (ρ, V) be any representation of G with char-
acter χ. Define

Ker(χ) := {g ∈ G : χρ(g) = χ(1)} = {g ∈ G : χρ(g) = dim(V)}.

Lemma 8.1.1. We have
Ker(χ) = Ker(ρ),

and so Ker(χ) is a normal subgroup of G.

Proof. Let g ∈ Ker(ρ) then ρ(g) = IdV . Then, χ(g) = Tr(IdV) = dim(V) and thus g ∈ Ker(χ).
Conversely, let g ∈ Ker(χ) and d = dim(V). As χ(g) is a sum of d roots of unity (which are

the eigenvalues, with multiplicity, of ρ(g)), the only way this sum can be equal to to d if all these
roots of unity are 1. This implies ρ(g) = IdV . �

In particular, if χ1, . . . , χh denote the irreducible characters of G, as per our usual notation, we
have the normal subgroups

Ker(χi), i = 1, 2, . . . , h.
Note that these subgroups can be written as a union of conjugacy classes, given the character
table of G.

Lemma 8.1.2. Let χ be a character of a representation (ρ, V) of G. Suppose that

χ = ∑
i∈I

aiχi,

for a subset I ⊆ {1, 2, . . . , h} and positive integers ai. Then,

Ker(χ) = ∩i∈IKer(χi).

Once more, note that this can be calculated effectively from the character table of G.

Proof. We have
χ(1) = ∑

i∈I
aiχi(1).

If g ∈ Ker(χi) for every i, then

χ(g) = ∑
i∈I

aiχi(g) = ∑
i∈I

aiχi(1) = χ(1),

and so g ∈ ker(χ).
Conversely, if g ∈ ker(χ) we have

χ(1) = χ(g) = ∑
i∈I

aiχi(g) = ∑
i∈I

aiχi(1).

Since the ai are positive integers and |χi(g)| ≤ χi(1), the only way the last equality can hold is
if χi(g) = χi(1) for every i ∈ I. Namely, if g ∈ Ker(χi), for all i ∈ I. �

Lemma 8.1.3. Any normal subgroup NCG is of the form Ker(χ) for some character χ.
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Proof. Let H = G/N and consider the composition

G π// G/N = H
ρ

reg
H // GL(C[H]).

Let ρ = ρ
reg
H ◦ π. Since the regular representation ρ

reg
H of H is injective, we have Ker(ρ) =

Ker(π) = N. Therefore,
N = Ker(χρ).

�

We summarize our discussion in the following theorem.

Theorem 8.1.4. Let χ1, . . . , χh, h = h(G), be the irreducible characters of G. Let

Ni = Ker(χi).

Any normal subgroup N of G is of the form

N = ∩i∈IKer(χi),

for a suitable subset I ⊆ {1, 2, . . . , h}. And, conversely, any such intersection is a normal subgroup of G.

Remark 8.1.5. The whole point is, of course, that we have a practical easy method to find all the
normal subgroups of a group G from the character table. Note, also, that the theorem implies
that any proper maximal normal subgroup of G is of the form Ker(χi) for some i (although, the
converse is not true; Ker(χi) is often not a maximal normal subgroup).

Example 8.1.6. We illustrate the theorem using the character table of A4. Recall that it is given
by the following table, where in the last column we indicated the kernel of the character.

1 (123) (132) (12)(34) Ker
1 4 4 3

11 1 1 1 1 A4
χ1 1 ω ω2 1 K
χ2 1 ω2 ω 1 K
χ 3 0 0 -1 {1}

TABLE 9. Character table of A4

We conclude that A4 has only one non-trivial normal subgroup, which is K.

8.2. Recognizing the commutator subgroup. Given a group G we have several normal sub-
groups canonically associated to it. For example, the commutator subgroup G′ and the centre
Z(G). In light of Theorem 8.1.4, it makes sense to ask how to construct them from the character
table. For the center, this is just the union of all conjugacy classes of size 1. For the commutator
subgroup we have the following proposition.

Proposition 8.2.1. We have

G′ =
⋂

χ 1-dim. char.

Ker(χ).
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Proof. Suppose that g ∈ G′ and ρ is a 1-dimensional representation, then ρ(G′) = 1 (and so, as
we have used several times before, ρ factors through Gab). Thus, G′ ⊆ ⋂χ 1-dim. char. Ker(χ).

Suppose now that g 6∈ G′ and denote ḡ its image in Gab. Then ḡ 6= 0 (the identity element of
the abelian group Gab). Write

Gab ∼= Z/n1Z× · · · ×Z/naZ.

Then ḡ = (g1, . . . , ga) and assume without loss of generality that g1 6= 0.
Let ζ = e2πi/n1 and ρ the multiplicative character of Z/n1Z given by ρ(a) = ζa. Then,

ρ × 11 × · · · × 11 is a multiplicative character of Gab and hence, through G → Gab, also of G.
We have

(ρ× 11× · · · × 11)(g) = (ρ× 11× · · · × 11)(ḡ) = ρ(g1) = ζg1 6= 1.
Thus, g 6∈ ⋂χ 1-dim. char. Ker(χ), and the proof is complete. �

9. SOME MORE EXAMPLES OF REPRESENTATIONS

In this section we consider two more examples of representations, more difficult that we con-
sidered thus far.

