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Part 1. Basic Concepts and Key Examples

Groups are among the most basic of algebraic structures. Because of their simplicity, in terms
of their definition, their complexity is large. For example, vector spaces, which have a very
complex definition, are easy to classify; once the field and dimension are known, the vector
space is unique up to isomorphism. In contrast, it is difficult to list all groups of a given order,
or even obtain an asymptotic formula for that number.

In the study of vector spaces the objects are well understood and so one focuses on the study
of maps between them. One studies canonical forms (e.g., the Jordan canonical form), diag-
onalization, and other special properties of linear transformations (normal, unitary, nilpotent,
etc.). In contrast, at least in the theory of finite groups on which this course focuses, there is no
comparable theory of maps. A theory exists mostly for maps into matrix groups; such maps are
called linear representations and we will make initial steps in this theory towards the end of the
course.

While we shall define such maps (called homomorphisms) between groups in general, there
will be a large set of so-called simple groups for which there are essentially no such maps: the
image of a simple group under a homomorphism is for all practical purposes just the group
itself. To an extent, the simple groups serve as basic building blocks, or “atoms”, from which
all other finite groups are composed. The set of atoms is large, infinite in fact. The classification
of all simple groups was completed in the second half of the 20-th century and has required
thousands of pages of difficult math. There will be little we will be able to say about simple
groups in this course, besides their existence and some key examples. Thus, our focus - apart
from the three isomorphism theorems - will be on the structure of the objects, that is the groups,
themselves. We will occupy ourselves with understanding the structure of subgroups of a finite
group, with groups acting as symmetries of a given set and with special classes of groups –
cyclic, simple, abelian, solvable, etc.

1. FIRST DEFINITIONS

1.1. Group. A group G is a non-empty set with a function

m : G× G → G,

where we usually abbreviate m(g, h) to g ∗ h or simply gh, such that the following hold:

(1) (Associativity) f (gh) = ( f g)h for all f , g, h ∈ G. 1

(2) (Identity) There is an element e ∈ G such that for all g ∈ G we have eg = ge = g.
(3) (Inverse) For every g ∈ G there is an element h ∈ G such that gh = hg = e.

We call m(g, h) the product of g and h. It follows quite easily from associativity that given any n
elements g1, . . . , gn of G we can put parentheses as we like in g1 ∗ · · · ∗ gn without changing the
final outcome. For that reason we allow ourselves to write simply g1 · · · gn, though the actual
computation of such product is done by successively by multiplying two elements at the time,
e.g. (((g1g2)(g3g4))g5) is a way to compute g1g2g3g4g5.

1In full notation m( f , m(g, h)) = m(m( f , g), h).
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The identity element is unique: if e′ has the same property then e′ = ee′ = e. Often we will
denote the identity element by 1 (or by 0 is the group is commutative - see below). When
confusion is possible, we will write eG or 1G to indicate that the corresponding element is the
identity of the group G.

The element h provided in axiom (3) is unique as well: if h′ has the same property then
hg = e = gh′ and so h = he = h(gh′) = (hg)h′ = eh′ = h′. We may therefore denote this h
unambiguously by g−1 and call it the inverse of g. Note that if h is the inverse of g then g is the
inverse of h and so (g−1)−1 = g. Another useful identity is ( f g)−1 = g−1 f−1. It is verified just by
checking that g−1 f−1 indeed functions as ( f g)−1. And it does: (g−1 f−1)( f g) = g−1( f−1 f )g =
g−1eg = g−1g = e, and a similar calculation gives ( f g)(g−1 f−1) = e.

We define by induction gn = gn−1g for n > 0 and gn = (g−n)
−1 for n < 0. Also g0 = e, by

definition. One proves that gn+m = gngm for any n, m ∈ Z.

A group is called of finite order if it has finitely many elements. It is called abelian if it is
commutative: gh = hg for all g, h ∈ G. The term “abelian” comes from the name of Niels
Henrik Abel (1802 – 1829), a Norwegian mathematician who made fundamental contributions
to Algebra; the Abel prize is named after him.

1.2. Subgroup and order. A subgroup H of a group G is a subset of G such that: (i) e ∈ H, (ii)
if g, h ∈ H then gh ∈ H, and (iii) if g ∈ H then also g−1 ∈ H. One readily checks that in fact H
is a group. One checks that {e} and G are always subgroups, called the trivial subgroups. Any
other subgroup is called proper. We will use the notation

H < G

to indicate that H is a subgroup of G. This notation allows H = G.
One calls a subgroup H cyclic if there is an element h ∈ H such that H = {hn : n ∈ Z}. Note

that for h ∈ G, {hn : n ∈ Z} is always a cyclic subgroup of G. We denote it by 〈h〉. The order of
an element h ∈ G, ord(h), is defined to be the minimal positive integer n such that hn = e. If no
such n exists, we say h has infinite order.

Lemma 1.2.1. For every h ∈ G we have ord(h) = ]〈h〉.

In words the Lemma says that the order of an element is the order of the (cyclic) subgroup it
generates.

Proof. Assume first that ord(h) is finite. Since for every n we have hn+ord(h) = hnhord(h) = hn we
see that 〈h〉 = {e, h, h2, . . . , hord(h)−1}. Thus, also ]〈h〉 is finite and is at most ord(h).

Suppose conversely that ]〈h〉 is finite, say of order n. Then the elements of 〈h〉 given by
{e = h0, h, . . . , hn} cannot be distinct and thus for some 0 ≤ i < j ≤ n we have hi = hj. Therefore,
hj−i = e and we conclude that ord(h) is finite and ord(h) is at most ]〈h〉. This concludes the
proof. �

Corollary 1.2.2. If h has a finite order n then 〈h〉 = {e, h, . . . , hn−1} and consists of precisely n elements
(that is, there are no repetitions in this list.)

It is ease to check that if {Hα : α ∈ J} is a non-empty set of subgroups of G then ∩α∈J Hα is a
subgroup as well. Let {gα : α ∈ I} be a set consisting of elements of G (here I is some index set).
We denote by 〈{gα : α ∈ I}〉 the minimal subgroup of G containing {gα : α ∈ I}. It is clearly the
intersection of all subgroups of G containing the set {gα : α ∈ I}.

The next lemma provides a more concrete description of the subgroup 〈{gα : α ∈ I}〉 gener-
ated by the set {gα : α ∈ I}.
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Lemma 1.2.3. The subgroup 〈{gα : α ∈ I}〉 is the set of all finite expressions h1 · · · ht where each hi is
some gα or g−1

α .

Proof. Clearly 〈{gα : α ∈ I}〉 contains each gα hence all the expressions h1 · · · ht where each hi
is some gα or g−1

α . Thus, from the characterization of 〈{gα : α ∈ I}〉 as the minimal subgroup
containing the set {gα : α ∈ I}, it is enough to show that the set of all finite expressions h1 · · · ht,
where each hi is some gα or g−1

α , is a subgroup. Clearly e (equal to the empty product, or to
gαg−1

α if you prefer) is in it. Also, from the definition it is clear that this set is closed under
multiplication. Finally, since (h1 · · · ht)−1 = h−1

t · · · h−1
1 , it is also closed under taking inverses.

�

We call 〈{gα : α ∈ I}〉 the subgroup of G generated by {gα : α ∈ I}; if it is equal to G, we say
that {gα : α ∈ I} are generators for G.

2. MAIN EXAMPLES

It is critical to familiarize ourselves with the fundamental examples. This is the only way one
can build intuition for the subject and realize its vast applicability.

2.1. Z, Z/nZ and (Z/nZ)×. The set of integers Z = {. . . ,−2,−1, 0, 1, 2, 3, . . . }, with the ad-
dition operation, is an infinite abelian group whose identity element is 0. It is cyclic; both 1 and
−1 are generators and, in fact, the only generators. But note that we also have Z = 〈2, 3〉 and so
on. So Z has many generating sets. However, if we wish to generate it just by a single element,
the only choices are either 1, or −1.

The group Z/nZof integers modulo n, {0, 1, 2, . . . , n− 1}, with addition modulo n, is a finite
abelian group. The group Z/nZ is a cyclic group with generator 1. In fact (see the section on
cyclic groups), an element x generates Z/nZ if and only if (x, n) := gcd(x, n) = 1.

Consider (Z/nZ)× = {a ∈ Z/nZ : (a, n) = 1} with multiplication. Its order is denoted by
ϕ(n) (the function n 7→ ϕ(n) is call Euler’s phi function; See the exercises for further properties
of this function). To see it is a group, note that multiplication is associative and if (a, n) =
(b, n) = 1 then also (ab, n) = 1 and so indeed we get an operation on Z/nZ×. The congruence
class 1 is the identity and the existence of inverse follows from finiteness: given a ∈ Z/nZ×

consider the function x 7→ ax. It is injective: if ax = ay then a(x− y) = 0 (mod n), that is (using
the same letters to denote integers in these congruence classes), n|a(x− y). Since (a, n) = 1, we
conclude that n|(x − y), that is, x = y in Z/nZ. It follows that x 7→ ax is also surjective and
thus there is an element x such that ax = 1.

The Euclidean algorithm gives another proof that inverses exists. Since (a, n) = 1, there are
x, y such that ax + ny = 1, and the algorithm allows us to find x and y. Note that ax ≡ 1
(mod n) and so x is the multiplicative inverse to a modulo n.

2.2. Fields. Let F be a field. This structure was introduced in the course MATH 235. Then
(F,+), the set F with the addition operation, is a commutative group. As well, (F×,×), the
non-zero elements with the product operation, is a commutative group. Thus, for example,
Q, R, C, Z/pZ (p prime) are groups with respect to addition. The sets Q− {0}, R− {0}, C−
{0}, Z/pZ− {0} (p prime) are groups with respect to multiplication. The unit circle {z ∈ C :
|z| = 1} is a subgroup of C×.
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2.3. The dihedral group Dn. Let n ≥ 3. Consider the linear transformations of the plane that
take a regular polygon with n sides, symmetric about zero, onto itself. One easily sees that every
such symmetry is determine by its action of the vertices 1, 2 (thought of as vectors, they form
a basis) and that it takes these vertices to the vertices i, i + 1 or i + 1, i, where 1 ≤ i ≤ n (and
the labels of the vertices are read modulo n). One concludes that every such symmetry is of the
form yaxb for suitable and unique a ∈ {0, 1}, b ∈ {1, . . . , n}, where y is the reflection fixing 1 (so
takes n, 2 to 2, n) and x is the rotation taking 1, 2 to 2, 3. One finds that y2 = e = xn and that
yxy = x−1. All other relations are consequences of these.

n 1

2

x

3

y

FIGURE 1. Symmetries of a regular Polygon with n vertices.

The Dihedral group Dn, the group of all these symmetries, is thus a group of order 2n gener-
ated by a reflection y and a rotation x satisfying y2 = xn = xyxy = e. Expressing the group Dn
by means of x and y satisfying these relations makes sense also for n = 1, 2, but one loses the
geometric interpretation. Therefore, we will typically consider only n ≥ 3.

The elements {1, x, x2, . . . , xn−1} are clock-wise rotations by the angles {0, 2π
n , 4π

n , . . . , 2(n−1)π
n },

respectively. The elements {y, xy, x2y, . . . , xn−1y} are all reflections.

2.4. The symmetric group Sn. Consider the set Sn consisting of all injective (hence bijective)
functions, called permutations,

σ : {1, 2, . . . , n} → {1, 2, . . . , n}.
We define

m(σ, τ) = σ ◦ τ.
This makes Sn into a group, whose identity e is the identity function e(i) = i, ∀i.

We may describe the elements of Sn in the form of a table:(
1 2 . . . n
i1 i2 . . . in

)
.

This defines a permutation σ by the rule σ(a) = ia.
Another device is to use the notation (n1 n2 . . . ns), where the nj are distinct elements of

{1, 2, . . . , n}. This defines a permutation σ according to the following convention: σ(na) = na+1
for 1 ≤ a < s, σ(ns) = n1, and for any other element x of {1, 2, . . . , n} we let σ(x) = x. Such a
permutation is called a cycle. A cycle of length 2 is called a transposition. One can easily prove
the following facts:

(1) Disjoint cycles commute.
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(2) Every permutation is a product of disjoint cycles (uniquely up to permuting the cycles
and omitting cycles of length one).

(3) The order of (n1 n2 . . . ns) is s.
(4) If σ1, . . . , σt are disjoint cycles of orders r1, . . . , rt then the order of σ1 ◦ · · · ◦ σt is the least

common multiple of r1, . . . , rt.
(5) The symmetric group has order n!.

More generally, given any non-empty set T, we let ΣT denote the group whose elements are
bijections σ : T → T; the group operation is composition m(σ, τ) = σ ◦ τ, the identity element is
the identity function 1 : T → T (the function given by 1(t) = t, ∀t ∈ T) and, finally, the inverse
of σ is just the inverse function σ−1. If T = {1, 2, . . . , n} we have ΣT = Sn. If T has n elements,
then there is a natural identification of ΣT with Sn.

Example 2.4.1. The order of the permutation (1 2 3 4) is 4. Indeed, it is not trivial and (1 2 3 4)2 =
(1 3)(2 4), (1 2 3 4)3 = (4 3 2 1), (1 2 3 4)4 = 1.

The permutation
(

1 2 3 4 5 6
6 1 3 5 4 2

)
is equal to the product of cycles (1 6 2)(4 5). It is of order 6.

The problem with the notation
( 1 2 ... n

i1 i2 ... in

)
is that it’s long. On the other hand, any permutation

in Sn can be written this way. A compromise is achieved by the notation [i1 i2 · · · in] for( 1 2 ... n
i1 i2 ... in

)
. This notation appears in many textbooks and articles. Note, however, that we will

never use it in this course.
The reason we will never use it after the end of this paragraph is that it’s potentially very

confusing. Note, for example, that
(

1 2 3 4 5 6
6 1 3 5 4 2

)
is written [6 1 3 5 4 2] in this notation. However,

this is very different from the cycle permutation (6 1 3 5 4 2) – for example, the first takes 1 to 6
and 2 to 1, but the second takes 1 to 3 and 2 to 6. Thus, confusing the type of parentheses could
be disastrous.

2.4.1. Sign; permutations as linear transformations.

Lemma 2.4.2. Let n ≥ 2. Let Sn be the group of permutations of {1, 2, . . . , n}. There exists a surjective
function

sgn : Sn → {±1}
(called the sign). It has the property that for every i 6= j,

sgn( (ij) ) = −1,

and for any two permutations σ, τ,

sgn(στ) = sgn(σ) · sgn(τ).

Terminology: We will refer to the property sgn(στ) = sgn(σ) · sgn(τ) by saying sgn is a homo-
morphism. The terminology will be justified later.

Proof. Consider the polynomial in n-variables2

p(x1, . . . , xn) = ∏
i<j

(xi − xj).

Given a permutation σ, we may define a new polynomial

∏
i<j

(xσ(i) − xσ(j)).

2For n = 2 we get x1 − x2. For n = 3 we get (x1 − x2)(x1 − x3)(x2 − x3).
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Note that σ(i) 6= σ(j) and for any pair k < ` we obtain in the new product either (xk − x`) or
(x` − xk). Thus, for a suitable choice of a sign sgn(σ) ∈ {±1}, we have3

∏
i<j

(xσ(i) − xσ(j)) = sgn(σ)∏
i<j

(xi − xj).

We obtain a function
sgn : Sn → {±1}.

This function satisfies, for k < `, sgn( (k`) ) = −1: Let σ = (k`) and consider the product

∏
i<j

(xσ(i) − xσ(j)) = (x` − xk) ∏
i<j

i 6=k,j 6=`

(xσ(i) − xσ(j)) ∏
k<j
j 6=`

(x` − xj) ∏
i<`
i 6=k

(xi − xk).

(This corresponds to the cases (i) i = k, j = `; (ii) i 6= k, j 6= `; (iii) i = k, j 6= `(⇒ j > k);
(iv) i 6= k, j = `(⇒ i < `).) Counting the number of signs changes (note that case (ii) doesn’t
contribute at all!), we find that

∏
i<j

(xσ(i) − xσ(j)) = (−1)(−1)]{j:k<j<`}(−1)]{i:k<i<`}∏
i<j

(xi − xj) = −∏
i<j

(xi − xj).

It remains to show that sgn satisfies sgn(στ) = sgn(σ) · sgn(τ). We first make the seemingly
innocuous observation that for any variables y1, . . . , yn and for any permutation σ we have

∏
i<j

(yσ(i) − yσ(j)) = sgn(σ)∏
i<j

(yi − yj).

Let τ be a permutation. We apply this observation for the variables yi := xτ(i). We get

sgn(τσ) · p(x1, . . . , xn) = p(xτσ(1), . . . , xτσ(n))

= p(yσ(1), . . . , yσ(n))

= sgn(σ)· (y1, . . . , yn)

= sgn(σ) · p(xτ(1), . . . , xτ(n))

= sgn(σ) · sgn(τ) · p(x1, . . . , xn).

This gives
sgn(τσ) = sgn(τ) · sgn(σ).

�

Calculating sgn in practice. Recall that every permutation σ can be written as a product of
disjoint cycles

σ = (a1 . . . a`)(b1 . . . bm) . . . ( f1 . . . fn).

Lemma 2.4.3. sgn(a1 . . . a`) = (−1)`−1.

Proof. We write
(a1 . . . a`) = (a1a`) . . . (a1a3)(a1a2)︸ ︷︷ ︸

`−1 transpositions

.

Since a transposition has sign −1 and sgn is a homomorphism, the claim follows. �

Corollary 2.4.4. sgn(σ) = (−1)] even length cycles.

3For example, if n = 3 and σ is the cycle (123) we have

(xσ(1) − xσ(2))(xσ(1) − xσ(3))(xσ(2) − xσ(3)) = (x2 − x3)(x2 − x1)(x3 − x1) = (x1 − x2)(x1 − x3)(x2 − x3).