9.1. The character table of the Frobenius group F20. The Frobenius group F20 is the group

Z/5Z o (Z/5Z)×.

Recall that (Z/5Z)× = Aut(Z/5Z) and the semi-direct product is taken relative to the identity
map (Z/5Z)× → Aut(Z/5Z). The group law is very simple,

(n1, b1)(n2, b2) = (n1 + b1n2, b1b2), ni ∈ N := Z/5Z, bi ∈ B := (Z/5Z)×.

The Frobenius group can be realized into other ways:
(1) As a group of matrices {(

b n
1

)
: b ∈ Z/5Z×, n ∈ Z/5Z

}
,

with multiplication ( b1 n1
1

) ( b2 n2
1

)
=
( b1b2 n1+b1n2

1

)
.

(2) As the subgroup of S5 given by

〈(12345), (2354)〉.
The isomorphism of F20 with the group of matrices is evident. For the realization as the subgroup
of permutations, we send

(12345)n 7→ (n, 1), (2345) 7→ (0, 2).

Because
(2354)(12345)(2354)−1 = (12345)2,

and (0, 2)(1, 1)(0, 2)−1 = (2, 1), it follows (with some additional arguments) that we have an
isomorphism 〈(12345), (2354)〉 ∼= F20.

Next, we calculate the conjugacy classes of F20. For elements of N, conjugation by N is trivial
and so by conjugating by elements of B we get the full conjugacy classes (using that F20 = NB).
We have the formula

(0, b)(n, 1)(0, b−1) = (bn, 1).
We find two conjugacy classes:

a1 = {(0, 1)}, a2 = {(i, 1) : i = 1, 2, 3, 4}.
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Likewise, when we conjugating elements of B by B is trivial and so we will get the full conjugacy
classes of elements of B by conjugating them by elements of N. We have the relation

(n, 1)(0, b)(−n, 1) = ((1− b)n, b).

For b = 2, 3, 4, we get the conjugacy classes

c2 = {(i, 2) : 0 ≤ i ≤ 4}, c3 = {(i, 3) : 0 ≤ i ≤ 4}, c4 = {(i, 4) : 0 ≤ i ≤ 4}.
We see that we already accounted for all the elements of the group. Therefore, F20 has 5 conju-
gacy classes (of sizes 1, 4, 5, 5, 5).

Note that F20/N ∼= B ∼= (Z/5Z)×, (n, b) 7→ b. As F20 is not abelian, and N has no non-trivial
subgroups, it follows that N = F′20 and Fab

20
∼= (Z/5Z)×, which is cyclic group of order 4 with

generator 2.Thus, F20 has precisely 5 irreducible representations, 4 of which are 1-dimensional.
Therefore, as the size of the group is the sum of the squares of the dimensions of the irreducible
representations, the remaining irreducible representation is 4-dimensional. We can find its char-
acter χ4 by using that the weighted sum of the rows of the character table is the regular repre-
sentation. (The notation is chosen so that the first 4 characters have notation that agrees with
the notation we used for cyclic groups.)

a1 a2 c2 c3 c4
1 4 5 5 5

(0, 1) (1, 1) (0,2) (0, 3) (0, 4)
χ0 = 11 1 1 1 1 1
χ1 1 1 i −i −1
χ2 1 1 −1 −1 1
χ3 1 1 −i i −1
χ4 4 -1 0 0 0

TABLE 10. Character table of F20

It is not hard to check that under the realization of F20 as a subgroup of S5 in fact χ4 = χstd,0|F20 .
Cf. Exercise 9.1.1.

Exercise 9.1.1. Fine the character table of Z/pZ oid (Z/pZ)× for p > 2 prime.

9.2. Monomial representations. Consider a finite group G acting on a non-empty set S. Con-
struct a vector space V with basis {es : s ∈ S}; we have dim(V) = ]S. There is a natural
representation

ρ : G → GL(V), ρ(g)(es) = eg∗s.
Such representations are called monomial.

In fact, we have already seen at least two instances of this construction. When S = G, and G
acts by left multiplication, we get V = C[G] and ρ = ρreg. When G = Sn, and S = {1, 2, . . . , n},
we get V = Cn and ρ = ρstd. As in these cases, it is easy to check that

χρ(g) = I(g) = ] fixed points of g in S.

Applying CFF and the projection formula, we get

(10)
1
]G ∑

g∈G
χρ(g) = ] orbits of G in S = dim(VG).
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One way one may get such actions, is by choosing a subgroup B < G and letting S = G/B,
the set of left cosets of B in G (in fact, any set S on which G acts is a union of such examples).
The representation is called the coset representation, which explains the name we have been
using for the action of G on S throughout the course.

To make the situation even more specific, assume that

G = N oφ B.

Therefore, G = NB, N ∩ B = {1}. Then,

G/B = {nB : n ∈ N}.
We check that gnB = nB⇔ g ∈ nBn−1. But,

nBn−1 = {(n, 1)(1, b)(n−1, 1) : b ∈ B} = {(nφb(n)−1, b) : b ∈ B}.
If g = (n1, b) ∈ nBn−1 it means that g necessarily equals to (nφb(n)−1, b) for some n. We
conclude that

χ((n1, b)) = I((n1, b)) = ]{n ∈ N : n1 = nφb(n)−1}.
Continuing with a general analysis will require making more assumptions on φ. Instead, let us
take the case of F20 = Z/5Z oid (Z/5Z)×. Here, n1 = nφb(n)−1 is written in additive notation
and the condition is n1 = (1− b)n. Now,

• if b 6= 1 there is a unique solution to the equation n1 = (1− b)n.
• if b = 1 and n1 = 0 there are 5 solutions to the equation n1 = (1− b)n.
• if b = 1 and n1 6= 0 there are no solutions to the equation n1 = (1− b)n.

We conclude that the character χ has the values χ(a1) = 5, χ(a2) = 0, χ(c2) = χ(c3) = χ(c4) = 1.
Therefore,

χ = χ4 + χ0,
and that tells us how the representation decomposes. Incidentally, note that the action of F20 on
the 5 cosets of B gives us the inclusion F20 ⊂ S5 we used before.

9.3. A combinatorial application. Let G be a finite group acting transitively on a finite non-
empty set S. Let

G0 = {g ∈ G : g has no fixed point in S}.
G0 is a subset of G, not a subgroup. We proved before (Proposition ??) that if ]X ≥ 2 then

]G0 ≥ 1.

Theorem 9.3.1 (Cameron-Cohen).

]G0 ≥
]G
]X

.

Proof. Let I(g) = χ(g) be the number of fixed points of g in S, where χ is the character of the
monomial representation of G coming from S.

Compare the proof of the following lemma to the proof of Lemma ??. It is really the same.

Lemma 9.3.2. We have
1
]G ∑

g∈G
χ2(g) ≥ 2.

Proof. Consider the action of G on the set S × S, g(a, b) = (g(a), g(b)). The class function χ2

is the character of this representation and the dimension of the space of invariant vectors is
1
]G ∑g∈G χ2(g), which is equal to the number of orbits of G in S× S by Equation (10). To prove
the lemma we only need to show that there is more than 1 orbit. And, indeed, one orbit is the
diagonal {(s, s) : s ∈ S} and, since ‖S‖ ≥ 2, there must be at least one more orbit. �
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Let n = ]S. Note that for g 6∈ G0 we have 1 ≤ χ(g) ≤ n and therefore

1
]G ∑

g∈G−G0

(χ(g)− 1)(χ(g)− n) ≤ 0.

Therefore,
1
]G ∑

g∈G
(χ(g)− 1)(χ(g)− n) ≤ 1

]G ∑
g∈G0

(χ(g)− 1)(χ(g)− n) = n · ]G0

]G
.

On the other hand,

1
]G ∑

g∈G
(χ(g)− 1)(χ(g)− n) =

1
]G ∑

g∈G
χ2(g)− (n + 1)

1
]G ∑

g∈G
χ(g) +

1
]G ∑

g∈G
n

≥ 2− (n + 1) + n = 1.

Combining the two inequalities, the theorem follows. �

J.-P. Serre used this in proving the following theorem in number theory.

Theorem 9.3.3. Let f (x) ∈ Z[x] be an irreducible polynomial of degree n. The density of prime num-
bers p (in the set of all primes) such that f has no root modulo p is at least 1/n.

Example 9.3.4. If we take the most simple non-trivial situation f (x) = x2 + 1, the theorem states
that for at least 1/2 the primes f has no zero modulo p.

On the other hand, f has a zero modulo p if and only if −1 is a square modulo p. As −1 has
order 2 modulo p (if p > 2), this happens if and only if there are elements of order 4 in Z/pZ×.
Using that Z/pZ× is a cyclic group of order p− 1 we see that this is the case if and only if p ≡ 1
(mod 4). Thus, we conclude that the density of primes of the form 4k + 3 is at least 1

2 .3

10. INTRODUCTION TO FOURIER ANALYSIS ON FINITE GROUPS.

In this section we are following the fantastic book by P. Diaconis, “Group representations in
probability and statistics” and if you find the following sections interesting, I very much recom-
mend reading it; you should have essentially all the prerequisite knowledge for reading much of
the book. Before commencing, let us mention that the theory of Fourier transform for groups has
many applications for other branches of science (computer science, chemistry, physics, electrical
engineering), and even within mathematics to many branches besides probability and statistics.

10.1. Convolution. Let G be a finite group. Let

C(G, C) = { f : G → C},
be the vector space of complex-valued functions on G. It is of course just the vector space C[G]
we used many times before. A function f defines an element ∑g f (g)[g] of C[G], and conversely.
It has dimension ]G.