Hence, sgn( (1 2 3) ) = 1.
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A Numerical example. Let n = 11 and

σ =

(
1 2 3 4 5 6 7 8 9 10
2 5 4 3 1 7 8 10 6 9

)
.

Then
σ = (1 2 5)(3 4)(6 7 8 10 9).

Now,
sgn( (1 2 5) ) = 1, sgn( (3 4) ) = −1, sgn( (6 7 8 10 9) ) = 1.

We conclude that sgn(σ) = −1.

Realizing Sn as linear transformations. Let F be any field. Let σ ∈ Sn. There is a unique linear
transformation

Tσ : Fn → Fn,
such that

Tσ(ei) = eσ(i), i = 1, . . . n,
where, as usual, e1, . . . , en are the standard basis of Fn. Note that

Tσ


x1
x2
...

xn

 =


xσ−1(1)
xσ−1(2)

...
xσ−1(n)

 .

(For example, because Tσx1e1 = x1eσ(1), the σ(1) coordinate is x1, namely, in the σ(1) place we
have the entry xσ−1(σ(1)).) Since for every i we have TσTτ(ei) = Tσeτ(i) = eστ(i) = Tστei, we have
the relation

TσTτ = Tστ.
The matrix representing Tσ is the matrix (aij) with aij = 0 unless i = σ(j). For example, for
n = 4 the matrices representing the permutations (12)(34) and (1 2 3 4) are, respectively

0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

 ,


0 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0

 .

Otherwise said,4

Tσ =
(
eσ(1) | eσ(2) | . . . | eσ(n)

)
=



eσ−1(1)
——–
eσ−1(2)
——–

...
——–
eσ−1(n)


.

From the matrix representation of Tσ we get

det(Tσ) = det
(
eσ(1) | eσ(2) | · · · | eσ(n)

)
= sgn(σ)det

(
e1 | e2 | · · · | en

)
=

sgn(σ)det(In) = sgn(σ).

4This gives the interesting relation Tσ−1 = Tt
σ. Because σ 7→ Tσ is a group homomorphism we may conclude that

T−1
σ = Tt

σ. Of course, for a general invertible matrix this doesn’t hold – there is no reason for the inverse to be given
by the transpose.
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2.4.2. Transpositions and generators for Sn. For 1 ≤ i < j ≤ n we have the transposition σ = (ij).
Let T be the set of all transpositions in Sn. T has n(n− 1)/2 elements and it generates Sn. In fact,
the transpositions (12), (23), . . . , (n− 1 n) alone generate Sn. We leave these facts as an exercise.

2.4.3. The alternating group An. Consider the set An of all permutations in Sn whose sign is 1.
They are called the even permutations (those with sign −1 are called odd). We see that e ∈ An
and that if σ, τ ∈ An also στ and σ−1 are in An. This follows from sgn(στ) = sgn(σ)sgn(τ) and
sgn(σ−1) = sgn(σ)−1.

Thus, An is a group. It is called the alternating group. For n > 1, it has n!/2 elements (use
multiplication by (12) to create a bijection between the odd and even permutations). Here are
some examples

n An

2 {1}
3 {1, (123), (132)}
4 {1, (123), (132), (124), (142), (134), (143), (234), (243),

(12)(34), (13)(24), (14)(23)}

2.4.4. A useful formula for conjugation. Let σ, τ ∈ Sn. There is a nice formula for τστ−1 (this is
called conjugating σ by τ). If σ is written as a product of cycles then the permutation τστ−1 is
obtained by applying τ to the numbers appearing in the cycles of σ. That is, if σ takes i to j then
τστ−1 takes τ(i) to τ(j). Indeed,

τστ−1(τ(i)) = τ(σ(i)) = τ(j).

Here is an example: say σ = (1 4)(2 5)(3 7 6) and τ = (1 2 3 4)(6 7) then τστ−1 =
(τ(1) τ(4)) (τ(2) τ(5)) (τ(3) τ(7) τ(6)) = (2 1)(3 5)(4 6 7).

2.4.5. The dihedral group as a subgroup of the symmetric group. . Let n ≥ 3. By encoding the action
of the elements of Dn on the n vertices of the n-gon, we may view Dn as a subgroup of Sn;
indeed, every symmetry is completely determined by its action on the vertices. Thus,

x 7→ (1 2 · · · n),

and, if n is even
y 7→ (2 n)(3 n− 1) · · · (n

2
n
2
+ 2),

while if n is odd

y 7→ (2 n)(3 n− 1) · · · (n + 1
2

n + 3
2

).

2.5. Matrix groups and the quaternions. Let R be a commutative ring with 1. We let GLn(R)
denote the n× n matrices with entries with R, whose determinant is a unit in R.

Proposition 2.5.1. GLn(R) is a group under matrix multiplication.

For the proof we will use properties of the determinant, in particular that it is multiplicative.
When you have proved it in MATH 251 you most likely assumed that the entries of the matri-
ces belong to some field R. If you go back to your notes you will find that the proof applies
whenever R is a commutative ring. Similarly, for the adjoint matrix.
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Proof. Multiplication of matrices is associative and the identity matrix is in GLn(R). If A, B ∈
GLn(R) then det(AB) = det(A)det(B) gives that det(AB) is a unit of R and so AB ∈ GLn(R).
The adjoint matrix satisfies Adj(A)A = det(A)In and so every matrix A in GLn(R) has an in-
verse equal to det(A)−1Adj(A). Note that A−1A = Id implies that det(A−1) = det(A)−1, hence
det(A−1) is an invertible element of R. Thus, A−1 is in GLn(R). �

Proposition 2.5.2. Let F is a finite field of q elements. The group GLn(F) is a finite group of cardinality
(qn − 1)(qn − q) · · · (qn − qn−1).

Proof. To give a matrix in GLn(F) is to give a basis of Fn (consisting of the columns of the matrix).
The first vector v1 in a basis can be chosen to be any non-zero vector in Fn, and there are qn − 1
such vectors. The second vector v2 can be chosen to be any vector not in Span(v1); there are
qn − q such vectors. The third vector v3 can be chosen to be any vector not in Span(v1, v2); there
are qn − q2 such vectors. And so on. �

Exercise 2.5.3. Prove that the set of upper triangular matrices in GLn(F), where F is any field,
forms a subgroup of GLn(F). It is also called a Borel subgroup. Prove that the set of upper
triangular matrices in GLn(F) with 1 on the diagonal, where F is any field, forms a subgroup of
GLn(F). It is also called a unipotent subgroup. Calculate the cardinality of these groups when
F is a finite field of q elements.

Let us change gears and consider the case R = C, the complex numbers, and the set of eight
matrices {

±
(

1 0
0 1

)
,±
(

i 0
0 −i

)
,±
(

0 1
−1 0

)
,±
(

0 i
i 0

)}
.

One verifies that this is a subgroup of GL2(C), called the Quaternion group. One can use the
notation

±1,±i,±j,±k

for the matrices, respectively. Then we have

i2 = j2 = k2 = −1, ij = −ji = k, jk = i, ki = j.

Note that Q is a non-abelian group of order 8.

2.6. Direct product. Let G, H be two groups. Define on the cartesian product G × H multipli-
cation by

m : (G× H)× (G× H)→ G× H, m((a, x), (b, y)) = (ab, xy).

This makes G× H into a group, called the direct product (also direct sum) of G and H.
One checks that G × H is abelian if and only if both G and H are abelian. The following

relation among orders hold: ord((x, y)) = lcm(ord(x), ord(y)). It follows that if G, H are cyclic
groups whose orders are co-prime then G× H is also a cyclic group.

The construction generalizes easily to a product of finitely many groups G1 × · · · × Gn; the
elements are vectors with coordinate-wise group operation. As a matter of notation, we write
G2 for G× G and, more generally, Gn for G× · · · × G (n-times).

Example 2.6.1. If H1 < H, G1 < G are subgroups then H1×G1 is a subgroup of H×G. However,
not every subgroup of H × G is of this form. For example, the subgroups of Z/2Z×Z/2Z are
{0} × {0}, {0} ×Z/2Z, Z/2Z× {0}, Z/2Z×Z/2Z and the subgroup {(0, 0), (1, 1)} which is
not a product of subgroups.
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2.7. Groups of small order. One can show that in a suitable sense (namely, “up to isomor-
phism”; see § 7.1) the following is a complete list of groups for the given orders. In the middle
column we give the abelian groups and in the right column the non-abelian groups. These
groups are all familiar to us, except T, which will be discussed later.

order abelian groups non-abelian groups

1 {1}
2 Z/2Z

3 Z/3Z

4 (Z/2Z)2, Z/4Z

5 Z/5Z

6 Z/6Z S3

7 Z/7Z

8 (Z/2Z)3, Z/2Z×Z/4Z, Z/8Z D4, Q

9 (Z/3Z)2, Z/9Z

10 Z/10Z D5

11 Z/11Z

12 Z/2Z×Z/6Z, Z/12Z D6, A4, T

In the following table we list for every n the number G(n) of groups of order n (this is taken
from J. Rotman/An introduction to the theory of groups):

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

G(n) 1 1 1 2 1 2 1 5 2 2 1 5 1 2 1 14 1 5 1

n 20 21 22 23 24 25 26 27 28 29 30 31 32

G(n) 5 2 2 1 15 2 2 5 4 1 4 1 51

You may wish to consider the number of groups of order n when n is prime and form a conjec-
ture. We will prove it shortly, in fact. Can you also make a conjecture when n is a product of two
primes? It may help you to know a few more values: G(33) = G(35) = 1 but G(55) = 2.

Asymptotically, the number of groups of order pn, where p is prime, is

p
2
27 n3+O(n8/3).

This is an asymptotic formula and it takes a while until it reflects the truth. For n = 10 it
predicts that there should be about 274 ∼ 1022 groups of order 1024. The true number seems
to be 49, 487, 365, 422, which is still very large! Here is the number of subgroups of order 2n for
small values of n (from Wikipedia and Groupprops, June 2020)
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exponent n 0 1 2 3 4 5 6 7 8 9 10 11

order 2n 1 2 4 8 16 32 64 128 256 512 1024 2018

no. of groups 1 1 2 5 14 51 267 2328 56092 10494213 49487365422 unknown (!)

3. COSETS AND LAGRANGE’S THEOREM

3.1. Cosets. Let G be a group and H a subgroup of G. A left coset of H in G is a subset S of G
of the form

gH := {gh : h ∈ H},
for some g ∈ G. A right coset is a subset of G of the form

Hg := {hg : h ∈ H},
for some g ∈ G. For brevity, we shall discuss only left cosets but the discussion with minor
changes applies to right cosets as well.

Example 3.1.1. Consider the group S3 and the subgroup H = {1, (12)}. The following table lists
the left cosets of H. For an element g, we list the coset gH in the middle column, and the coset
Hg in the last column.

g gH Hg

1 {1, (12)} {1, (12)}
(12) {(12), 1} {(12), 1}
(13) {(13), (123)} {(13), (132)}
(23) {(23), (132))} {(23), (123))}
(123) {(123), (13)} {(123), (23)}
(132) {(132), (23)} {(132), (13)}

TABLE 1. Cosets of 〈(12)〉

The first observation is that the element g such that S = gH is not unique. In fact, as the
following lemma implies, gH = kH if and only if g−1k ∈ H. The second observation is that
two left cosets are either equal or disjoint (but a left coset can intersect a right coset in a more
complicated way); this is a consequence of the following lemma.

Lemma 3.1.2. Define a relation g ∼ k if ∃h ∈ H such that gh = k. This is an equivalence relation such
that the equivalence class of g is precisely gH.

Proof. Since g = ge and e ∈ H the relation is reflexive. If gh = k for some h ∈ H then kh−1 = g
and h−1 ∈ H. Thus, the relation is symmetric. Finally, if g ∼ k ∼ ` then gh = k, kh′ = ` for
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some h, h′ ∈ H and so g(hh′) = `. Since hh′ ∈ H we conclude that g ∼ ` and the relation is
transitive. �

Thus, pictorially the cosets look like that:

H=1*H a*H b*H k*HIt
FIGURE 2. Cosets of a subgroup H.

Remark 3.1.3. One should note that in general gH 6= Hg; The table above provides an example.
Moreover, (13)H is not a right coset of H at all. A difficult theorem of P. Hall asserts that given
a finite group G and a subgroup H one can find a set {g1, . . . , gd} of elements of G such that
g1H, . . . , gdH are precisely the lest cosets of H, and Hg1, . . . , Hgd are precisely the right cosets
of H.

3.2. Lagrange’s theorem.

Theorem 3.2.1. Let H < G. The group G is a disjoint union of left cosets of H. If G is of finite order
then the number of left cosets of H in G is |G|/|H|. We call the number of left cosets the index of H in
G and denote it by [G : H].

Proof. We have seen that there is an equivalence relation whose equivalence classes are the cosets
of H. Recall that different equivalence classes are always disjoint. Thus,

G = ·∪s
i=1gi H,

a disjoint union of s cosets, where the gi are chosen appropriately. We next show that for every
x, y ∈ G the cosets xH, yH have the same cardinality by producing a bijection between them.

Define a function
f : xH → yH, f (g) = yx−1g.

Note that f is well defined: since g = xh for some h ∈ H, f (g) = yh, which is an element of
yH. Similarly, the function f ′ : yH → xH, f ′(g) = xy−1g is well-defined. Clearly, f ◦ f ′ and
f ′ ◦ f are the identity functions of yH and xH, respectively. This shows that f is bijective and so
|xH| = |yH| for any x, y ∈ G. Thus, |G| = s · |H| and s = [G : H] = |G|/|H|. �

Corollary 3.2.2. If G is a finite group then |H| divides |G|.

Remark 3.2.3. The converse does not hold. The group A4, which is of order 12, does not have a
subgroup of order 6.

Corollary 3.2.4. If G is a finite group then ord(g) | |G| for all g ∈ G.

Proof. We saw that ord(g) = |〈g〉|, so we may use Corollary 3.2.2. �

Remark 3.2.5. The converse does not hold. That is, if n| |G| it does not follow that G has an
element of order n. In fact, if G is not a cyclic group then there is no element g ∈ G such that
ord(g) = |G|.

Corollary 3.2.6. If the order of G is a prime number then G is cyclic.
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Proof. From Corollary 3.2.4 we deduce that every element different from the identity has order
equal to |G|. Thus, every such element generates the group. �

Example 3.2.7. Consider the group S4 and its subgroup D4. There is no subgroup J of S4 such
that S4 % J % D4. Indeed, from Lagrange’s theorem we get

[S4 : J][J : D4] = [S4 : D4] = 3.

Thus, either [S4 : J] = 1, in which case J = S4, or [J : D4] = 1, in which case J = D4.

4. CYCLIC GROUPS

Let G be a finite cyclic group of order n, G = 〈g〉.

4.1. Order of elements and subgroups.

Lemma 4.1.1. We have ord(ga) = n/gcd(a, n).

Proof. Note that gt = gt−n and so gt = e if and only if n|t (cf. Corollary 1.2.2). Thus, the order
of ga is the minimal r such that ar is divisible by n. Clearly a · n/gcd(a, n) is divisible by n so
the order of ga is less or equal to n/gcd(a, n). On the other hand if ar is divisible by n then,
because n = gcd(a, n) · n/gcd(a, n) and n/gcd(a, n) is relatively prime to a, r is divisible by
n/gcd(a, n). �

Corollary 4.1.2. The element ga generates G, i.e. 〈ga〉 = G, if and only if (a, n) = 1. Thus, the number
of generators of G is ϕ(n) := ]{1 ≤ a ≤ n : (a, n) = 1}, where ϕ is Euler’s function.

Proposition 4.1.3. For every h|n the group G has a unique subgroup of order h. This subgroup is cyclic.

Proof. We first show that every subgroup of G is cyclic. Let H be a non trivial subgroup. Then
there is a minimal 0 < a < n such that ga ∈ H and hence H ⊇ 〈ga〉. Let gr ∈ H. We may assume
that r > 0. Write r = ka + k′ for 0 ≤ k′ < a. Note that gr−ka ∈ H. The choice of a then implies
that k′ = 0. Thus, H = 〈ga〉.

Since gcd(a, n) = αa + βn for some integers α, β, we have ggcd(a,n) = (gn)β(ga)α ∈ H. Thus,
ga−gcd(a,n) ∈ H. Therefore, by the choice of a, a = gcd(a, n); that is, a|n. Thus, every subgroup is
cyclic and of the form 〈ga〉 for an appropriate a|n. Its order is n/a. We conclude that for every
b|n there is a unique subgroup of order b and it is cyclic, generated by gn/b. �

4.2. F× is cyclic.

Lemma 4.2.1. Let n be a positive integer. We have the following identity for Euler’s ϕ function:

n = ∑
d|n

ϕ(d).

(The summation is over positive divisors of n, including 1 and n.)

Proof. Let G be a cyclic group of order n. Then we have

n = |G|
= ∑

1≤d≤n
]{g ∈ G : ord(g) = d}

= ∑
d|n

]{g ∈ G : ord(g) = d},
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where we have used that the order of an element divides the order of the group.
Now, if h ∈ G has order d it generates a subgroup of order d, which is in fact the unique

subgroup of G of that order. Therefore, it follows that all the elements of G of order d generate
the same subgroup. That subgroup is a cyclic group of order d and thus has ϕ(d) generators
(that are exactly the elements of G of order d). The formula follows. �

Proposition 4.2.2. Let G be a finite group of order n such that for h|n the group G has at most one
subgroup of order h then G is cyclic.

Proof. Consider an element g ∈ G of order h. The subgroup 〈g〉 it generates is of order h and
has ϕ(h) generators. We conclude that every element of order h must belong to this subgroup
(because there is a unique subgroup of order h in G) and that there are exactly ϕ(h) elements of
order h in G.