For g ∈ G define the delta function δg : G → C by

δg(x) =

{
1, g = x
0, else.

This function corresponds to [g] ∈ C[G]. The collection {δg : g ∈ G} is a basis for C(G, C).

3It is known to be precisely 1/2.
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We define the convolution of two functions f , g ∈ C(G, C) as

( f ∗ g)(x) = ∑
s∈G

f (xs−1)g(s).

Note that for a non-abelian group in general f ∗ g 6= g ∗ f . In fact, convolution is just the product
in the ring C[G]; if we write an element of C[G] as ∑g ag[g], where ag ∈ C, then

(∑
g

ag[g]) + (∑
g

bg[g]) = ∑
g
(ag + bg)[g], (∑

g
ag[g])(∑

g
bg[g]) = ∑

g
(∑

s
ags−1 bs)[g].

And so, it is clear that C(G, C) is a ring under addition of functions and convolution, with
identity element δ1. For the same reason, the following two properties are evident, nonetheless
we prove the first in the language of convolutions.

• δg ∗ δh = δgh.
• f = ∑g f (g)δg.

Indeed, (δg ∗ δh)(x) = ∑s∈G δg(xs−1)δh(s) = δg(xh−1), which is a function that is everywhere
zero except at x = gh where it is 1. Thus, δg ∗ δh = δgh.

10.2. The Fourier transform. The Fourier transform f̂ of a function f ∈ C(G, C) is a function
on representations (ρ, V) of G. It associate to a representation ρ the element

f̂ (ρ) = ∑
s∈G

f (s)ρ(s) ∈ End(V).

We will always assume that the representations are unitary, which we can always achieve by a
suitable inner-product.

Lemma 10.2.1. We have the following properties of the Fourier transform:

(1) f̂ + g = f̂ + ĝ, and α̂ f = α f̂ , α ∈ C.
(2) δ̂g(ρ) = ρ(g).
(3) f̂ ∗ g = f̂ · ĝ.
(4) Let U be the uniform distribution on G, U(g) = 1

|G| , ∀g ∈ G. Let (ρ, V) be a representation
of G. Then Û(ρ) is the projection operator on the sub-representation VG. Thus, if ρ is irreducible
and ρ 6∼= 11 then Û(ρ) = 0, while Û(ρ)(11) = 1.

Proof. The first two properties are immediate from the definition. For the third,

f̂ ∗ g(ρ) = ∑
s∈G

(∑
t∈G

f (st−1)g(t)) · ρ(s)

= ( ∑
x∈G

f (x)ρ(x))(∑
t∈G

g(t)ρ(t))

= f̂ (ρ) · ĝ(ρ).

The fourth property is just the definition of the projection operator and the fact that VG is a
subrepresentation of V. �



36 REPRESENTATIONS OF FINITE GROUPS

10.3. Fourier Inversion and Plancherel’s formula. The following theorem is very much remi-
niscent of Fourier analysis over R.

Theorem 10.3.1. Let ρ1, . . . , ρh be unitary representatives for the irreducible representations of G and
let di = dim(ρi), χi = χρi .

(1) (Fourier Inversion). For any function f ∈ C(G, C),

(11) f (s) =
1
|G|

h

∑
i=1

di · Tr(ρi(s−1) f̂ (ρi)).

(2) (Plancherel’s formula) For any two functions f , h ∈ C(G, C),

(12) ∑
s∈G

f (s−1)h(s) =
1
|G|

h

∑
i=1

diTr( f̂ (ρi)ĥ(ρi)).

Proof. The proof is surprisingly simple for such scary looking formulas. First note that by linear-
ity and bilinearity, it is enough to prove Fourier inversion for the functions δg, and the Plancherel
formula for the functions δg, δh. We first verify Fourier inversion for δg. In this case, the right
hand side of (11) evaluated at s is:

1
|G|

h

∑
i=1

di · Tr(ρi(s−1)δ̂g(ρi)) =
1
|G|

h

∑
i=1

di · Tr(ρi(s−1)ρi(g))

=
1
|G|

h

∑
i=1

di · Tr(ρi(s−1g))

=
1
|G|

h

∑
i=1

diχi(s−1g)

=
1
|G|ρ

reg(s−1g).

This is a function that vanished everywhere, except at s = g, where it receives the value 1.
Namely, this is just the function δg(s), as required.

The right-hand side of Plancherel’s formula (12) is equal to

1
|G|

h

∑
i=1

diTr(δ̂g(ρi)δ̂h(ρi)) =
1
|G|

h

∑
i=1

diTr(ρi(g)ρi(h))

=
1
|G|

h

∑
i=1

diTr(ρi(gh))

=
1
|G|

h

∑
i=1

diχi(gh)

=
1
|G|ρ

reg(gh).