On the one hand n = ∑d|n{num. elts. of order d} = ∑d|n ϕ(d)εd, where εd is 1 if there is an
element of order d in G and is zero otherwise. But, by Lemma 4.2.1, n = ∑d|n ϕ(d). We conclude
that εd = 1 for all d|n and, in particular, εn = 1 and so there is an element of order n in G. This
element is a generator of G. �

Corollary 4.2.3. Let F be a finite field then F× is a cyclic group.

Proof. Let q be the number of elements of F. To show that for every h dividing q − 1 there is
at most one subgroup of order h, we note that every element in that subgroup - call it H - will
have order dividing h and hence will solve the polynomial xh − 1. As a polynomial of degree h
in a field cannot have more than h roots, the h elements in that subgroup must be exactly the h
solutions of the polynomial xh − 1. In particular, this subgroup is unique. �

The proof shows an interesting fact. If F is a field of q elements, then F is the union of {0} and
the q− 1 roots of xq−1− 1, equivalently F is the solutions to the polynomial xq− x. It’s a general
fact that F has some finite characteristic p, which is a prime, and that therefore q is a power
of p. Conversely, suppose that L is a field of characteristic p and the polynomial xq − x splits
completely in L. Then F := {a ∈ L : aq − a = 0} is a field with q elements. Indeed, one only
need to verify that this set is closed under addition, multiplication and inverse (multiplicative
and additive). The only tricky one to check is addition. However, since for p prime, p|

( p
i

)
,

1 < i < p, one concludes from the binomial theorem that (x + y)p = xp + yp in L and, by
iteration, that (x + y)q = xq + yq in L. This gives immediately that F is closed under addition.

Remark 4.2.4. Although the groups (Z/pZ)× are cyclic for every prime p, that doesn’t mean
we know an explicit generator. Artin’s primitive root conjecture states that 2 is a generator
for infinitely many primes p (the conjecture is the same for any prime number instead of 2).
Work starting with R. Murty and R. Gupta, and continued with K. Murty and Heath-Brown,
had shown that for infinitely many primes p either 2, 3 or 5 are a primitive root.

5. CONSTRUCTING SUBGROUPS

5.1. Commutator subgroup. Let G be a group. Define its commutator subgroup G′, or [G, G],
to be the subgroup generated by {xyx−1y−1; x, y ∈ G}. An element of the form xyx−1y−1 is
called a commutator. We use the notation [x, y] = xyx−1y−1. It is not true, in general, that every
element in G′ is a commutator, though every element is a product of commutators, by definition.
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Example 5.1.1. We calculate the commutator subgroup of S3. First, note that every commu-
tator is an even permutation, hence contained in A3. Thus, S′3 < A3. Next, [(12), (13)] =
(12)(13)(12)(13) = (123) is in S′3. It follows that S′3 = A3.

5.2. Centralizer subgroup. Let H be a subgroup of G. We define its centralizer CentG(H) to be
the set {g ∈ G : gh = hg, ∀h ∈ H}. One checks that it is a subgroup of G called the centralizer
of H in G.

Given an element h ∈ G we may define CentG(h) = {g ∈ G : gh = hg}. It is a subgroup of G
called the centralizer of h in G. One checks that CentG(h) = CentG(〈h〉) and that CentG(H) =
∩h∈HCentG(h).

Taking H = G, the subgroup CentG(G) is the set of elements of G such that each of them
commutes with every other element of G. It has a special name; it is called the center of G and
denoted Z(G). In this course we will not be using the centralizer of a proper subgroup much,
but the centralizer of G, namely, its centre, will be often used.

Example 5.2.1. If G is abelian then G = Z(G) = CentG(H) for any subgroup H < G. If H1 ⊆
H2 ⊂ G then CentG(H2) ⊆ CentG(H1). If G = G1×G2 then CentG1×G2(G1× {1}) = Z(G1)×G2
and, more generaly, CentG1×G2(H1 × H2) = CentG1(H1)×CentG2(H2).

Example 5.2.2. We calculate the centralizer of (12) in S5. First recall the useful observation from
§2.4.4: τστ−1 is the permutation obtained from σ by changing its entries according to τ. For
example: (1234)[(12)(35)](1234)−1 = (1234)[(12)(35)](1432) = (1234)(1453) = (23)(45) and
(23)(45) is indeed obtained from (12)(35) by changing the labels 1, 2, 3, 4, 5 according to the rule
(1234).

Using this, we see that the centralizer of (12) in S5 is just S2× S3 – here S2 are the permutations
of 1, 2 and S3 are the permutations of 3, 4, 5. Viewed this way they are subgroups of S5.

5.3. Normalizer subgroup. Let H be a subgroup of G. Define the normalizer of H in G, NG(H),
to be the set {g ∈ G : gHg−1 = H}. It is a subgroup of G. Note that H ⊂ NG(H), CentG(H) ⊂
NG(H) and H ∩CentG(H) = Z(H).

Example 5.3.1. Consider S3 < S4. If τ ∈ NS4(S3) then τ(123)τ−1 ∈ S3 and so τ takes 1, 2 and 3
to 1, 2 and 3 (perhaps scrambling their order). Thus, τ ∈ S3. That is, NS4(S3) = S3.

6. NORMAL SUBGROUPS AND QUOTIENT GROUPS

Let N < G. We say that N is a normal subgroup if for all g ∈ G we have gN = Ng; equiva-
lently, gNg−1 = N for all g ∈ G; equivalently, gN ⊂ Ng for all g ∈ G; equivalently, gNg−1 ⊂ N
for all g ∈ G. For example, if gN ⊂ Ng for all g, then also g−1N ⊂ Ng−1, which gives Ng ⊂ gN.
So it follows that gN = Ng.

We will use the notation NCG to signify that N is a normal subgroup of G. Note that an
equivalent way to say that NCG is to say that N < G and NG(N) = G.

Example 6.0.1. The group A3 is normal in S3. If σ ∈ A3 and τ ∈ S3 then τστ−1 is an even
permutation because its sign is sgn(τ)sgn(σ)sgn(τ−1) = sgn(τ)2sgn(σ) = 1. Thus, τA3τ−1 ⊂
A3. The same argument gives that AnCSn.

The subgroup H = {1, (12)} is not a normal subgroup of S3. One can use Table 3.1.1 above to
see that (13)H 6= H(13). Or, use that (13)(12)(13)−1 = (32).
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Construction of a quotient group: Let NCG. Let G/N denote the set of left cosets of N in G.
We show that G/N has a natural structure of a group; it is called the quotient group of G by N.

Given two cosets aN and bN we define

aN ∗ bN = abN.

We need to show this is well defined, because the formula seems to depend on the choice of
representatives a and b to represent the cosets aN, bN. Suppose then that aN = a′N and bN =
b′N then we must prove that abN = a′b′N. Now, we know that for suitable α, β ∈ N we have
aα = a′, bβ = b′. Thus, a′b′N = aαbβN = abb−1αbβN = ab(b−1αb)N. Note that since NCG and
α ∈ N also b−1αb ∈ N and so ab(b−1αb)N = abN. This innocuous step – noting that b−1αb ∈ N
because N is normal – is crucial. Indeed, if N is not a normal subgroup the collection of cosets
G/N has no natural group structure.

One checks easily that N = eN is the identity of G/N and that (gN)−1 = g−1N. (Note that
(gN)−1 - the inverse of the element gN in the group G/N is also the set {(gn)−1 : n ∈ N} =
Ng−1 = g−1N.)

Definition 6.0.2. A non-trivial group G is called simple if its only normal subgroups are the
trivial ones: {e} and G.

Remark 6.0.3. We shall later prove that An is a simple group for n ≥ 5. By inspection, one
finds that also A2 and A3 are simple. On the other hand A4 is not simple. The “Klein 4 group”
V := {1, (12)(34), (13)(24), (14)(23)} is a normal subgroup of A4. The notation V is customary,
coming from the word “vier” (four, in German), but we will usually denote it K, for Klein.

Abelianization. Recall the definition of the commutator subgroup G′ of G from §5.1. In partic-
ular, the notation [x, y] = xyx−1y−1. One easily checks that g[x, y]g−1 = [gxg−1, gyg−1] and that
[x, y]−1 = [y, x]. Hence, also g[x, y]−1g−1 = [gxg−1, gyg−1]−1.

Proposition 6.0.4. The subgroup G′ is normal in G. The group Gab := G/G′ is abelian (it is called the
abelianization of G). Furthermore, if N is a normal subgroup of G and G/N is abelian then N ⊇ G′.

Proof. We know that G′ = {[x1, y1]
ε1 · · · [xr, yr]εr : xi, yi ∈ G, εi = ±1}. It follows that

gG′g−1 = {[gx1g−1, gy1g−1]ε1 · · · [gxrg−1, gyrg−1]εr : xi, yi ∈ G, εi = ±1} ⊆ G′,

hence G′CG.
For every x, y ∈ G we have xG′ · yG′ = xyG′ = xy(y−1x−1yx)G′ = yxG′ = yG′ · xG′. Thus,

G/G′ is abelian. If G/N is abelian then for every x, y ∈ G we have xN · yN = yN · xN. That is,
xyN = yxN; equivalently, x−1y−1xyN = N. Thus, for every x, y ∈ G we have xyx−1y−1 ∈ N.
So N contains all the generators of G′ and therefore N ⊇ G′. �

Example 6.0.5. Abelianization of Dn. Recall that the dihedral group Dn – the symmetries of a
regular n-gon – is generated by x, y subject to the relations y2 = xn = yxyx = 1. Let H = 〈x2〉.
Note that if n is odd, H = 〈x〉, while for n even H has index 2 in 〈x〉. We check first that H is
normal. Since Dn is generated by x, y, it is enough to check that H is closed under conjugation
by these elements. Clearly xHx−1 = H, and the identity yx2y−1 = (yxy)2 = x−2 implies that
yHy−1 = H too.

We next claim that in fact H = D′n. First, since x2 = [y, x]−1 we have H ⊆ D′n. To show
equality it is enough to show that Dn/H is abelian. Since Dn/H is generated by the images x̄, ȳ
of the elements x, y, it is enough to show that x̄ and ȳ commute. That is, that [ȳ, x̄] is the identity
element; otherwise said, that [y, x] ∈ H. But [y, x] = x−2 ∈ H.
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Note that for n odd, the group Dab
n has order 2 and so is isomorphic5 to Z/2Z. For n even, the

group Dab
n has order 4, and it is not hard to check that it is isomorphic to Z/2Z×Z/2Z (under

x̄ 7→ (1, 0), ȳ 7→ (0, 1), say).

Example 6.0.6. Abelianization of the unipotent group. Let F be a field and n ≥ 2 an integer. Con-
sider the unipotent group N in GLn(F) comprised all upper-triangular matrices with 1’s along
the diagonal. Let H be the collection of matrices in N that have 0’s in all the (i, i + 1) entries. For
example, for n = 4 we are talking about the groups

1 ∗ ∗ ∗

1 ∗ ∗

1 ∗

1

 and


1 0 ∗ ∗

1 0 ∗

1 0

1


We claim that H = N′. First we check that H is normal in N. This is easily checked because, for
instance, 

1 a ∗ ∗

1 b ∗

1 c

1




1 a′ ∗ ∗

1 b′ ∗

1 c′

1

 =


1 a + a′ ∗ ∗

1 b + b′ ∗

1 c + c′

1

 ,

from which we deduce that also
1 a ∗ ∗

1 b ∗

1 c

1



−1

=


1 −a ∗ ∗

1 −b ∗

1 −c

1

 .

Then, we quickly see that H is normal and even that each commutator lies in H. To show that
H = N′ more work is needed. I leave it as a (somewhat challenging) exercise. At the very least,
I suggest you verify that for n = 3 (and that’s not hard).

Some lemmas about product and intersection of subgroups.

Lemma 6.0.7. Let B and N be subgroups of G, NCG.
(1) B ∩ N is a normal subgroup of B.
(2) BN := {bn : b ∈ B, n ∈ N} is a subgroup of G. Also, NB is a subgroup of G. In fact,

BN = NB.
(3) If BCG then BNCG and B ∩ NCG.
(4) If B and N are finite then |BN| = |B||N|/|B ∩ N|. The same holds for NB.

Proof. (1) B ∩ N is a normal subgroup of B: First B ∩ N is a subgroup of G, hence of B. Let
b ∈ B and n ∈ B ∩ N. Then bnb−1 ∈ B because b, n ∈ B and bnb−1 ∈ N because NCG.

(2) BN := {bn : b ∈ B, n ∈ N} is a subgroup of G: Note that ee = e ∈ BN. If bn, b′n′ ∈ BN
then bnb′n′ = (bb′) · ((b′)−1nb′)n′ ∈ BN. Finally, if bn ∈ BN then (bn)−1 = n−1b−1 =
b−1 · bn−1b−1 ∈ BN.

Note that BN = ∪b∈BbN = ∪b∈BNb = NB.

5For now think of “isomorphic” as “can be identified with”.
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(3) If BCG then BNCG: We saw that BN is a subgroup. Let g ∈ G and bn ∈ BN then
gbng−1 = (gbg−1)(gng−1) ∈ BN, using the normality of both B and N. If x ∈ B ∩ N, g ∈
G then gxg−1 ∈ B and gxg−1 ∈ N, because both are normal. Thus, gxg−1 ∈ B∩N, which
shows B ∩ N is a normal subgroup of G.

(4) If B and N are finite then |BN| = |B||N|/|B ∩ N|: Define a map of sets,

f : B× N → BN, (b, n)
f7→ bn.

to prove the assertion it is enough to prove that the fibre f−1(x) of any element x ∈ BN has
cardinality |B ∩ N|.

Suppose that x = bn, then for every y ∈ B ∩ N we have (by)(y−1n) = bn. This shows
that f−1(x) ⊇ {(by, y−1n) : y ∈ B ∩ N}, a set of |B ∩ N| elements. On the other hand, if
bn = b1n1 then y := b−1b1 = nn−1

1 is in B ∩ N. Note that b1 = by and n1 = y−1n. Thus,
f−1(x) = {(by, y−1n) : y ∈ B ∩ N}. 6

�

Remark 6.0.8. In general, if B, N are subgroups of G (that are not normal) then BN need not
be a subgroup of G. Indeed, consider the case of G = S3, B = {1, (12)}, N = {1, (13)} then
BN = {1, (12), (13), (132)} which is not a subgroup of S3. Thus, in general < B, N >⊃ BN and
equality does not hold. We can deduce though that

| < B, N > | ≥ |B| · |N||B ∩ N| .

This is a very useful formula. Suppose, for example, that (|B|, |N|) = 1 then |B ∩ N| = 1
because B ∩ N is a subgroup of both B and N and so by Lagrange’s theorem |B ∩ N| divides
both |B| and |N|. In this case then | < B, N > | ≥ |B| · |N|. For example, we can conclude,
with no computations at all, that any subgroup of order 3 of A4 together with the Klein group V
generates A4.

Recall that a group G is called simple if it has no non-trivial normal subgroups. It follows
from Lagrange’s theorem that every group of prime order is simple. A group of odd order,
which is not prime, is not simple (a very difficult theorem of Feit and Thompson). We shall later
prove that the alternating group An is a simple group for n ≥ 5.

The classification of all finite simple groups is known. Most simple groups follows into a
rather small number of families (such as the groups An for n ≥ 5). Outside those families there
are finitely many simple groups, called the sporadic groups. John Conway, who passed away
this year (2020) form COVID-19 complications, discovered several of them. The examples he
found were obtained from symmetry groups of lattices in 24 dimensional space.

Another family of simple groups is the following: Let F be a finite field and let SLn(F) be the
group of n× n matrices with determinant 1. Let T be the diagonal matrices with all elements on
the diagonal being equal (hence the elements of T are in bijection with solutions of xn = 1 in F);
T is the center of SLn(F). Let PSLn(F) = SLn(F)/T. This is almost always a simple group for
n ≥ 2 and any F, the only exceptions being n = 2 and F ∼= Z/2Z, Z/3Z. (See Rotman, op. cit.,
§8).
One can gain some understanding of the structure of a group from its normal subgroups. If
NCG then we have a short exact sequence

1→ N → G → G/N → 1.

(That means that all the arrows are group homomorphisms and the image of an arrow is exactly
the kernel of the next one.) Thus, one might hope that the knowledge of N and G/N allows one

6Note that we do not need to assume BN is a subgroup. In particular, we do not need to assume that B or N are
normal subgroups, only that they are subgroups.
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to find the properties of G. This works best when the map G → G/N has a section, i.e., there
is a homomorphism f : G/N → N such that πN ◦ f = Id. Then G is a semi-direct product. We
will come back to these ideas later on in the course.



20 EYAL Z. GOREN, MCGILL UNIVERSITY

Part 2. The Isomorphism Theorems

7. HOMOMORPHISMS

It is a general principle in mathematics that when studying a particular class of objects one also
considers maps between the objects and one requires the maps to respect the main properties
of the objects. For example, maps between vector spaces are required to be linear – to respect
addition of vectors and multiplication by scalar, two properties that are directly linked to the
definition of vector spaces. Similarly, when studying posets (partially ordered sets) it is natural
to look at maps f : S→ T such that s1 < s2 implies f (s1) < f (s2). As said, this is a general
principle that is respected when studying rings, fields, modules, differential manifolds, graphs,
etc.

7.1. Basic definitions. Let G and H be two groups. A homomorphism

f : G → H

is a function satisfying
f (ab) = f (a) f (b), ∀a, b ∈ G.

It is a consequence of the definition that f (eG) = eH and that f (a−1) = f (a)−1.
A homomorphism is called an isomorphism if it is 1 : 1 and surjective. In that case, the set

theoretic inverse function f−1 is automatically a homomorphism too. Thus, f is an isomorphism
if and only if there exists a homomorphism g : H → G such that h ◦ g = idG, g ◦ h = idH.

Two groups, G and H, are called isomorphic if there exists an isomorphism f : G → H. We
use the notation G ∼= H. For all practical purposes two isomorphic groups should be considered
as the same group. Being isomorphic is an equivalence relation on groups.