This expression is equal to 1 if g = h−1, and is equal to 0 otherwise. The sum

∑
s∈G

δg(s−1)δh(s)

has exactly the same property, and we get the equality we were after. �

We now derive a variant of Plancherel’s formula that is very useful for applications. Recall the
(potentially confusing, but customary) notation for a complex matrix M: M∗ = M̄t.
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Corollary 10.3.2. Let f be a real-valued function then

(13) ∑
s∈G

f (s)h(s) =
1
|G|

h

∑
i=1

di · Tr(( f̂ (ρi))
∗ · ĥ(ρi)).

Proof. Let g be the function g(s) = f (s−1). Then ∑s∈G f (s)h(s) = ∑s∈G g(s−1)h(s) and we can
apply Plancherel’s formula to this sum. It only remains to note that for ρ = ρi for some i,

ĝ(ρ) = ∑
s

f (s−1)ρ(s) = ∑
s

f (s)ρ(s−1) = ∑
s

f (s)ρ(s)∗ = (∑
s

f (s)ρ(s))∗ = f̂ (ρ)∗,

where we used that ρi is unitary and f is real-valued. �

10.4. Random walks on cyclic groups. Let p be a positive integer and consider the integers
modulo p, Z/pZ. For various applications in cryptography, statistics, computer science and
more, it is of interest to randomly choose a congruence class modulo p, or to emulate a random
walk on Z/pZ. True randomness is hard; it’s hard to generate and hard to “excavate” from
nature. For that reason, one tries to expand, or stretch, a small amount of randomness to create
a process that is pseudo-random; it is not completely random, but for all practical purposes, it
is.

Consider then the following process

xk+1 = akxk + bk, k = 1, 2, . . . .

At each iteration ak and bk can be chosen among the classes (Z/pZ)× and Z/pZ, respectively,
according to some agreed upon distribution. (This process is related to pseudo-random number
generators, but we will now get into that here.) The simplest situation that is not completely
deterministic is

ak = 1, ∀k, bk chosen from {±1} with equal probability.

This process just requires a fair coin-toss at every step.
Let us denote functions on Z/pZ by vectors (a0, . . . , ap−1). And let us suppose that the initial

seed is x0 = 0, namely, it is the vector (1, 0, . . . , 0) with probability 1. Then, the distribution
after one iteration is P = (0, 1/2, . . . , 1/2), and after n-steps it is given by P∗n := P ∗ P ∗ · · · ∗ P
(convolution n-times). For example, applying the random walk twice, it is clear that we can only
end at 0, 2 of −2 = n− 2, and the probability we end at 0 can be found as

P(b1 = 1) · P(b2 = −1) + P(b1 = −1) · P(b2 = 1) =
1
2
· 1

2
+

1
2
· 1

2
=

1
2

.

Similarly the probability for ending at 2 is P(b1 = 1) · P(b2 = 1) = 1/4, and so on. We recognize
that we are just calculating P ∗ P. For example, P ∗ P(0) = ∑

p−1
j=0 P(j)P(−j) = P(1)P(p− 1) +

P(p− 1)P(1) = 1/2.
Let us switch for a moment to multiplicative notation (which will hopefully be less confusing),

and write Z/pZ = 〈t〉 where tp = 1. Using the group-ring presentation, we can say that

P =
1
2
(t +

1
t
),

and so

P∗n =
1
2n (t +

1
t
)n =

1
2n

n

∑
j=0

aj(n)tj,

where

aj(n) = ∑
i∈{0,...,n},2i−n≡j(p)

(
n
i

)
.
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The limiting distribution is thus

lim
n→ ∞

P∗n = lim
n→ ∞

(a0(n), a1(n), . . . , ap−1(n)).

Our main interest is to know whether limn→ ∞ P∗n approaches the uniform distribution U, and,
if so, how fast? The fact that it approaches U is fairly easy (and follows from basic theory of
Markov chains). The main question is how quickly it approaches U.

To gauge this we introduce the total variation norm ‖ · ‖max. Let G be a finite group. For any
two probability distributions P, Q ∈ C(G, C) we let

‖P−Q‖max = max
A⊂G
|P(A)−Q(A)| = 1

2 ∑
g∈G
|P(g)−Q(g)|,

where P(A) = ∑a∈A P(a) is the probability of the event A.

Lemma 10.4.1 (Diaconis-Shahshahani). Let G be a finite group with irreducible (unitary) representa-
tions ρ1 = 11, . . . , ρh. and let P be a probability distribution on G. Then,

‖P−U‖2
max ≤

1
4

h

∑
i=2

di · Tr(P̂(ρi)
∗ · P̂(ρi)).

(Namely, the trivial representation 11 is the only one not appearing in this sum.)

We will prove this lemma later on. Let us first see its application for the process we are dis-
cussing. In this case, recall that the irreducible representations of Z/pZ are the 1-dimensional
representations {ρj : j = 0, 1, . . . , p− 1}, where

ρj(a) = ζaj (ζ = e2πi/p).

(Namely, ρj is the character such that ρj(1) is the p-th root of unity ej2πi/p.) Then,

P̂(ρj) =
1
2
(ρj(1) + ρj(−1)) = cos(2π j/p).

By multiplicativity of the Fourier transform,

P̂∗n(ρj) = cos(2π j/p)n.

Applying the Diaconis-Shahshahani lemma we find

‖P∗n −U‖2
max ≤

1
4

p−1

∑
j=1

cos(2π j/p)2n.

This last sum, though elementary in appearance, is not that easy to estimate, yet a relatively
elementary argument gives a bound and one gets the following, if p ≥ 7 and odd:

‖P∗n −U‖2
max ≤ e

− π2
2 ·

n
p2 .

This can be formulated qualitatively as saying that

“for ak ≡ 1, and bk chosen uniformly from the set {1,−1}, about p2 iterations of the process

xk+1 = a + kxk + bk

are required to achieve a distribution close to the uniform distribution.”

One can perform a similar analysis for the case ak = 1 and bk chosen uniformly from {0, 1,−1}
and get a very similar result. On the other hand, in stark-contrast, one can prove the following
results for p such that gcd(p, 6) = 1:
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“for ak ≡ 3, and bk chosen uniformly from {1,−1}, about log p iterations of the process xk+1 =
akxk + bk are required to achieve a distribution close to the uniform distribution.”

One reason the estimates are so different is that we are transferring from representation the-
ory for the group Z/pZ to representation theory for the group Z/pZ o Z/pZ×. The process
xk+1 = 3xk + bk is thought of as coming from a random walk on the group Z/pZ o Z/pZ×

corresponding to taking powers of the random element (b, 3), where b = {1, 0,−1} with equal
probability. See Exercise 10.4.2

Exercise 10.4.2. Prove that last estimate using the Diaconis-Shahshahani lemma for the group
Z/pZ o Z/pZ×. (Finding the representations is Exercise 9.1.1.)

10.5. Proof of the Diaconis-Shahshahani lemma. Let us now prove the lemma. Recall the
statement:

Let G be a finite group with irreducible (unitary) representations ρ1 = 11, . . . , ρh. and let P be a probabil-
ity distribution on G then

‖P−U‖2
max ≤

1
4

h

∑
i=2

diTr(P̂(ρi)
∗ · P̂(ρi)).

(Namely, the trivial representation 11 is the only one not appearing in this sum.)

Proof. Applying the Cauchy-Schwarts inequality for real numbers (∑ anbn)2 ≤ (∑ a2
n)(∑ b2

n) and
taking all the bn = 1, we find that

4‖P−U‖2
max = (∑

s∈G
|(P(s)−U(s)|)2 ≤ ]G · ∑

s∈G
(P(s)−U(s))2.

We view the last sum as ∑s∈G f (s)h(s), where f (s) = h(s) = (P(s)−U(s)). Apply the version
of Plancherel’s formula given in Corollary 10.3.2 to find

]G · ∑
s∈G

(P(s)−U(s))2 ≤
h

∑
i=1

diTr( f̂ (ρ)∗ · f̂ (ρ))

Now, f̂ (ρi) = (P̂− Û)(ρi) and, using Lemma 10.2.1, we see that it is equal to P̂(ρi) for ρi 6= 11
(i.e., for i > 1), while f̂ (11) = (P̂− Û)(11) = 1− 1 = 0. Therefore, we find

h

∑
i=1

diTr( f̂ (ρ)∗ · f̂ (ρ)) =
h

∑
i=2

diTr(P̂(ρ)∗ · P̂(ρ)),

and the proof is complete. �

10.6. Riffle shuffles. This is a famous problem that one can attack by similar techniques. The
actual estimates are very difficult though and, in any case, not accessible to us because they
require full and detailed knowledge of the representation theory of the symmetric group. It is
interesting, nonetheless, to see how the problem is set up and the first steps of the analysis.

A deck of cards, consisting of N cards (N = 52 in a usual deck) is split into two piles, one with k
cards and the other with N− k cards, with probability 1

2N (
N
k ). Say, the left pile and the right pile.

Then the cards from the two piles are interleaved randomly, where a card is chosen from the left
pile with probability k/N and from the right pile with probability (N − k)/N. In the new pile
the cards appear in a new order that is a permutation π ∈ SN . Such a permutation is called,
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naturally enough, a shuffle, and the process of shuffling cards this way is called riffle shuffle or
dovetail shuffle. It has the following form for some k(

1 2 3 4 5 6 . . . . . . . . . N − 2 N − 1 N
k + 1 1 2 k + 2 3 k + 4 . . . k− 2 . . . k− 1 N k

)

Experiments show that this is a good model for real-life card shuffles.

After n shuffles we get a certain probability distribution on SN . If P is the original distribution,
the distribution after n shuffles is P∗n. It is easy to understand the distribution P. We have
P(π) = 0 if π is not a k-shuffle for any k, and P(π) = 2−N if π is a k-shuffle. But it is complicated
to describe P∗n (and you can convince yourself of that by considering the case n = 2); more
sophisticated methods are needed.