Example 7.1.1. Let n ≥ 2. The sign map sgn : Sn → {±1} is a surjective group homomorphism.

Example 7.1.2. Let G be a cyclic group of order n, say G = 〈g〉. The group G is isomorphic
to Z/nZ: Indeed, define a function f : G → Z/nZ by f (ga) = a. Note that f is well defined
because if ga = gb then n|(b− a). It is a homomorphism: gagb = ga+b. It is easy to check that f
is surjective. It is injective, because f (ga) = 0 implies that n|a and so ga = g0 = e in the group
G.

Example 7.1.3. We have an isomorphism S3 ∼= D3 coming from the fact that a symmetry of a
triangle (an element of D3) is completely determined by its action on the vertices.

Example 7.1.4. The Klein four group V = {1, (12)(34), (13)(24), (14)(23)} is isomorphic to
Z/2Z×Z/2Z by (12)(34) 7→ (0, 1), (13)(24) 7→ (1, 0), (14)(23) 7→ (1, 1).

The kernel Ker( f ) of a homomorphism f : G → H is by definition the set

Ker( f ) = {g ∈ G : f (g) = eH}.
For example, the kernel of the sign homomorphism Sn → {±1} is the alternating group An.

Lemma 7.1.5. The set Ker( f ) is a normal subgroup of G; f is injective if and only if Ker( f ) = {e}. For
every h ∈ H, the preimage f−1(h) := {g ∈ G : f (g) = h} is a coset of Ker( f ).

Proof. First, since f (e) = e we have e ∈ Ker( f ). If x, y ∈ Ker( f ) then f (xy) = f (x) f (y) = ee = e
so xy ∈ Ker( f ) and f (x−1) = f (x)−1 = e−1 = e so x−1 ∈ Ker( f ). That shows that Ker( f ) is
a subgroup. If g ∈ G, x ∈ Ker( f ) then f (gxg−1) = f (g) f (x) f (g−1) = f (g)e f (g)−1 = e. Thus,
Ker( f )CG.
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If f is injective then there is a unique element x such that f (x) = e. Thus, Ker( f ) = {e}.
Suppose that Ker( f ) = {e} and f (x) = f (y). Then e = f (x) f (y)−1 = f (xy−1) so xy−1 = e. That
is x = y and f is injective.

More generally, note that f (x) = f (y) iff f (x−1y) = e iff x−1y ∈ Ker( f ) iff y ∈ xKer( f ). Thus,
if h ∈ H and f (x) = h then the fibre f−1(h) is precisely xKer( f ). �

Lemma 7.1.6. If NCG then the canonical map πN : G → G/N, given by πN(a) = aN, is a surjective
homomorphism with kernel N.

Proof. We first check that π = πN is a homomorphism: π(ab) = abN = aNbN = π(a)π(b).
Since every element of G/N is of the form aN for some a ∈ G, π is surjective. Finally, a ∈ Ker(π)
iff π(a) = aN = N (the identity element of G/N) iff a ∈ N. �

Corollary 7.1.7. A subgroup N < G is normal if and only if it is the kernel of a homomorphism.

Example 7.1.8. Let F be a field and n ≥ 1 an integer. The determinant map

det : GLn(F)→ F×,

is a surjective homomorphism. Its kernel, called SLn(F) (GL stands for General Linear and SL
for Special Linear), namely the matrices of determinant 1, is a normal subgroup.

Example 7.1.9. We construct a surjective homomorphism

f : S4 → S3.

Let T = {(12)(34), (13)(24), (14)(23)}. For every σ ∈ S4 we have σ(ij)(kl)σ−1 = (σ(i)σ(j))(σ(k)σ(l))
and so S4 acts on T by conjugation. As such, every σ induces a permutation of the elements in
T. As T has three elements, we therefore get a homomorphism

f : S4 → S3.

We claim that this homomorphism is surjective. For this, test the effect of permutations of the
form (abc) on T, as well as permutations of the form (ab), to see that we get all the permutations
in S3. The kernel K of this homomorphism consists of permutations σ such that

σ(ij)(kl)σ−1 = (σ(i) σ(j))(σ(k) σ(l)) = (ij)(kl).

One can check by hand that the Klein group V = {1} ∪ T acts trivially on the elements of T and
so V ⊂ K. It will follow from the first isomorphism theorem that K has 4 elements and so one
concludes that V = K.

7.2. Behavior of subgroups under homomorphisms. The following proposition describes the
behaviour of subgroups under homomorphisms.

Proposition 7.2.1. Let
f : G → H

be a group homomorphism. The following holds
(1) If A < G then f (A) < H, in particular f (G) < H.
(2) If B < H then f−1(B) < G. Furthermore, if BCH then f−1(B)CG.
(3) If, moreover, f is surjective, then ACG implies f (A)CH.

Proof. Since f (e) = e we have e ∈ f (A). Furthermore, the identities f (x) f (y) = f (xy), f (x)−1 =
f (x−1) show that f (A) is closed under multiplication and inverses. Thus, f (A) is a subgroup.

Let B < H. Since f (e) = e we see that e ∈ f−1(B). Let x, y ∈ f−1(B) then f (xy) = f (x) f (y) ∈
B because both f (x) and f (y) are in B. Thus, xy ∈ f−1(B). Also, f (x−1) = f (x)−1 ∈ B and so
x−1 ∈ f−1(B). This shows that f−1(B) < G.
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Suppose now that BCH. Let x ∈ f−1(B), g ∈ G. Then f (gxg−1) = f (g) f (x) f (g)−1. Since
f (x) ∈ B and BCH it follows that f (g) f (x) f (g)−1 ∈ B and so gxg−1 ∈ f−1(B). Thus, f−1(B)CG.

The last claim follows with similar arguments. �

Remark 7.2.2. It is not necessarily true that if ACG then f (A)CH. For example, consider G =
{1, (12)} with its embedding into S3.

8. THE FIRST ISOMORPHISM THEOREM

There are several isomorphism theorems, or so they are called, but a better way to understand
this material is to understand really well the first isomorphism theorem and think about the
other isomorphism theorems as applications, or consequences.

Theorem 8.0.1. (The First Isomorphism Theorem) Let f : G → H be a homomorphism of groups.
Let N be the kernel of f and K a normal subgroup of G that is contained in N.

There is a unique homomorphism F : G/K → H such that the following diagram commutes:7

G
f

//

πK !!D
DD

DD
DD

D H

G/K
F

<<zzzzzzzz

.

Furthermore, Ker(F) = N/K.

Proof. Define
F : G/K → H, F(bK) = f (b).

This is a well-defined function: If bK = cK then b = ck for some k ∈ K ⊂ N = Ker( f ) and so
f (b) = f (ck) = f (c) f (k) = f (c). The map F is a homomorphism as F(bK · dK) = F(bdK) =
f (bd) = f (b) f (d) = F(bK)F(dK). By construction, we have

F(πK(b)) = F(bK) = f (b),

and the diagram is therefore commutative. Note, that since the map πK is surjective, there is a
unique function F that could make the diagram commutative; that is, F is a unique.

Finally, bK ∈ Ker(F) if and only if f (b) = 1H; namely, if and only if b ∈ N. Thus, the kernel
are cosets of the form bK, where b ∈ N; otherwise said, Ker(F) = N/K. �

Corollary 8.0.2. Let f : G → H be a homomorphism of groups. Then

G/Ker( f ) ∼= H.

Proof. Indeed, from the commutativity of the diagram we conclude that F : G/Ker( f ) ∼= H is
surjective. On the other hand, its kernel is Ker( f )/Ker( f ), which is just the identity element of
G/Ker( f ). Thus, F is a bijective homomorphism. �

Example 8.0.3. Let m, n be positive integers such that (m, n) = 1. Consider the homomorphism

f : Z→ Z/mZ×Z/nZ, f (x) = (x mod m, x mod n).

The kernel of f is mnZ and by the first isomorphism theorem we get an injective map

F : Z/mnZ→ Z/mZ×Z/nZ.

As both sides have cardinality mn, the homomorphism F is also surjective. We get the familiar
Chinese Remainder Theorem:

Z/mnZ ∼= Z/mZ×Z/nZ, (m, n) = 1.
7That means that F ◦ πK = f .
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Example 8.0.4. Let F be a field and consider the 3× 3 unipotent group

N =




1 a c

0 1 b

0 0 1

 : a, b, c ∈ F

 .

The function
f : N → F×F,

where F × F is considered as an abelian group with coordinate-wise addition, is a surjective
homomorphism whose kernel are the matrices

K =




1 0 c

0 1 0

0 0 1

 : c ∈ F

 .

In fact K is the commutator subgroup of N (cf. Example 6.0.6). At any rate, we find that

N/K ∼= F×F.

Example 8.0.5. We complete Example 7.1.9. As the homomorphism f constructed there is sur-
jective, we have S4/Ker( f ) ∼= S3. As S3 has 6 elements, it follows that Ker( f ) has 4 elements
and, as we have already observed, it contains the Klein group. Thus, Ker( f ) = V.

Example 8.0.6. Let us construct two homomorphisms

fi : D4 → S2.

We get the first homomorphism f1 be looking at the action of the symmetries on the axes {a, b}.

b

B

A

a

Thus, f1(x) = (ab), f1(y) = 1 (x permutes the axes, while y fixes the axes – though not point-
wise). Similarly, if we let A, B be the lines whose equation is a = b and a = −b, then D4
acts as permutations on {A, B} and we get a homomorphism f2 : D4 → S2 such that f2(x) =
(AB), f2(y) = (AB).

The homomorphism fi, for i = 1, 2, is surjective and therefore the kernel Ni = Ker( fi) has 4
elements. We find that N1 = {1, x2, y, x2y} and N2 = {1, x2, xy, x3y}. By the first isomorphism
theorem we have D4/Ni

∼= S2.
Now, quite generally, if gi : G → Hi are group homomorphisms then g : G → H1×H2, defined

by g(r) = (g1(r), g2(r)) is a group homomorphism with kernel Ker(g1) ∩Ker(g2). One uses the
notation g = (g1, g2). Applying this to our situation, we get a homomorphism

f = ( f1, f2) : D4 → S2 × S2,
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whose kernel is {1, x2}. It follows that the image of f has 4 elements and hence f is surjective.
That is,

D4/〈x2〉 ∼= S2 × S2.

Example 8.0.7. A homomorphism, especially if it is injective, could serve to realize more con-
cretely a group that is initially defined rather abstractly. We have already done so, without
making a big deal of it. Recall that Dn was defined as the group of symmetries of a regular
n-gon. By enumerating the vertices we realized Dn as a subgroup of Sn. In effect, we have
constructed an injective homomorphism Dn → Sn under which

y 7→ (1)(2 n)(3 n− 1) · · · , x 7→ (1 2 3 · · · n).

Example 8.0.8. Consider the group G = GL3(F2), a group with 168 = (8− 1)(8− 2)(8− 4)
elements. This is a famous group in fact, being the only simple group (namely a group with
no non-trivial normal subgroups) of order 168; All other simple groups of order less than 168
are either the cyclic abelian groups of prime order or the alternating group A5 of order 60. By
considering the action of G on F3

2 – the vector space of dimension 3 over F2 – or more precisely,
just its action on the 7 non-zero vectors F3

2 − {0} we get an injective group homomorphism
GL3(F2) ↪→ S7, where S7 is interpreted as the permutations of F3

2 − {0}.
Now, the only element of order 7 of S7 up to conjugation is a cycle of length 7 and, clearly, it

acts transitively on F3
2 − {0}. It will follow from theorems we shall prove later that since 7|168

the group G must have an element of order 7. We can therefore conclude that there is a matrix
in GL3(F2) of order 7 and that matrix permutes cyclically the non-zero vectors of the space. Can
you find such a matrix??

Example 8.0.9. Let G be an abelian group and fix an integer n. Consider the two sets

G[n] := {g ∈ G : gn = 1G}, Gn := {gn : g ∈ G}.

Making use of the fact that G is abelian one easily checks that these are subgroups. If G is
not abelian this need not be true. For example, take G = S3 and n = 2. Then S3[2] =
{1, (12), (13), (23)} which is not a subgroup. In this case S2

3 = {(1), (123), (132)} is a subgroup,
but if we take n = 3 we find that S3

3 = {1, (12), (13), (23)}, which is not a subgroup.
Getting back to the case where G is abelian, we notice that we have a surjective homomor-

phism:

[n] : G → Gn, [n](g) := gn.

The kernel of this homomorphism is G[n] and so, using the first isomorphism theorem, we
conclude

G/G[n] ∼= Gn.

Here is a simple application. Suppose that p ≡ 2 (mod 3) then the equation x3− a ≡ 0 (mod p)
has a unique solution for every non-zero congruence class a. Indeed, since 3 - (p− 1), there are
no elements of order 3 in the group Z/pZ×. Thus, (Z/pZ×)3 = Z/pZ×, that is, every element
is a cube.8 But more is true; since the kernel of the homomorphism [3] : Z/pZ× → Z/pZ×, g 7→
g3 is trivial in this case, every a is obtained from a unique g as a = g3. That is, we have a unique
solution.

8We apologize for the confusing notation: here (Z/pZ×)3 refers to the third powers of elements in Z/pZ×, as in
the notation Gn, and not to the cartesian product of Z/pZ× with itself three times.
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9. THE SECOND ISOMORPHISM THEOREM

Theorem 9.0.1. Let G be a group. Let B < G, NCG. Then

BN/N ∼= B/(B ∩ N).

Proof. Recall from Lemma 6.0.7 that BN is a group and N is a normal subgroup in it. Define
a homomorphism B→ BN/N as the composition of the homomorphisms B ↪→ BN → BN/N.
That is, we have a homomorphism

f : B→ BN/N, f (b) = bN.

Every element x of BN/N is of the form bnN with some b ∈ B, n ∈ N. As bnN = bN we find
that f (b) = x and therefore f is surjective. We also have f (b) = bN = eBN/N if and only if
b ∈ N. But then clearly b ∈ B ∩ N. Thus, Ker( f ) = B ∩ N and the first isomorphism theorem
gives the isomorphism B/B ∩ N ∼= BN/N. �

Remark 9.0.2. This is often used as follows: Let f : G → H be a group homomorphism with
kernel N. Let B < G. What can we say about the image of B under f ? Well f (B) = f (BN) and
f : BN → H has kernel N. We conclude that f (B) ∼= BN/N ∼= B/(B ∩ N).

As a concrete example, consider B = S3 ⊂ S4 (realized as the permutations fixing 4) and the
homomorphism f : S4 → S3 constructed in Examples 7.1.9, 8.0.5. We have f (S3) ∼= S3/V ∩ S3
where V is the Klein group and equal to the kernel of f . As every non-trivial element of V moves
4, we have S3 ∩V = {1}. We conclude that under the isomorphism f we have f (S3) ∼= S3.

10. THE THIRD ISOMORPHISM THEOREM

In the following theorem we have put together statements that are sometimes divided into
two theorems, called the Third Isomorphism Theorem and the Correspondence Theorem.

Theorem 10.0.1. Let f : G → H be a surjective homomorphism of groups.
(1) f induces a bijection:

{subgps of G containing Ker( f )} ↔ {subgps of H}.
Given by G1 7→ f (G1), G1 < G, and in the other direction by H1 7→ f−1(H1), H1 < H.

(2) Suppose that Ker( f ) < G1 < G2. Then G1CG2 if and only if f (G1)C f (G2). Moreover, in that
case,

G2/G1
∼= f (G2)/ f (G1).

(3) Let N < K < G be groups, such that NCG, KCG. Then

(G/N)/(K/N) ∼= G/K.

G

G/N

N

K

K/N
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Proof. We proved in general (Prop. 7.2.1) that if G1 < G then f (G1) < H and if H1 < H then
f−1(H1) < G. Since f is a surjective map we have f ( f−1(H1)) = H1. We need to show that
if Ker( f ) < G1 then f−1( f (G1)) = G1. Clearly f−1( f (G1)) ⊇ G1. Let x ∈ f−1( f (G1)) then
f (x) ∈ f (G1). Choose then g ∈ G1 such that f (g) = f (x) and write x = g(g−1x). Note that
f (g−1x) = eH and so g−1x ∈ Ker( f ) ⊆ G1. Thus, x = g(g−1x) ∈ G1.

Consider the restriction of f to G2 as a surjective group homomorphism f : G2 → f (G2). We
proved under those conditions that if G1CG2 then f (G1)C f (G2). If f (G1)C f (G2) then we also
proved that f−1( f (G1))CG2. Since G1 ⊃ Ker( f ) we have f−1( f (G1)) = G1.

It remains to show that if Ker( f ) < G1CG2 then G2/G1
∼= f (G2)/ f (G1). The homomorphism

obtained by composition
G2 → f (G2)→ f (G2)/ f (G1),

is surjective and has kernel f−1( f (G1)) = G1. The claim now follows from the First Isomor-
phism Theorem.

We apply the previous results in the case where H = G/N and f : G → G/N is the canonical
map. We consider the case G1 = K, G2 = G. Then G/K ∼= f (G)/ f (K) = (G/N)/(K/N). �

Example 10.0.2. Consider again the group homomorphism f : D4 → S2 × S2 constructed in Ex-
ample 8.0.6. Using the Third Isomorphism Theorem we conclude that the graph of the sub-
groups of D4 containing < x2 > is exactly that of S2× S2 (analyzed in Example 2.6.1). Hence we
have:

D4

ww
ww
ww
ww
w

GG
GG

GG
GG

G

K1

GG
GG

GG
GG

K2 K3

ww
ww
ww
ww

< x2 >

{1}

S2 × S2

vv
vv
vv
vv
v

HH
HH

HH
HH

H

H1

GG
GG

GG
GG

G H2 H3

ww
ww
ww
ww
w

{e}

We’ll see later that this does not exhaust the list of subgroups of D4. Here we have
K1 =< x >,
K2 =< y, x2 >,
K3 =< xy, x2 >

and
H1 = f (K1) = {(1, 1), ((ab), (AB))},
H2 = f (K2) = {(1, 1), (1, (AB))},
H3 = f (K3) = {(1, 1), ((ab), 1)}.

Example 10.0.3. Let F be a field and let N = {diag[ f , f , . . . , f ] : f ∈ F×} be the set of diagonal
matrices with the same non-zero element in each diagonal entry. In fact, N = Z(GLn(F)) and is
therefore a normal subgroup. The quotient group

PGLn(F) := GLn(F)/N

is called the projective linear group.
Let Pn−1(F) be the set of equivalence classes of non-zero vectors in Fn under the equivalence

v ∼ w if there is f ∈ F∗ such that f v = w; that is, the set of lines through the origin. The
set Pn−1(F) is called the (n− 1)−dimensional projective space. The importance of the group
PGLn(F) is that it acts as automorphisms on the projective (n− 1)-space Pn−1(F): If we denote
the class of a matrix A in PGLn(F) by [A], say, and the class of vector v in Pn−1(F) by [v] then
the action is given by [A][v] = [Av]. (Check this is well-defined!).
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Let
π : GLn(F)→ PGLn(F)

be the canonical homomorphism. The function

det : GLn(F)→ F∗

is a group homomorphism, whose kernel, the matrices with determinant one, is denoted SLn(F).
Consider the image of SLn(F) in PGLn(F); it is denoted PSLn(F). We want to analyze it and the
quotient PGLn(F)/PSLn(F).

The group PSLn(F) is equal to π(SLn(F)) = π(SLn(F)N) and is therefore isomorphic to
SLn(F)N/N ∼= SLn(F)/SLn(F) ∩ N = SLn(F)/µn(F), where by µn(F) we mean the group
{ f ∈ F× : f n = 1} (where we identify f with diag[ f , f , . . . , f ]). Therefore,

PSLn(F) ∼= SLn(F)/µn(F).

We have PGLn(F)/PSLn(F) ∼= (GLn(F)/N)/(SLn(F)N/N) ∼= GLn(F)/SLn(F)N. Let F×(n)

be the subgroup of F× consisting of the elements { f n : f ∈ F×}. Under the isomorphism
GLn(F)/SLn(F) ∼= F× the subgroup SLn(F)N corresponds to F×(n). We conclude that

PGLn(F)/PSLn(F) ∼= F×/F×(n).

Example 10.0.4. We return to Example 8.0.4. We constructed a surjective homomorphism

f : N → F×F,

with kernel

K =




1 0 c

0 1 0

0 0 1

 : c ∈ F

 .

Assume that F = Z/pZ. What are the subgroups of N that contain K?
By the Third Isomorphism Theorem, they are in bijection with the subgroups of F×F. Besides

the trivial subgroups {(0, 0)} and F×F that correspond to K and N, respectively, there are many
other subgroups.

Every proper subgroup W of F× F is abelian. We have a definition of nw for n ∈ Z, w ∈ W
(this is gn in multiplicative notation and is familiar to us). Since pw = 0, we conclude that we
may view W as an F-vector space, where for n̄ ∈ F, represented by an integer n, we let n̄w = nw
and this is well-defined! The conclusion is that every subgroup of F× F is an F-subspace, and
the proper subgroups correspond to 1-dimensional subspace of F × F. The converse is true
too. Thus, the proper subgroups of N that strictly contain K are in bijection with lines in F×F.
To describe these lines we use linear functionals: For every (x, y) 6= 0 we have the subgroup
{(a, b) : a, b ∈ F, xa + yb = 0} corresponding to the subgroup of N given by

B(x,y) :=




1 a c

0 1 b

0 0 1

 : a, b, c ∈ F, xa + yb = 0

 .

In fact, B(x,y) depends on (x, y) up to proportion only. Namely, it depends only on the point
(x : y) ∈ P1(F), the one-dimensional projective space (cf. Example 10.0.3). There are p + 1
points (x : y) in this space (they are represented for example by (1, a) for a ∈ F and (0, 1)) and
so there are p + 1 subgroups of N lying strictly in between N and K.
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11. THE LATTICE OF SUBGROUPS OF A GROUP

Let G be a group. Consider the set Λ(G) of all subgroups of G. Define an order on this set by
A ≤ B if A is a subgroup of B. This relation is transitive and A ≤ B ≤ A implies A = B. That is,
the relation is really an order.

The set Λ(G) is a combinatorical lattice: Every two elements A, B have a minimum A ∩ B
(that is if C ≤ A, C ≤ B then C ≤ A ∩ B) and a maximum 〈A, B〉 - the subgroup generated by
A and B (that is C ≥ A, C ≥ B then C ≥ 〈A, B〉). If A ∈ Λ(G) then let ΛA(G) to be the set of
all elements in Λ(G) that are greater or equal to A. It is a lattice in its own right. By the Third
Isomorphism Theorem, we have

If NCG then ΛN(G) ∼= Λ(G/N) as lattices.

Here is the lattice of subgroups of D4. Normal subgroup are boxed.

D4
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< yx >
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< yx2 >

eeeeee
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eeeeee
eeeeee

eeeee
< yx3 >

dddddddd
dddddddd

dddddddd
dddddddd

dddddddd
dddddddd

dddddd subgroups of order 2

{e}

How to prove that these are all the subgroups of D4? Note that every proper subgroup has
order 2 or 4 by Lagrange’s theorem. If it is cyclic then it must be one of the above, because the
diagram certainly contains all cyclic subgroups. Else, it can only be of order 4 and every element
of it different from e has order 2. It is easy to verify that any two distinct elements of order 2
generate one of the subgroups we have listed.

There are at least two ways in which one uses this concept:

• To examine whether two groups could possibly be isomorphic. Isomorphic groups have
isomorphic lattices of subgroups. For example, the groups D4 and Q both have 8 ele-
ments. The lattice of subgroups of Q is the following:

Q

zz
zz
zz
zz
z

EE
EE

EE
EE

E

〈i〉

DD
DD

DD
DD

〈j〉 〈k〉

zz
zz
zz
zz

〈−1〉

{1}

We conclude that Q and D4 are not isomorphic.
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• To recognize quotients. Consider for example D4/〈x2〉. This is a group of 4 elements. Let
us give ourselves that there are only two groups of order 4 up to isomorphism and those
are (Z/2Z)2 and Z/4Z. The lattice of subgroups for them are

(Z/2Z)2

mmm
mmm

mmm
mmm

m

QQQ
QQQ

QQQ
QQQ

Q

{(0, 0), (0, 1)}

QQQ
QQQ

QQQ
QQQ

Q
{(0, 0), (1, 1)} {(0, 0), (1, 0)}

mmm
mmm

mmm
mmm

m

{(0, 0)}

Z/4Z

{0, 2}

{0}

We conclude that D4/〈x2〉 ∼= (Z/2Z)2.
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Part 3. Group Actions on Sets

Group actions on sets will be revealed to be an extremely powerful method to gain information
about the structure of groups.

12. BASIC DEFINITIONS

Let G be a group and let S be a non-empty set. We say that G acts on S if we are given a function

G× S→ S, (g, s) 7−→ g ∗ s,

such that;
(i) e ∗ s = s for all s ∈ S;
(ii) (g1g2) ∗ s = g1 ∗ (g2 ∗ s) for all g1, g2 ∈ G and s ∈ S.

Given an action of G on S we can define the following sets. Let s ∈ S. Define the orbit of s

Orb(s) = {g ∗ s : g ∈ G}.
Note that Orb(s) is a subset of S, equal to all the images of the element s under the action of the
elements of the group G. We also define the stabilizer of s to be

Stab(s) = {g ∈ G : g ∗ s = s}.
Note that Stab(s) is a subset of G. In fact, it is a subgroup, as the next Lemma states.

One should think of every element of the group as becoming a symmetry of the set S. We will
make that more precise later. For now, we just note that every element g ∈ G defines a function
S→ S by s 7→ gs. This function will turn out to be bijective.

13. BASIC PROPERTIES

Lemma 13.0.1. (1) Let s1, s2 ∈ S. We say that s1 is related to s2, i.e., s1 ∼ s2, if there exists g ∈ G
such that

g ∗ s1 = s2.
This is an equivalence relation. The equivalence class of s1 is its orbit Orb(s1).

(2) Let s ∈ S. The set Stab(s) is a subgroup of G.
(3) Suppose that both G and S have finitely many elements. Then

|Orb(s)| = |G|
|Stab(s)| .

Proof. (1) We need to show reflexive, symmetric and transitive. First, we have e ∗ s = s and
hence s ∼ s, meaning the relation is reflexive. Second, if s1 ∼ s2 then for a suitable
g ∈ G we have g ∗ s1 = s2. But then, s1 = g−1 ∗ (g ∗ s1) = g−1 ∗ s2 and so the relation is
symmetric.

It remains to show transitive. If s1 ∼ s2 and s2 ∼ s3 then for suitable g1, g2 ∈ G we
have

g1 ∗ s1 = s2, g2 ∗ s2 = s3.
Therefore,

(g2g1) ∗ s1 = g2 ∗ (g1 ∗ s1) = g2 ∗ s2 = s3,
and hence s1 ∼ s3.
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Moreover, by the very definition, the equivalence class of an element s1 of S is all the
elements of the form g ∗ s1 for some g ∈ G, namely, Orb(s1).

(2) Let H = Stab(s). We have to show that: (i) e ∈ H; (2) If g1, g2 ∈ H then g1g2 ∈ H; (iii) If
g ∈ H then g−1 ∈ H.

First, by definition of group action we have e ∗ s = s. Therefore e ∈ H. Next suppose
that g1, g2 ∈ H, i.e., g1 ∗ s = s and g2 ∗ s = s. Then, (g1g2) ∗ s = g1 ∗ (g2 ∗ s) = g1 ∗ s = s.
Thus, g1g2 ∈ H. Finally, if g ∈ H then g ∗ s = s and so g−1 ∗ g ∗ s = g−1 ∗ s. But,
g−1 ∗ g ∗ s = e ∗ s = s, and therefore g−1 ∈ H.

(3) We claim that there exists a bijection between the left cosets of H and the orbit of s. If we
show that, then by Lagrange’s theorem,

|Orb(s)| = no. of left cosets of H = index of H = |G|/|H|.
Define a function

G/H := {left cosets of H} φ→ Orb(s),
by

φ(gH) = g ∗ s.
We claim that φ is a well defined bijection. First
Well-defined: Suppose that g1H = g2H. We need to show that the rule φ would give the same
result whether we take the representative g1 or the representative g2 to the coset. That is, we
need to show

g1 ∗ s = g2 ∗ s.

Note that g−1
1 g2 ∈ H, i.e., (g−1

1 g2) ∗ s = s. We get

g1 ∗ s = g1 ∗ ((g−1
1 g2) ∗ s)

= (g1(g−1
1 g2)) ∗ s

= g2 ∗ s.

φ is surjective: Let t ∈ Orb(s) then t = g ∗ s for some g ∈ G. Thus,

φ(gH) = g ∗ s = t,

and we get that φ is surjective.
φ is injective: Suppose that φ(g1H) = φ(g2H). We need to show that g1H = g2H. Indeed,

φ(g1H) = φ(g2H)

⇒ g1 ∗ s = g2 ∗ s

⇒ g−1
2 ∗ (g1 ∗ s) = g−1

2 ∗ (g2 ∗ s)

⇒ (g−1
2 g1) ∗ s = (g−1

2 g2) ∗ s = s

⇒ g−1
2 g1 ∈ Stab(s) = H

⇒ g1H = g2H.

�

Corollary 13.0.2. The set S is a disjoint union of orbits.

Proof. The orbits are the equivalence classes of the equivalence relation∼ defined in Lemma 13.0.1.
Any equivalence relation on a set partitions the set into disjoint equivalence classes. �

We have in fact seen that every orbit is in bijection with the cosets of some group. If H is any
subgroup of G let us use the notation G/H for its cosets (note though that if H is not normal this
is not a group, but just a set). We saw that if s ∈ S then there is a natural bijection G/Stab(s)↔
Orb(s). Thus, the picture of S is as follows
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 S

Orb(a) = G/Stab(a)

Orb(b) = G/Stab(b)

Orb(c) = G/Stab(c)

a

b c

FIGURE 3. S decomposes into disjoint orbits.

14. SOME EXAMPLES

Example 14.0.1. The group Sn acts on the set {1, 2, . . . , n}. The action is transitive, i.e., there is
only one orbit. The stabilizer of i is S{1,2,...,i−1,i+1,...,n} ∼= Sn−1.

Example 14.0.2. The group GLn(F) acts on Fn, and also Fn − {0}. The action is transitive on
Fn − {0} and has two orbits on Fn. The stabilizer of 0 is of course GLn(F); the stabilizer of a
non-zero vector v1 can be written in a basis w1, w2, . . . , wn with w1 = v1 as the matrices of the
shape 

1 ∗ . . . ∗

0 ∗ . . . ∗
...

... . . .
...

0 ∗ . . . ∗

 .

Example 14.0.3. Let H be a subgroup of G then we have an action

H × G → G, (h, g) 7→ hg.

In this example, H is the “group” and G is the “set”. Here the orbits are right cosets of H and
the stabilizers are trivial. Since G = ä Orb(gi) = ä Hgi, we conclude that |G| = ∑i |Orb(gi)| =
∑i |H|/|Stab(gi)| = ∑i |H| and therefore that |H| | |G| and that [G : H], the number of cosets, is
|G|/|H|. We have recovered Lagrange’s theorem.

Example 14.0.4. Let H be a subgroup of G. Let G/H = {gH : g ∈ G} be the set of left cosets
of H in G. Then we have an action

G× G/H → G/H, (a, bH) 7→ abH.

Here there is a unique orbit – G acts transitively. The stabilizer of gH is the subgroup gHg−1.
We will come back to this important example. It will yield the coset representation of a group.

Example 14.0.5. Let G = R/2πZ. It acts on the sphere by rotations: an element θ ∈ G rotates the
sphere by angle θ around the north-south axis. The orbits are latitude lines and the stabilizers
of every point is trivial, except for the poles whose stabilizer is G. See Figure 4.

Example 14.0.6. Recall that D8 is the group of symmetries of a regular octagon in the plane.

D8 = {e, x, x2, . . . , x7, y, yx, yx2, . . . , yx7},
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θ

FIGURE 4. Action on the sphere by rotation.

where x is the rotation clockwise by angle 2π/8 and y is the reflection through the y-axis. We
have the relations

x8 = y2 = e, yxy = x−1.
We let S be the set of colourings of the vertices of the octagon having 4 red vertices and 4 green
vertices. We may think about S as the set of necklaces with 8 gems, where four gems are rubies
and 4 are sapphires. The cardinality of S is (8

4) = 70. The group D8 acts on S by its action on the
octagon.

For example, the colouring s0 in Figure 5 (where the two colours are represented by squares
and circles) is certainly preserved under x2 and under y. Therefore, the stabilizer of s0 contains
at least the set of eight elements

(1) {e, x2, x4, x6, y, yx2, yx4, yx6}.
Remember that the stabilizer is a subgroup and, by Lagrange’s theorem, of order dividing

y

x

FIGURE 5. A necklace with 4 rubies and 4 sapphires.

16 = |D8|. On the other hand, Stab(s0) 6= D8 because x 6∈ Stab(s0). It follows that the stabilizer
has exactly 8 elements and is equal to the set in (1).

According to Lemma 13.0.1 the orbit of s0 is in bijection with the left cosets of Stab(s0) =
{e, x2, x4, x6, y, yx2, yx4, yx6}. By Lagrange’s theorem there are two cosets. For example, Stab(s0)
and xStab(s0) are distinct cosets. The proof of Lemma 13.0.1 tells us how to find the orbit: it is
the set

{s0, xs0},
portrayed in Figure 6.
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FIGURE 6. The orbit of the necklace.

Example 14.0.7. Let Γ be the group of symmetries of the cube obtained by rigid motions (so
reflections are not allowed). The action of Γ on the 8 vertices gives an injective homomorphism
Γ ↪→ S8. But, as we shall see, there are much more useful realizations of Γ.

Let’s see a clever way to count the number of elements in Γ: It is easy to see that Γ acts
transitively on the 6 faces of the cube. The stabilizer of a face is made of the rotations that keep
the face but rotate it around its middle point. The orbit-stabilizer formula then gives that

]Γ = 24.

By considering the action of Γ on two adjacent faces we see that the homomorphism Γ→ S6
must be injective. We obtain that Γ can be realized as a transitive subgroup of S6 (namely, a
subgroup that acts transitively on {1, 2 . . . , 6}. This is an improvement, but still ]S6 = 6! = 720
and ]Γ = 24 which means that Γ is a “tiny” subgroup of S6. So consider the action of Γ on the 4
long diagonals of the cube which we number {1, 2, 3, 4}. This gives a homomorphism

f : Γ→ S4.

It is not a priori clear whether f is injective. Since both sides have 24 elements, if we show f is
surjective then f is also injective and hence an isomorphism. Here is an argument showing that:

A rotation keeping the front face has the effect (1243), while a rotation keeping the right-
facing face has the effect (2314). The cyclic subgroups generated by those two cycles are {1, a =
(1243), b = (14)(23), (3421)} and {1, c = (2314), d = (21)(34), (4132)}. We see that the sub-
group they generate contains the Klein group (calculate bd), and a short calculation shows that
it in facts contains a subgroup of order 8 (for instance the subgroup generated by the Klein group
and (1243)). Thus, the order of the subgroup they generate is divisible by 8. On the other hand,
its order is also divisible by 3 because it contains ac = (132). Therefore, the image of f is S4 and
we conclude that

Γ ∼= S4.
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15. CAYLEY’S THEOREM

Theorem 15.0.1. Every finite group of order n is isomorphic to a subgroup of Sn.