Similarly to the case of random walks on Z/pZ, routine arguments with Markov chains show
that P∗n → U relative to the total variation norm. The question is how fast? Once more the main
idea is to use the Diaconis-Shahshahani Lemma to get an estimate of the form

‖P∗n −U‖2
max ≤

1
4 ∑

ρ 6=11, irred.
dim(ρ) · Tr((P̂(ρ)∗)n · (P̂(ρ))n),

where now ρ runs over all irreducible representations of Sn and that, on the other hand, even 5
shuffle will exhibit significant bias towards particular permuations.

The following table (their Q is our P) is taken from a paper of Bayer and Diaconis. It shows
that 7 shuffles suffice to shuffle reasonably-well a deck of 52 cards.

10.7. Rubik’s cube. We have discussed Rubik’s cube in §??. in particular, we introduced the
notation U, D, F, B, L, R and the Cayley graph relative to the generators Ui, Di, Fi, Bi, Li, Ri, i =
1, 2, 3. There is a rational for using these redundant set of generators; in practice, the moves
U2, U3 = U−1, for example, take almost the same time as U.

In cube solving competitions, cube scramblers are used. These are computer programs that
produce a position of the cube and a set of instructions of how to get to it that judges use to
create the cube positions to be solved. Naturally, we wish to have all cube positions given to the
participants “equally hard”, and also “hard enough” so that undeserving achievements will not
be recorded as world-records. One needs to find a method that produces such positions. The
scramblers are choosing randomly generators to provide directions for creating the cube posi-
tions. However, we would like to guarantee that (with high probability) such sets of directions
lead to equally hard positions that are also among the hardest possible.

The question of which position requires the most moves to solve was open for a long time and
was finally settled by Rokicki et al. that determined this number to be 20. (This number is known
as “God’s number”; I don’t personally like this terminology.) The following table is taken from
a paper of Rokicki; the first column indicates the minimal number of moves required to solve a
position and the last column indicates the number of cube positions requiring this number. We
ignore the middle column; it relates to the method of analysis used in their paper.
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We see that the bulk of the cube positions require 18 moves. It is thus natural to perform the
random process P and hope that P∗n is very closed to a distribution Q that has values, say,
Q(17) ≈ Q(19) ≈ 0.05, Q(18) ≈ 0.90 and otherwise Q(i) ≈ 0. But, is it possible?? More
precisely, what is

min
n
‖P∗n −Q‖max.

I don’t know the answer to that. (A careful analysis might require understanding the represen-
tations of the Cube group.) In real-life, the Tnoodle scrambler program is used by the World
Cube Association to generate positions and the quality bar seems pretty low. At some point
in time, they were OK with producing cube positions only guaranteed to require 11 moves or
more, which seems rather bad. By simply running the program for say 1,000 times for each
n = 15− 25 and using fast cube-solvers, one could get a very reliable statistics on this question.
The whole project shouldn’t take more than a week to run a desktop computer.

11. SOME OF THE APPLICATIONS OF GROUP REPRESENTATIONS

This is a very sketchy section that mainly contains pointers to the literature. I will leave it to
you to chase these references down, if you are interested. First, there are the two survey articles
by T. Y. Lam, “Representations of Finite Groups: A Hundred Years, Part I, and Part II”. You can find
the articles here:

http://www.ams.org/notices/199803/lam.pdf
http://www.ams.org/notices/199804/lam2.pdf

Secondly, there is the following post on Math overflow about ”Fun applications of represen-
tations of finite groups”, from which I have learned a lot myself.

https://mathoverflow.net/questions/11784/fun-applications-of-representations-of-finite-groups

I don’t know if I would have used the adjective “fun”, but there are certainly diverse and inter-
esting applications. You would note in particular applications to:
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(1) Chemistry and Physics, specifically quantum chemistry and quantum physics. For exam-
ple, one user mentions ”The symmetry group of a molecule controls its vibrational spec-
trum, as observed by IR spectrosocopy. When Kroto et al. discovered C60, they used this
method to demonstrate its icosahedral symmetry.” They suggest Group Theory and Chem-
istry by David M. Bishop as a reference. Another post suggests the book Group Theory
and Physics by S. Sternberg for the connections to Physics quoting Sternberg saying that
“molecular spectroscopy is an application of Schur’s lemma”. Another very convincing
book is Group theory and its applications to physical problems by M. Hamermesh.

(2) Combinatorics. A lot of this is done through representations of the symmetric group and
related groups. This is a topic to which many books, book chapters, and articles are de-
voted. The symmetric group plays a crucial role in combinatorics, of course. Mathscinet
returns 455 references for searching for “Representation” and ”symmetric group” in title,
among which 14 are books.

(3) Probability and Statistics. Here perhaps we can rest our case by referring to a book by one
of the leading statisticians and probablists of our time Group representations in probability
and statistics by P. Diaconis.

(4) Within algebra, the celebrated Feit-Thompson theorem uses the following theorem of
Frobenius, to which the only known proofs use representation theory.