We first prove a lemma that puts group actions in a different context. Let A be a finite set.
Recall the group of permutations of A, ΣA; it is the set of bijective functions A→ A. If we let
s1, . . . , sn be the elements of A, we can identify bijective functions A→ A with permutations of
{1, . . . , n} and we see that ΣA

∼= Sn.

Lemma 15.0.2. To give an action of a group G on a set A is equivalent to giving a homomorphism
G → ΣA. The kernel of this homomorphism is ∩a∈AStab(a).

Proof. An element g define a function φg : A→ A by φg(a) = ga. We have φe being the identity
function. Note that φhφg(a) = φh(ga) = hga = φhg(a) for every a and hence φhφg = φhg. In
particular, φgφg−1 = φg−1 φg = Id. This shows that every φg is a bijection and the map

φ : G → ΣA, g 7→ φg,

is a homomorphism. (Conversely, given such a homomorphism φ, define a group action by
g ∗ a := φ(g)(a).)

The kernel of this homomorphism consists of the elements g such that φg is the identity, i.e.,
φg(a) = a for all a ∈ A. That is, g ∈ Stab(a) for every a ∈ A. The set of such elements g is just
∩a∈AStab(a). �

Proof. (Cayley’s Theorem) Consider the action of G on itself by multiplication (Example 14.0.3),
(g, g′) 7→ gg′. Recall that all stabilizers are trivial. Thus this action gives an injective homomor-
phism

G ↪→ ΣG
∼= Sn,

where n = |G|. �

16. THE COSET REPRESENTATION

Let G be a group and H a subgroup of finite index n. Consider the action of G on the set of
cosets G/H of H (Example 14.0.4) and the resulting homomorphism

φ : G → ΣG/H
∼= Sn,

where n = [G : H]. We shall refer to it as the coset representation of G. The kernel K of φ is

K = ∩a∈G/HStab(a) = ∩g∈GStab(gH) = ∩g∈GgHg−1.

Being a kernel of a homomorphism, K is normal in G. K is also contained in H. Furthermore,
since the resulting homomorphism G/K → Sn is injective we get that |G/K| = [G : K] divides
|Sn| = n!. In particular, we conclude that every subgroup H of G contains a subgroup K which
is normal in G and of index at most [G : H]!. Thus, for example, a simple infinite group has no
subgroups of finite index – I am not sure if this has a simple proof that doesn’t use one way or
another group actions.

In fact, the formula K = ∩g∈GgHg−1 shows that K is the maximal subgroup of H which is
normal in G. Indeed, if K′CG, K′ < H then for any g ∈ G we have K′ = gK′g−1 ⊆ gHg−1 and
we see that K′ ⊆ K.

The coset representation reveals an important principle. To give a subgroup of finite index n of a
group G is to give a transitive action of G on a set of n elements.
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Indeed, if G acts transitively on a set T of n-elements, pick an element t ∈ T and let H =
Stab(t). Then, the bijection G/H ↔ T shows that H is of index n. Conversely, if H is a subgroup
of G of index n, the coset representation of G on G/H is a transitive action on a set of n elements.

Example 16.0.1. We construct a surjective homomorphism S4 → S3 in a different way than that
of Example 8.0.5. Recall that D4 < S4 is a subgroup of index 3. The coset representation therefore
gives a homomorphism

S4 → S3.
The image is a transitive subgroup of S3 and there are only two such: A3 and S3. Take the
element (12) which is not in D4. Then the three cosets of D4 can be written as

D4, (12)D4, xD4,

for some x whose precise form will not matter to us. As (12) takes D4 to (12)D4 and (12)D4 to
D4, it must fix xD4 and therefore the image of (12) in S3 is a transposition. It follows that the
image of S4 must be S3. The kernel is a normal subgroup of S4 contained in D4 of cardinality 4.
It must therefore be the Klein group V.

17. THE CAUCHY-FROBENIUS FORMULA

The Cauchy-Frobenius formula (CFF), sometimes called Burnside’s lemma, is a very useful
formula for combinatorial problems.

17.1. A formula for the number of orbits.

Theorem 17.1.1. (CFF) Let G be a finite group acting on a finite set S. Let N be the number of orbits of
G in S. Define

I(g) = |{s ∈ S : g ∗ s = s}|
(the number of elements of S fixed by the action of g). Then

(2) N =
1
|G| ∑

g∈G
I(g).

Remark 17.1.2. To say N = 1 is to say that G acts transitively on S. It means exactly that: For
every s1, s2 ∈ S there exists g ∈ G such that g ∗ s1 = s2.

Remark 17.1.3. In the proof we will use the following general fact. Let G act on a set S and let
s ∈ S. Then, for any element g ∈ G,

StabG(gs) = gStabG(s)g−1.

In words, the stabilizers of two elements in S that lie in the same orbit are conjugate subgroups
of G. In particular they all have the same cardinality (the function StabG(gs)→ Stab(s) given
by h 7→ g−1hg is a bijection).

Proof. We define a function

T : G× S→ {0, 1}, T(g, s) =

{
1 g ∗ s = s
0 g ∗ s 6= s

.

Note that for a fixed g ∈ G we have

I(g) = ∑
s∈S

T(g, s),
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and that for a fixed s ∈ S we have

|Stab(s)| = ∑
g∈G

T(g, s).

Let us fix representatives s1, . . . , sN for the N disjoint orbits of G in S. Now,

∑
g∈G

I(g) = ∑
g∈G

(
∑
s∈S

T(g, s)

)
= ∑

s∈S

(
∑
g∈G

T(g, s)

)

= ∑
s∈S
|Stab(s)| = ∑

s∈S

|G|
|Orb(s)|

=
N

∑
i=1

∑
s∈Orb(si)

|G|
|Orb(s)| =

N

∑
i=1

∑
s∈Orb(si)

|G|
|Orb(si)|

=
N

∑
i=1

|G|
|Orb(si)|

· |Orb(si)| =
N

∑
i=1
|G|

= N · |G|.
�

Corollary 17.1.4. Let G be a finite group acting transitively on a finite S. Suppose that |S| > 1. Then
there exists g ∈ G without fixed points.

Proof. By contradiction. Suppose that every g ∈ G has a fixed point in S. That is, suppose that
for every g ∈ G we have

I(g) ≥ 1.
Since I(e) = |S| > 1 we have that

∑
g∈G

I(g) > |G|.

By Cauchy-Frobenius formula, the number of orbits N is greater than 1. Contradiction. �

Example 17.1.5. The symmetry group Γ of the cube acts transitively on the faces. It follows that
there is a symmetry of the cube leaving no face fixed (there are many, in fact). Can you find one?

Example 17.1.6. A subgroup G of Sn is called transitive if its action on {1, 2, . . . , n} is transitive.
If n > 1, the corollary says that such a subgroup contains a permutation with no fixed points.
Moreover, by the orbit-stabilizer formula, G has a subgroup of index n and so n|]G. Such results
are used in the classification of transitive subgroups of Sn for small values of n – a classification
important to Galois theory because the Galois group of an irreducible separable polynomial of
degree n is a transitive subgroup of Sn. For example, for S3 we find that A3 and S3 are the only
transitive subgroups. For S4 we are looking for subgroups of order divisible by 4 (so 4, 8, 12 and
24) that act transitively and also contain a permutation with no fixed point. After conjugation,
we may therefore assume that either (1234) or (12)(34) belongs to the subgroup. Continuing the
analysis, one finds that up to conjugation the transitive subgroups are V, 〈(1234)〉, D4, A4, S4.

17.2. Applications to combinatorics. In the following examples we will consider roulettes and
necklaces. When we are asking about the number of colourings of a roulette with n wedges sat-
isfying some restrictions, we allow rotational symmetries only. When we talk about colourings
of necklaces, we allow in addition symmetries obtain from turning the necklace over so that
its back side becomes its front side. Thus, for a roulette with n wedges the symmetry group is
Z/nZ, while for a necklace with n stones the symmetry group is Dn.
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Example 17.2.1. How many roulettes with 11 wedges, painted 2 blue, 2 green and 7 red, are
there when we allow rotations?

Let S be the set of painted roulettes. Let us enumerate the sectors of a roulette by the numbers
1, . . . , 11. The set S is a set of (11

2 )(
9
2) = 1980 elements (choose which 2 wedges are blue, and then

choose out of the remaining 9 wedges which 2 are green).
Let G be the group Z/11Z. It acts on S by rotations. The element 1 rotates a painted roulette

by angle 2π/11 clockwise. The element n rotates a painted roulette by angle 2nπ/11 clockwise.
We are interested in N – the number of orbits for this action. We use CFF.

The identity element always fixes the whole set. Thus I(0) = 1980. We claim that if 1 ≤ i ≤ 10
then i doesn’t fix any element of S. Indeed, suppose that 1 ≤ i ≤ 10 and i fixes s. Then so does
〈i〉 = Z/11Z (the stabilizer is a subgroup). But any colouring fixed under rotation by 1 must be
single colored! Contradiction.

Applying CFF we get

N =
1
11

10

∑
n=0

I(n) =
1
11
· 1980 = 180.

Example 17.2.2. How many roulettes with 12 wedges, painted 2 blue, 2 green and 8 red, are
there when we allow rotations?

Let S be the set of painted roulettes. Let us enumerate the sectors of a roulette by the numbers
1, . . . , 12. The set S is a set of (12

2 )(
10
2 ) = 2970 elements (choose which 2 are blue, and then choose

out of the 10 that are left which 2 are green).
Let G be the group Z/12Z. It acts on S by rotations. The element 1 rotates a painted roulette

by angle 2π/12 clockwise. The element n rotates a painted roulette by angle 2nπ/12 clockwise.
We are interested in N – the number of orbits for this action. We use CFF.

The identity element always fixes the whole set. Thus I(0) = 2970. We claim that if 1 ≤ i ≤ 11
and i 6= 6 then i doesn’t fix any element of S. Indeed, suppose that i fixes a painted roulette. Say
in that roulette the r-th sector is blue. Then so must be the i + r sector (because the r-th sector
goes under the action of i to the r + i-th sector). Therefore so must be the r + 2i sector. But there
are only 2 blue sectors! The only possibility is that the r + 2i sector is the same as the r sector,
namely, i = 6.

If i is equal to 6 and we enumerate the sectors of a roulette by the numbers 1, . . . , 12 we may
write i as the permutation

(1 7)(2 8)(3 9)(4 10)(5 11)(6 12).

In any colouring fixed by i = 6 the colors of the pairs (1 7), (2 8), (3 9), (4 10), (5 11) and (6 12)
must be the same. We may choose one pair for blue, one pair for green. The rest would be red.
Thus there are 30 = 6 · 5 possible choices. We summarize:

element g I(g)

0 2970

i 6= 6 0

i = 6 30

Applying CFF we get that there are

N =
1
12

(2970 + 30) = 250

different coloured roulettes.
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Example 17.2.3. In this example S is the set of necklaces made of four rubies and four sapphires
laid on the table. We ask how many necklaces there are when we allow rotations and flipping-
over.

We may think of S as the colourings of a regular octagon, such that four vertices are green
and four are red. The group G = D8 acts on S and we are interested in the number of orbits for
the group G.

The results are the following

element g I(g)

e 70

x, x3, x5, x7 0

x2, x6 2

x4 6

yxi for i = 0, . . . , 7 6

We explain how the entries in the table are obtained:

• The identity always fixes the whole set S. The number of elements in S is (8
4) = 70

(choosing which 4 would be green).
• The element x cannot fix any colouring, because any colouring fixed by x must have all

sections of the same colour (because x = (1 2 3 4 5 6 7 8)). If xr fixes a colouring s0

so does any power of xr, in particular (xr)r = x(r
2), because the stabilizer is a subgroup.

Apply that for r = 3, 5, 7 to see that if xr fixes a colouring so does x , which is impossible.
(For instance, x(3

2) = x9 = x, because x8 = e.)
• x2 written as a permutation is (1 3 5 7)(2 4 6 8). We see that if 1 is green, say, so are 3, 5, 7

and the rest must be red. That is, all the freedom we have is to choose whether the cycle
(1 3 5 7) is green or red. This gives us two colourings fixed by x2. The same rational
applies to x6 = (8 6 4 2)(7 5 3 1).
• Consider now x4. It may written in permutation notation as (1 5)(2 6)(3 7)(4 8). In any

colouring fixed by x4 each of the cycles (1 5)(2 6)(3 7) and (4 8) must be single colored.
There are thus (4

2) = 6 possibilities (Choosing which 2 out of the four cycles would be
green).
• It remains to deal with the elements yxi. We recall that these are all reflections. There are

two kinds of reflections. One may be written using permutation notation as

(i1 i2)(i3 i4)(i5 i6).

That is, these are reflections with two fixed vertices. For example y = (2 8)(3 7)(4 6) is
of this form). The other kind is of the form

(i1 i2)(i3 i4)(i5 i6)(i7 i8).

These are reflections that do not fix any vertex. For example yx = (1 8)(2 7)(3 6)(4 5) is
of this sort. Whatever is the case, one uses similar reasoning to deduce that there are 6
colourings preserved by a reflection.
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One needs only apply CFF to get that there are

N =
1
16

(70 + 2 · 2 + 6 + 8 · 6) = 8

distinct necklaces.

It is possible to develop general formulas for the number of roulettes of n wedges coloured
according to some specifications. The starting point in developing such formula is the following
principle that we used in the calculation above. Every element of the dihedral group Dn has a
composition into disjoint cycles according to the following cases:

• If n = 2r + 1 is odd, any reflection has a unique fixed vertex and so can be written as a
product of disjoint transpositions

(i1 i2) · · · (i2r−1 i2r).

• If n = 2r is even, there are n/2 = r reflections that don’t have any fixed vertex and they
can be written as a product of disjoint transpositions

(i1 i2) · · · (i2r−1 i2r).

There are also n/2 = r reflections that have precisely two fixed vertices and they can be
written as a product of disjoint transpositions

(i1 i2) · · · (i2r−3 i2r−2).

• The element xa, 1 ≤ a ≤ n − 1, has order d := n/ gcd(a, n). It is a product of n/d =
gcd(a, n) disjoint cycles, each of length d:

(i1 · · · id)(id+1 · · · i2d) · · · (in−d+1 · · · in).

• Every element of Dn falls into one of the cases above. The analysis also applies to Z/nZ

thought of as the cyclic group 〈x〉 ⊂ Dn.
• In any colouring that is fixed by an element z ∈ Dn each cycle in the decomposition of z

into disjoint cycles is assigned a single colour.

Example 17.2.4. For example, suppose that we want to know the number of necklaces with n
wedges where 3 are painted red and the rest are blue. Let us suppose for simplicity that n is odd.
Such a colouring is fixed by a reflection only if its fixed vertex is assigned the colour red and
then we can choose which of the (n− 1)/2 pairs of vertices are red. Thus, each reflection fixes
(n− 1)/2 colourings.

If a colouring is fixed by xa, 1 ≤ a ≤ n− 1 then each cycle in x has length 3. Such x exists if
3|n only and then there are precisely two such elements x (recall our discussion in §4 of cyclic
groups!). Every such element x will have precisely one of its n/3 cycles coloured red and we
may choose which. Namely, such x fixes n/3 distinct colourings.

To summarize, if 3 - n, the number of such necklaces is 1
2n ((

n
3) + n n−1

2 ) = n2−1
12 . You may

perform a check that such a number is always an integer! On the other hand, if 3 | n then the
number of such necklaces is 1

2n ((
n
3) + n n−1

2 + 2 n
3 ) =

n2+3
12 .

17.3. Rubik’s cube. 9

In the case of the Rubik cube there is a group G acting on the cube. The group G is generated
by 6 basic moves a, b, c, d, e, f (each is a rotation of a certain “third of the cube”) and could be

9Also known as the Hungarian cube.
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FIGURE 7. The Rubik Cube.

thought of as a subgroup of the symmetric group on 54 = 9× 6 letters. It is called the cube
group. The structure of this group is known. It is isomorphic to

(Z/3Z7 ×Z/2Z11)o ((A8 × A12)o Z/2Z)

(the notation will make sense once we have defined semi-direct products). The order of the cube
group is

227 · 314 · 53 · 72 · 11 = 43, 252, 003, 274, 489, 856, 000,

while the order of S54 is

230843697339241380472092742683027581083278564571807941132288000000000000.

One is usually interested in solving the cube. Namely, reverting it to its original position.
Since the current position was gotten by applying an element τ of G, in group theoretic terms we
attempt to find an algorithm of writing every G in terms of the generators a, b, c, d, e, f since then
also τ−1 will have such an expression, which is nothing else than a series of moves that returns
the cube to its original position. It is natural do deal with the set of generators a±1, b±1, . . . , f±1

(why do 3 times a when you can do a−1??). A common question is what is the maximal number
of basic operations that may be required to return a cube to its original position. Otherwise said,
what is the diameter of the Cayley graph? But more than that, is there a simple algorithm of
finding for every element of G an expression in terms of the generators? (The speed at which
some people are able so solve the cube certainly suggests that the answer is yes! The current
world record (June 2020) is 3.47 seconds, achieved by Yusheng Du from China in 2018.)

The Cayley graph.
Suppose that {gα : α ∈ I} are generators for G. We define an oriented graph taking as vertices
the elements of G and taking for every g ∈ G an oriented edge from g to ggα. If we forget the
orientation, the property of {gα : α ∈ I} being a set of generators is equivalent to the graph
being connected.
Suppose that the set of generators consists of n elements. Then, by definition, from every vertex
we have n vertices emanating and also n arriving. We see therefore that all Cayley graphs are
regular graphs. This, in turn, gives a systematic way of constructing regular graphs.
Suppose we take as a group the symmetric group (see below) Sn and the transpositions as gener-
ators. One can think as a permutation as being performed in practice by successively swapping
the places of two elements. Thus, in the Cayley graph, the distance between a permutation and
the identity (the distance is defined as the minimal length of a path between the two vertices) is
the minimal way to write a permutation as a product of transpositions, and could be thought of
as a certain measure of the complexity of a permutation.

The figure below gives the Cayley graph of S3 with respect to the generating set of transposi-
tions. It is a 3-regular oriented graph and a 6 regular graph.
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Now, since the Cayley graph of the cube group G has 12 edges emanating from each vertex
(and is a connected graph, by definition of the cube group) it follows that to reach all positions
one is forced to allow at least log12 |G| ∼ 18.2, thus at least 19, moves.10 The actual number is
surprisingly close to this simple estimate. It was found that the cube can always be solved by at
most 20 moves and, as there are positions that require 20 moves to be solved, this is optimal.

10There is a subtle point we are glossing over here as we must distinguish between the symmetries of the cube
provided by G and the effect they have on the colouring of its pieced. Thus, we must ask if there are operations that
move the cube but leave the overall colouring fixed – we move the pieces but in the end it “looks the same”. That is,
is the stabilizer of every position of the cube trivial? It seems that the answer is yes; note that it is enough to prove
that for the original position (as stabilizers of elements in the same orbit are conjugate subgroups). Here, it seems
that the key point is to consider the corner pieces and then the edge pieces.
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Part 4. The Symmetric Group

18. CONJUGACY CLASSES

Let σ ∈ Sn. We write σ as a product of disjoint cycles:

σ = σ1σ2 · · · σr.

Since disjoint cycles commute, the order does not matter and we may assume that the length of
the cycles is non-increasing. Namely, if we let |(i1i2 . . . it)| = t (we shall call it the length of the
cycle; it is equal to its order as an element of Sn), then

|σ1| ≥ |σ2| ≥ · · · ≥ |σr|.
We may also allow cycles of length 1 (they simple stand for the identity permutation) and then
we find that

n = |σ1|+ |σ2|+ · · ·+ |σr|.
We therefore get a partition p(σ) of the number n, that is, a set of non-increasing positive in-
tegers a1 ≥ a2 ≥ · · · ≥ ar ≥ 1 such that n = a1 + a2 + · · · + ar. Note that every partition is
obtained from a suitable σ.

Lemma 18.0.1. Two permutations, σ and ρ, are conjugate (namely there is a τ such that τστ−1 = ρ) if
and only if p(σ) = p(ρ).

Proof. Recall the formula we used before, if σ(i) = j then (τστ−1)(τ(i)) = τ(j). This implies
that for every cycle (i1 i2 . . . it) we have

τ(i1 i2 . . . it)τ
−1 = (τ(i1) τ(i2) . . . τ(it)).

In particular, since τστ−1 = (τσ1τ−1)(τσ2τ−1) · · · (τσrτ−1), a product of disjoint cycles, we get
that p(σ) = p(τστ−1).

Conversely, suppose that p(σ) = p(ρ). Say

σ = σ1σ2 . . . σr

= (i1
1 . . . i1

t(1))(i
2
1 . . . i2

t(2)) . . . (ir
1 . . . ir

t(r)),

and
ρ = ρ1ρ2 . . . ρr

= (j11 . . . j1t(1))(j21 . . . j2t(2)) . . . (jr
1 . . . jr

t(r)).

Define τ by
τ(ia

b) = ja
b .

Then τστ−1 = ρ. �

Corollary 18.0.2. Let p(n) be the number of partitions of n.11 There are p(n) conjugacy classes in Sn.

Next, we discuss conjugacy classes in An. Note that if σ ∈ An then since AnCSn also τστ−1 ∈
An. That is, all the Sn-conjugacy classes of elements of An are in An. However, we would like to
consider the An-conjugacy classes of elements of An.

11Since 2 = 2 = 1 + 1, 3 = 3 = 2 + 1 = 1 + 1 + 1, 4 = 4 = 2 + 2 = 3 + 1 = 2 + 1 + 1 = 1 + 1 + 1 + 1, 5 = 5 =
3 + 2 = 4 + 1 = 3 + 1 + 1 = 2 + 2 + 1 = 2 + 1 + 1 + 1 = 1 + 1 + 1 + 1 + 1 . . . we get p(1) = 1, p(2) = 2, p(3) =

3, p(4) = 5, p(5) = 7, p(6) = 11, . . . . The function p(n) is asymptotic to eπ
√

2n/3

4n
√

3
.



44 EYAL Z. GOREN, MCGILL UNIVERSITY

Lemma 18.0.3. The Sn-conjugacy class of an element σ ∈ An is a disjoint union of [Sn : AnCentSn(σ)]
An-conjugacy classes. In particular, it is a single An-conjugacy class if there is an odd permutation com-
muting with σ and it decomposes into two An-conjugacy class if there is no odd permutation commuting
with σ. In the latter case, the Sn-conjugacy class of σ is the disjoint union of the An-conjugacy class of σ
and the An-conjugacy class of τστ−1, where τ can be chosen to be any odd permutation, and these two
conjugacy classes have the same size.

Proof. Let A be the Sn-conjugacy class of σ. Write A = äα∈J Aα, a disjoint union of An-conjugacy
classes. We first note that Sn acts on the set B = {Aα : α ∈ J}. Indeed, if Aα is the An-conjugacy
class of σα, and ρ ∈ Sn then define ρAαρ−1 to be the An-conjugacy class of ρσαρ−1. This is well
defined: if σ′α is another representative for the An-conjugacy class of σα then σ′α = τσατ−1 for
some τ ∈ An. It follows that ρσ′αρ−1 = ρτσατ−1ρ−1 = (ρτρ−1)(ρσαρ−1)(ρτρ−1)−1 is in the
An-conjugacy class of ρσαρ−1 (because ρτρ−1 ∈ An). The action of Sn is clearly transitive on B.

Consider the An-conjugacy class of σ and denote it by A0. The stabilizer of A0 in Sn is just
AnCentSn(σ). Indeed, ρA0ρ−1 = A0 if and only if ρσρ−1 is in the same An-conjugacy class as σ.
Namely, if and only if ρσρ−1 = τστ−1 for some τ ∈ An, equivalently, (τ−1ρ)σ = σ(τ−1ρ), that
is (τ−1ρ) ∈ CentSn(σ) which is to say that ρ ∈ AnCentSn(σ).

We conclude that the size of B is the length of the orbit of A0 under the action of Sn and hence
is of size [Sn : AnCentSn(σ)]. Since [Sn : An] = 2, we get that [Sn : AnCentSn(σ)] = 1 or 2, with
the latter happening if and only if An ⊇ CentSn(σ). That is, if and only if σ does not commute
with any odd permutation. Moreover, the orbit consists of the An-conjugacy classes of the ele-
ments gσg−1, g running over a complete set of representatives for the cosets of AnCentSn(σ) in
Sn.

Finally, if there are two An orbits, say ConjAn
(σ) and ConjAn

(gσg−1), then the function from
ConjAn

(σ) to ConjAn
(gσg−1) taking hσh−1 to ghσh−1g−1 is a well-defined (check!) bijection as

its inverse is given by conjugating by g−1. �

In the case we need this lemma, that is in the case of A5, one can decide the situation “by
inspection”. However, it is interesting to understand in general when does the centralizer of a
permuation contain an odd permutation.

Lemma 18.0.4. Let σ be a permutation and write σ as a product of disjoint cycles of non-increasing
length:

σ = c1c2 · · · ca = (i1
1, i1

2, . . . , i1
r1
)(i2

1, . . . , i2
r2
) · · · (ia

1, . . . , ia
ra
).

Thus, r1 ≥ r2 ≥ · · · ≥ ra where we have also listed cycles of length 1, if any. The centralizer of σ contains
an odd permutation unless each cycle has odd length and all the lengths are different, that is, unless each
ri is odd and r1 > r2 > · · · > ra. In that case, the centralizer of σ consists of even permutations only.

Proof. Suppose first that there is a cycle cj of even length, which is thus an odd permutation.
Since disjoint cycles commute cjcic−1

j = ci and so

cjσc−1
j = (cjc1c−1

j )(cjc2c−1
j ) · · · (cjcac−1

j ) = c1 · · · ca = σ.

Thus, the centralizer of σ contains the odd permutation cj.
Suppose now that there are two cycles of the same length. To ease notation, let’s assume these

are c1 and c2, but the same argument works in general. We may assume that they are both of
odd length, otherwise we have already shown that the centralizer contains an odd permutation.
Then, let τ = (i1

1i2
1)(i

1
2i2

2) · · · (i1
r1

i2
r1
). Then τ is an odd permutation and we find τστ−1 = σ.
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The case left at this point is when σ is a product of disjoint cycles, all of odd lengths and
strictly decreasing order: r1 > r2 > · · · > ra. In this case, if τστ−1 = σ – that is, if

(τ(i1
1), τ(i1

2), . . . , τ((i1
r1
))(τ(i2

1), . . . , τ((i2
r2
)) · · · (τ(ia

1), . . . , τ(ia
ra
))

= (i1
1, i1

2, . . . , i1
r1
)(i2

1, . . . , i2
r2
) · · · (ia

1, . . . , ia
ra
),

then, by comparing sizes of cycles, we see that τciτ
−1 = ci. But that means that τ = cb1

1 cb2
2 · · · c

ba
a

for some integers bi and so τ is even. �

19. THE SIMPLICITY OF An

In this section we prove that An is a simple group for n 6= 4. The cases where n < 4 are trivial;
for n = 4 we have seen it fails (the Klein 4-group is normal). We shall focus on the case n ≥ 5
and prove the theorem inductively. We therefore first consider the case n = 5.

We make the following general observation:

Lemma 19.0.1. Let NCG then N is a disjoint union of G-conjugacy classes.

Proof. Distinct conjugacy classes, being orbits for a group action, are always disjoint. If N is
normal and n ∈ N then its conjugacy class {gng−1 : g ∈ G} is contained in N. �

Let us list the conjugacy classes of S5 and their sizes.

Conjugacy classes in S5

cycle type representative size of conjugacy class order even?

5 (12345) 24 5 X

1+4 (1234) 30 4 ×

1+1+3 (123) 20 3 X

1+ 2+ 2 (12)(34) 15 2 X

1 + 1 + 1 + 2 (12) 10 2 ×

1 + 1+ 1+ 1+ 1 1 1 1 X

2+ 3 (12)(345) 20 6 ×

Let τ be a permutation commuting with (12345). Then

(12345) = τ(12345)τ−1 = (τ(1) τ(2) τ(3) τ(4) τ(5))

and so τ is the permutation i 7→ i + n for n = τ(1) − 1. In particular, τ = (12345)n−1 and
so is an even permutation. We conclude that the S5-conjugacy class of (12345) breaks into two
A5-conjugacy classes, with representatives (12345), (21345).

One checks that (123) commutes with the odd permutation (45). Therefore, the S5-conjugacy
class of (123) is also an A5-conjugacy class. Similarly, the permutation (12)(34) commutes with
the odd permutation (12). Therefore, the S5-conjugacy class of (12)(34) is also an A5-conjugacy
class. We get the following table for conjugacy classes in A5.
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Conjugacy classes in A5

cycle type representative size of conjugacy class

5 (12345) 12

5 (21345) 12

1+1+3 (123) 20

1+ 2+ 2 (12)(34) 15

1 + 1+ 1+ 1+ 1 1 1

If NCA5 then |N| divides 60 and is the sum of 1 and some of the numbers in (12, 12, 20, 15). One
checks that this is impossible unless N = A5. We deduce

Lemma 19.0.2. The group A5 is simple.

The family of cyclic groups of prime order are an infinite family of simple group, but this is a
rather elementary fact. We are now in a position to exhibit an infinite family of simple groups
that is much more interesting.

Theorem 19.0.3. The group An is simple for n ≥ 5.

Proof. The proof is by induction on n. We may assume that n ≥ 6. Let N be a normal subgroup
of An and assume N 6= {1}.

First step: There is a permutation ρ ∈ N, ρ 6= 1 and 1 ≤ i ≤ n such that ρ(i) = i.
Indeed, let σ ∈ N be a non-trivial permutation and write it as a product of disjoint non-trivial

cycles, σ = σ1σ2 . . . σs, say in decreasing length. Suppose that σ1 is (i1i2 . . . ir), where r ≥ 3. We
write σ2 = (ir+1 · · · ) and so on.

Then, conjugating by the transposition τ = (i1i2)(i5i6), we get that τστ−1σ ∈ N, τστ−1σ(i1) =
i1 and if r > 3 τστ−1σ(i2) = i4 6= i2.

If r = 3 then σ = (i1i2i3)(i4 . . . ) . . . and we choose instead τ = (i1i2)(i3i4). Then τστ−1σ(i1) =
i1 and τστ−1σ(i2) = τσ(i4) ∈ {i3, i5}, depending on whether σ2 = (i4) or is a cycle of length
greater than 1. Thus, τστ−1σ is a permutation of the kind we were seeking.

It still remains to consider the case where each σi is a transposition. Then, if σ = (i1i2)(i3i4)
then σ moves only 4 elements out of N, and thus fixes some element and we are done. Other-
wise, σ = (i1i2)(i3i4)(i5i6) . . . . Let τ = (i1i2)(i3i5) then

[τστ−1]σ = [(i2i1)(i5i4)(i3i6) . . . ](i1i2)(i3i4)(i5i6) · · · = (i3i5)(i4i6) . . .

and so is a permutation of the sort we were seeking.

Second step: N = An.
Consider the subgroups Gi = {σ ∈ An : σ(i) = i}. We note that each Gi is isomorphic to An−1

and hence, by the induction hypothesis, is simple. By the preceding step, for some i we have
that N ∩ Gi is a non-trivial normal subgroup of Gi, hence equal to Gi.

Next, note that (12)(34)G1(12)(34) = G2 and, similarly, all the groups Gi are conjugate in An
to each other. It follows that N ⊇< G1, G2, . . . , Gn >. Now, every element in Sn is a product
of (usually not disjoint) transpositions and so every element σ in An is a product of an even
number of transpositions, σ = λ1µ1 . . . λrµr (λi, µi transpositions). Since n > 4 every product
λiµi belongs to some Gj and we conclude that < G1, G2, . . . , Gn >= An, therefore also N =
An. �
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Part 5. p-groups, Cauchy’s and Sylow’s Theorems

20. THE CLASS EQUATION

Let G be a finite group. G acts on itself by conjugation: g ∗ h = ghg−1. The orbits are called
in this case conjugacy classes.The class equation follows from the partitioning of G into orbits
obtained this way. Since G is partitioned into disjoint conjugacy classes, its cardinality is the
sum of the cardinalities of its conjugacy classes. We shall denote a conjugacy class of an element
x by Conj(x). Thus,

Conj(x) = {gxg−1 : g ∈ G}.
Note that the stabilizer of x ∈ G is CentG(x) := {g ∈ G : gxg−1 = x} and so its orbit has length
[G : CentG(x)]. That is,

|Conj(x)| = [G : CentG(x)].
Note that the elements with orbit of length 1 are precisely the elements in the center Z(G) of G.
We get the class equation

(3) |G| = |Z(G)|+ ∑
reps.x 6∈Z(G)

|G|
|CentG(x)| .

Theorem 20.0.1. Let N ≥ 1 be a positive integer. Up to isomorphism there are finitely many finite
groups with N conjugacy classes.

Proof. We will need the following easy lemma:

Lemma 20.0.2. Fix an integer M. There are finitely many groups, up to isomorphism, of order M.

Proof. We may assume that such a group is always specified by providing a group law on some
fixed set with M elements. Say, X = {x1, . . . , xM}. A group law on this set is specified by a
function

m : X× X → X.
But there are finitely many such functions m. �

We can of course strengthen the Lemma as follows

Corollary 20.0.3. Fix an integer M. There are finitely many groups, up to isomorphism, of order at most
M.

It would therefore suffice to prove that the size of a finite group with N conjugacy classes is
bounded in terms of N alone. We require the following:

Lemma 20.0.4. Let q be a positive rational number and N a fixed integer. There are finitely many tuples
of positive integers (n1, . . . , nN) such that

q =
1
n1

+ · · ·+ 1
nN

.

Proof. We argue by induction on N. The case N = 1 is clear. Assume for N − 1. To prove
finiteness we may assume that n1 ≥ n2 ≥ · · · ≥ nN (as every tuple can be rearranged to sat-
isfy this condition and at most N! tuples will give a given tuple (n1, . . . , nN) that satisfies the
inequalities). Now,

q =
1
n1

+ · · ·+ 1
nN
≤ N

nN
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and consequently

nN ≤
N
q

.

Thus, there are finitely many possibilities for the integer nN . For each such possibility consider

q′ := q− 1
nN

=
1
n1

+ · · ·+ 1
nN−1

.

By induction, there are finitely many tuples (n1, . . . , nN−1) that satisfy this equality. �

We now come back to the proof of the theorem. We saw that it is enough to prove that if G
has N conjugacy classes then the order of G is bounded.

Use the class equation to write

1 =
1
|G| + · · ·+

1
|G|︸ ︷︷ ︸

|Z(G)|−times

+ ∑
reps.x 6∈Z(G)

1
|CentG(x)| .

There are N summands in this equation. By the Lemma, there are finitely many ways to write 1
as the sum of such N summands and so the maximal denominator appearing in all these equa-
tions is bounded by some constant M. But in each such expression the maximal denominator is
the order of the group. Thus, the order of each group with N conjugacy classes is bounded by
M. �

Example 20.0.5. Let us consider some simple cases of the theorem.
(1) N = 1. Then we have 1 = 1

1 and there is one group with one conjugacy class which is
{1}.

(2) N = 2. The only possibility is 1 = 1
2 + 1

2 . The order of the group is thus 2 and there is
one group of order 2 up to isomorphism: Z/2Z.