A finite group G is called a Frobenius group with Frobenius kernel K and Frobenius
complement H if G has a subgroup H, such that for any g 6∈ H we have

H ∩ gHg−1 = {1}.
One lets in this case

K = {1} ∪ (G−
⋃

g∈G

gHg−1).

K is called the Frobenius kernel.
An example of a Frobenius group is the group of affine linear transformations of the

line {ax + b}with H being the linear transformations {ax}. We can also write this group
as {

(
a b
0 1

)
}.

Theorem 1 (Frobenius’ theorem) Let G be a Frobenius group with Frobenius complement H
and Frobenius kernel K. Then K is a normal subgroup of G, and G is the semidirect product
K o H.

The hard part is to show that K is a group!

Theorem 2 (Frobenius’ theorem, equivalent version) Let G be a group of permutations acting
transitively on a finite set X, with the property that any non-identity permutation in G fixes at
most one point in X. Then the set of permutations in G that fix no points in X, together with the
identity, is closed under composition.

Apparently, there is still no proof of these theorems that avoids using group representa-
tions in an essential way. Although, recently, Terrence Tao gave a proof that only uses
character theory for finite groups. I have learned much about this from reading Tao’s
blog

https://terrytao.wordpress.com/2013/04/12/the-theorems-of-frobenius-and-suzuki-
on-finite-groups/

Another very nice application within Algebra is the proof of Burnside’s theorem already
cited: if p, q are primes then a group of order paqb is solvable. The proof is almost within our
reach, but not quite. It uses several ideas from algebra that we hadn’t discussed at all
(such as the theory of modules and algebraic integers) and a little more than we had done
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regarding representations of groups. In particular, it uses an additional orthogonality
relation: the columns of the character table are orthogonal in the following sense. Let G be a
finite group and g, h ∈ G elements. Let χi be the irreducible characters of G (that is, the
characters of its irreducible representations) then:

(14) ∑
χi

χi(g)χi(h) =

{
|CentG(g)| , if g, h are conjugate
0 otherwise.

(The summation extending over the irreducible characters.) The main idea here is the
the rows are “essentially” a collection of orthonormal basis. Thus, if properly modified,
one can make them into truly orthogonal matrix. That is, into a matrix M that satisfies
MM∗ = Ih (h = h(G)). But then also M∗M = Ih and reading this information carefully
gives the orthogonality of the columns.

Finally, but still within the realm of pure Algebra, group representations have a lot to
do with the study of simple groups. The classification of simple groups puts them in
large families (Z/pZ, An, PSLn(F), . . . ,) but some escape this classification and fall into
a category of themselves: the sporadic simple groups. There are finitely many such
groups (27, in fact). The largest simple group is the Monster group, its order is

808, 017, 424, 794, 512, 875, 886, 459, 904, 961, 710, 757, 005, 754, 368, 000, 000, 000.

Its existence is a non-trivial fact. Before constructing the Monster, mathematicians
suspected its existence and in fact predicted the dimensions of some of its smallest ir-
reducible representations as 1, 196883 and 21296876, and were able, more generally, to
work out its character table. John McKay, of Concordia university, made the audacious
observation that those numbers are related to Fourier coefficients of the j-function, a
function appearing in the theory of elliptic curves, which is part of number theory. Fol-
lowing that, precise conjectures were made by Conway and Norton, going under the
name of “Moonshine”.

Some of the key aspects of these conjectures were proven by R. Borcherds, a work that
got him the Fields prize in 1998.

12. WHAT IS MISSING

We have barely scratched the surface when it comes to group representations. But, I would
say that at the very basic entry level to representations of finite groups there is one more topic
that we could have discussed if we had more time. This is the subject of induced representations
and Frobenius reciprocity. Besides it’s theoretical importance it is a powerful computational
tool. This subject is completely within reach and those wishing to have a more complete picture
are encouraged to pursue it using any textbook dealing with group representations.

Besides this topic, other glaring omissions are (i) tensor products of representation and their
decomposition; some study of (ii) the representations of symmetric group and their connec-
tions to Young tableaux, hook lengths and other mysterious terminology; (iii) Representations
of nilpotent groups, and in particular p-groups (Blichfeldt’s theorem). Once more, these topics
would (or should) be covered in most textbooks dealing with representations of finite groups;
(iv) Representations of finite matrix groups, for example GLn(Fp).

Blichfeldt’s theorem asserts that every irreducible representation of a finite nilpotent group G,
for example, every irreducible representation of a finite p-group, is induced from a 1-dimensional
representation of a subgroup H of G.
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Going perhaps further back, some topics that should be covered in more detail as part of an
introduction to finite groups are the topics: (i) Free groups and free products and the Nielsen-
Schreier theorem; (ii) Nilpotent groups and the notions of ascending and descending central
series. (iii) Simplicity of the groups PSLn(Fq). Once more, these topics are certainly accessible
and it is only for reasons of time that we have omitted them.
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