(3) N = 3. Here we find three possibilities: 1 = 1
3 +

1
3 +

1
3 = 1

6 +
1
3 +

1
2 = 1

4 +
1
4 +

1
2 . The first

possibility should be associated to a group of order 3 and there is one such group up to
isomorphism (3 is prime): Z/3Z. It indeed has 3 conjugacy classes.

The next possibility should be associated with a group of order 6. The group S3 has
order 6 and 3 conjugacy classes of orders 1, 2 and 3 and gives the class equation 1 =
1
6 +

1
3 +

1
2 .

The third possibility should be associated to a group of order 4. But all groups of
order 4 are abelian (using the Table on page 10) and thus have 4 conjugacy classes. So
the expression 1 = 1

4 +
1
4 +

1
2 doesn’t actually come from a group.

21. p-GROUPS

Let p be a prime. A finite group G is called a p-group if its order is a positive power of p. Thus,
we talk about a 2-group, a 3-group, etc.

Lemma 21.0.1. Let G be a finite p-group. Then the center of G is not trivial.

Proof. We use the Class Equation (3). Note that if x 6∈ Z(G) then CentG(x) 6= G and so the
integer |G|

|CentG(x)| is divisible by p. Thus, the left hand side of

|G| − ∑
reps.x 6∈Z(G)

|G|
|CentG(x)| = |Z(G)|

is divisible by p, hence so is the right hand side. In particular |Z(G)| ≥ p. �
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Theorem 21.0.2. Let G be a finite p-group, |G| = pn.
(1) For every normal subgroup HCG, H 6= G, there is a subgroup KCG such that H < K < G and

[K : H] = p.
(2) There is a chain of subgroups H0 = {1} < H1 < · · · < Hn = G, such that each HiCG and
|Hi| = pi.

Proof. (1) The group G/H is a p-group and hence its center is a non-trivial group. Take an
element e 6= x ∈ Z(G/H); its order is pr for some r. Then y = xpr−1

has exact order p.
Let K′ =< y >. It is a normal subgroup of G/H of order p (y commutes with any other
element). Let K = π−1

H (K′). By the Third Isomorphism Theorem, K is a normal subgroup
of G, K/H ∼= K′ so [K : H] = p.

(2) The proof just given shows that every p-group has a normal subgroup of p elements.
Now apply repeatedly the first part.

�

A variant of the theorem above is the following, slightly harder, proposition.

Proposition 21.0.3. Let G be a p-group and let H be a proper subgroup of G, then there is a subgroup
H+ ⊃ H such that [H+ : H] = p and, if H is not the identity subgroup, there is a subgroup H− ⊂ H
such that [H : H−] = p.

Proof. We argue by induction on the order of G. If |G| = p, the Proposition is clear. Assume the
result for groups of order pr and let G have order pr+1 with r ≥ 1. From the Theorem applied to
H = {1}, we know that G has a normal subgroup with p elements, say J. If J is not contained
in H let H+ = JH. As J is normal, H+ is a subgroup and |H+| = |J| · |H|/|J ∩ H| = p · |H|.

If J ⊆ H, consider G/J that has order pr and the proper subgroup H/J. By induction, there
is a subgroup K of G/J in which H/J is contained with index p. Let H+ be the pre-image of K
under the natural homomorphism G → G/J. Then H+ ⊃ H and [H+ : H] = |H+|

|H| = |H+|/|J|
|H|/|J| =

|K|
|H/J| = [K : (H/J)] = p. This finishes the first part of the Proposition.

As to the second part, this follows easily from the Theorem: H is itself a p-group and so it has
a series of subgroups as in part (2) of the theorem, in particular a subgroup of index p. �

21.1. Examples of p-groups.

21.1.1. Groups of order p. We proved in the assignments that every such group is cyclic, thus
isomorphic to Z/pZ.

21.1.2. Groups of order p2. We first prove a general result.

Lemma 21.1.1. Let G be a group and H ⊂ Z(G) a subgroup. Suppose that G/H is cyclic. Then G is
abelian.

Proof. First note that H is normal, because it consists of elements in the centre. Let g ∈ G be an
element such that 〈ḡ〉 = G/H, where ḡ denotes the image of g in G/H. Then every element of
G is of the form gih for some integer i ∈ Z and h ∈ H.

Given x, y ∈ G write them in this form as x = gih, y = gjh′. Then, as h and h′ commute with
any element we find that xy = gihgjh′ = gjgihh′ = gjh′gih = yx. �

Let G be a group of p2 elements, then Z(G) 6= {1} and so there is an element g ∈ Z(G) of
order p. Let H = 〈g〉, a subgroup of order p. Then G/H has p-elements and hence is cyclic. The
Lemma applies and we conclude G is abelian. We pass to additive notation.

We now distinguish two cases.
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(1) There is an element of order p2 in G. Then G is cyclic and so isomorphic to Z/p2Z.
(2) Every element of G, different from {0} is of order p. That is, pg = 0 for all g ∈ G. Recall

first that for every n ∈ Z we have the element ng (gn in multiplicative notation) and the
following holds

(n + m)g = ng + mg, n(gh) = ng + nh.

In our case, also
(n + p)g = ng + pg = ng.

Therefore, we an make G into a vector space over the field Fp = Z/pZ, where we define

n̄g := ng,

where n is any representative of the congruence class n̄.
As such, G is isomorphic to F2

p as a vector space, in particular as a group. That is, G is
the group (Z/pZ)2 and, in fact, up to isomorphism, these are the only groups of order
p3.

That completes the classification of groups of order p2.

21.1.3. Groups of order p3. First, there are the abelian groups Z/p3Z, Z/p2Z × Z/pZ and
(Z/pZ)3.

We have seen in Lemma 21.1.1 that if G is not abelian then G/Z(G) cannot be cyclic. It follows
that Z(G) ∼= Z/pZ and G/Z(G) ∼= (Z/pZ)2. One example of such a group is provided by the
matrices 

1 a b

0 1 c

0 0 1

 ,

where a, b, c ∈ Fp. Note that if p ≥ 3 then every element in this group is of order p (use (I +
N)p = I + Np), yet the group is non-abelian. (This group, using a terminology to be introduced
later, is a semi-direct product (Z/pZ)2 oZ/pZ.) More generally the upper unipotent matrices
in GLn(Fp) are a group of order pn(n−1)/2 in which every element has order p if p ≥ n. Notice
that these groups are non-abelian.

Getting back to the issue of non-abelian groups of order p3, one can prove that there is pre-
cisely one additional non-abelian group of order p3. It is generated by two elements x, y satisfy-
ing: xp = yp2

= 1, xyx−1 = y1+p. (This group is a semi-direct product (Z/p2Z)o Z/pZ.)

21.2. The Frattini subgroup. Let G be a group. Define the Frattini subgroup Φ(G) of G to
be the intersection of all maximal subgroups of G, where by a maximal subgroup we mean a
subgroup of G, not equal to G and not strictly contained in any proper subgroup of G. If G
has no such subgroup (for example, if G = {1}, or if G = Q with addition) then we define
Φ(G) = G.

Proposition 21.2.1. Let G be a finite p-group. The Frattini subgroup of G is a normal subgroup of G
and has the following properties:

(1) G/Φ(G) is a non-trivial abelian group and every non-zero element in it has order p. It is the
largest quotient of G with this property.

(2) Φ(G) = GpG′, where G′ is the commutator subgroup of G and Gp is the subgroup of G generated
by the set {gp : g ∈ G}.

Proof. Any automorphism f : G → G takes maximal subgroups to maximal subgroups, in par-
ticular, conjugation does. Therefore, Φ(G) is a normal subgroup.
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Since any maximal subgroup H has index p (by our previous results), it follows from Exer-
cise 37 that H is normal because p is the minimal prime dividing the order of G. Thus, G/H
is a group with p elements and thus abelian. Therefore, H ⊇ G′. It follows that Φ(G) ⊃ G′
and therefore G/Φ(G) is abelian. Further, let g ∈ G then gH has order 1 or p in G/H and, in
particular gpH = (gH)p = H. That is, H ⊃ Gp and so Φ(G) ⊇ GpG′ and every non-trivial
element of G/Φ(G) has order p.

Let N be a normal subgroup of G and suppose G/N is abelian and killed by p. The same
argument as above shows that N ⊇ GpG′. Therefore, once we show Φ(G) = GpG′ we will get
the first part of the Theorem too.

It remains to show that Φ(G) ⊆ GpG′. First, note that since G′ is normal in G, indeed GpG′
is a subgroup of G and in fact a normal subgroup of G as Gp is a normal subgroup too (since
gxpg−1 = (gxg−1)p, the set of generators of Gp, hence Gp itself, is stable under conjugation). Let
us also note that G/GpG′ is an abelian group in which every element has order p. Therefore,
similar to what we have done for groups of order p2, we may view G/GpG′ as a vector space
over Fp.

If G/GpG′ is cyclic it has a unique maximal subgroup {0} and its preimage GpG′ is a maximal
subgroup of G, in particular containing Φ(G). Suppose then that G/GpG′ is not cyclic. Suppose
there is an element g ∈ Φ(G) \ GpG′. Pass to G/GpG′ and to the image ḡ of g in it. Then ḡ 6= 0
and G/GpG′ is isomorphic to Fr

p for some r > 1, where Fp is the field of p elements Z/pZ. In
this perspective ḡ is viewed as a non-zero vector. In that case, we can find a hyperplane W of
codimension 1, such that ḡ 6∈ W. The pre-image of W in G is a maximal subgroup that doesn’t
contain g and that’s a contradiction. �

22. CAUCHY’S THEOREM

One application of group actions is to provide a simple proof of an important theorem in the
theory of finite groups – Cauchy’s theorem. We remark that Cauchy’s theorem will not be used
in the proof of Sylow’s theorem below, and, in fact, is an easy consequence of Sylow’s theorem.
The reason we prove it here is simply to illustrate an ingenious use of group actions.

Theorem 22.0.1. (Cauchy) Let G be a finite group of order n and let p be a prime dividing n. Then G
has an element of order p.

Proof. Let S be the set consisting of p-tuples (g1, . . . , gp) of elements of G, considered up to cyclic
permutations. Thus, if T is the set of p-tuples (g1, . . . , gp) of elements of G, S is the set of orbits
for the action of Z/pZ on T by cyclic shifts . One may therefore apply CFF and get

|S| = np − n
p

+ n.

Note that n - |S| .
Now define an action of G on S. Given g ∈ G and (g1, . . . , gp) ∈ S we define

g(g1, . . . , gp) = (gg1, . . . , ggp).

This is a well-defined action .
Since the order of G is n, since n - |S|, and since S is a disjoint union of orbits of G, there must

be an orbit Orb(s) whose size is not n. However, the size of an orbit is |G|/|Stab(s)|, and we
conclude that there must an element (g1, . . . , gp) in S with a non-trivial stabilizer. This means
that for some g ∈ G, such that g 6= e, we have

(gg1, . . . , ggp) is equal to (g1, . . . , gp) up to a cyclic shift.



52 EYAL Z. GOREN, MCGILL UNIVERSITY

This means that for some i we have

(gg1, . . . , ggp) = (gi+1, gi+2, gi+3, . . . , gp, g1, g2, . . . , gi).

Therefore, gg1 = gi+1, g2g1 = ggi+1 = g2i+1, . . . , gpg1 = · · · = gpi+1 = g1 (we always read the
indices mod p). That is, there exists g 6= e with

gp = e.

�

23. SYLOW’S THEOREM

Sylow’s theorem is one of the main results proven in this course. It states that a finite group G
always has p-subgroups as large as is possible given Lagrange’s theorem. It is easy to see that G
is generated by these groups. At the same time, we have gained some understanding into the
structure of p-groups above. Thus, at some vague conceptual level, the combination of the two
–Sylow’s theorem and the theory of p-groups – gives us a better understanding of all finite
groups.

23.1. Proof of Sylow’s theorem. Let G be a finite group and let p be a prime dividing its order.
Write |G| = prm, where (p, m) = 1. By a p-subgroup of G we mean a subgroup whose order is a
positive power of p. By a maximal p-subgroup of G we mean a p-subgroup of G not contained
in a strictly larger p-subgroup.

Theorem 23.1.1. Let G be a finite group and let p be a prime dividing its order. Write |G| = prm, where
(p, m) = 1.

(1) Every maximal p-subgroup of G has order pr (such a subgroup is called a Sylow p-subgroup)
and such a subgroup exists.

(2) All Sylow p-subgroups are conjugate to one another.
(3) The number np of Sylow p-subgroups satisfies:

(a) np|m;
(b) np ≡ 1 (mod p).

Remark 23.1.2. To say that P is conjugate to Q means that there is a g ∈ G such that gPg−1 =
Q. Recall that the map x 7→ gxg−1 is an automorphism of G. This implies that P and Q are
isomorphic as groups.

Another consequence is that saying that there is a unique p-Sylow subgroup is the same as
saying that a p-Sylow is normal. This is often used this way: given a finite group G the first
question in ascertaining whether it is simple or not is to ask whether a p-Sylow subgroup is
unique for some p dividing the order of G. Often one engages in combinatorics of counting
p-Sylow subgroups, trying to conclude there can be only one for a given p, and hence getting a
normal subgroup.

We first prove a lemma that is a special case of Cauchy’s Theorem 22.0.1, but much easier. Hence,
we supply a self-contained proof that doesn’t use Cauchy’s theorem.

Lemma 23.1.3. Let A be a finite abelian group, let p be a prime dividing the order of A. Then A has an
element of order p.

Proof. We prove the result by induction on |A|. The base case |A| = p is clear, of course. In the
general case, let N be a maximal subgroup of A, distinct from A. If p divides the order of N we
are done by induction. Otherwise, let x 6∈ N and let B = 〈x〉. By maximality the subgroup BN
is equal to A. On the other hand |BN| = |B| · |N|/|B ∩ N|. Thus, p divides the order of B. That
is, the order of x is pa for some a and so the order of xa is precisely p. �
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Proposition 23.1.4. There is a p-subgroup of G of order pr.

Proof. We prove the result by induction on the order of G, where the case |G| = p is clear.
Assume first that p divides the order of Z(G). Let x be an element of Z(G) of order p and let
N = 〈x〉, a normal subgroup. The order of G/N is pr−1m and by induction it has a p-subgroup
H′ of order pr−1. (If r− 1 = 0 this still works by taking H′ = {1}.) Let H be the preimage of H′
in G. It is a subgroup of G such that H/N ∼= H′ and thus H has order |H′| · |N| = pr.

Consider now the case where p does not divide the order of Z(G). Consider the class equation

|G| = |Z(G)|+ ∑
reps.x 6∈Z(G)

|G|
|CentG(x)| .

As p divides |G| and not |Z(G)|, we see that for some x 6∈ Z(G) we have that p does not divide
|G|

|CentG(x)| . Thus, pr divides CentG(x). The subgroup CentG(x) is a proper subgroup of G because
x 6∈ Z(G). Thus, by induction, CentG(x), and hence G, has a p-subgroup of order pr. �

This result already has interesting consequences.

Corollary 23.1.5. Let pa1
1 · · · p

at
t be the prime factorization of |G|. Let Pi be a subgroup of G of order pai

i ,
then

G = 〈P1, . . . , Pt〉.

Proof. Indeed, the right hand side is a subgroup of G containing each Pi. Hence, its order is
divisible by pa1

1 · · · p
at
t . It must therefore be equal to G. �

Corollary 23.1.6. (Cauchy’s theorem) Let G be a finite group and p a prime dividing the order of G, then
G has an element of order p.

Proof. If we write |G| = prm with (m, p) = 1 then we know that G has a subgroup P of order pr.
Let x ∈ P be an element different than the identity. Then, by Lagrange, ord(x) = pb for some
positive integer b ≤ r. The element xpb−1

then has order p. �

The next ingredient we will need to prove Sylow’s theorem is a technical lemma about nor-
malizers. It will make more sense when we see it in action in the proof of the theorem.

Lemma 23.1.7. Let P be a maximal p-subgroup and Q any p-subgroup then

Q ∩ P = Q ∩ NG(P).

Proof. Let H = Q∩NG(P). Since PCNG(P) we have that HP is a subgroup of NG(P). Its order is
|H| · |P|/|H ∩ P| and so is a power of p. Since P is a maximal p-subgroup we must have HP = P
and thus H ⊂ P. This means that Q ∩ NG(P) = Q ∩ NG(P) ∩ P = Q ∩ P. �

Proof. (of Sylow’s Theorem) Let P be a Sylow subgroup of G. Such exists by Proposition 23.1.4.
Let

S = {P1, . . . , Pa}
be the set of conjugates of P = P1. That is, the subgroups gPg−1 one gets by letting g vary over G.
Note that for a fixed g the map P→ gPg−1, x 7→ gxg−1 is a group isomorphism. Thus, every Pi
is a Sylow p-subgroup. Our task is to show that every maximal p-subgroup is an element of S
and find properties of a.

Let Q be any p-subgroup of G. The subgroup Q acts by conjugation on S. The size of Orb(Pi)
is |Q|/|StabQ(Pi)|. Now StabQ(Pi) = Q ∩ NG(Pi) = Q ∩ Pi by Lemma 23.1.7. Thus, the orbit
consists of one element if Q ⊂ Pi and is a proper power of p otherwise.

Take first Q to be P1. Then, the orbit of P1 has size 1. Since P1 is a maximal p-subgroup it
is not contained in any other p-subgroup, thus the size of every other orbit is a power of p. It
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follows, using that S is a disjoint union of orbits, that a = 1 + tp for some t. Note also that
a = |G|/|NG(P)| and thus divides |G|.

We now show that all maximal p-subgroups are conjugate. Suppose, to the contrary, that Q
is a maximal p-subgroup which is not conjugate to P. Thus, for all i, Q 6= Pi and so Q ∩ Pi is a
proper subgroup of Q. It follows then that S is a union of disjoint orbit all having size a proper
power of p. Thus, p|a. This is a contradiction. �

23.2. Examples and applications.

23.2.1. p-groups. Every finite p-group is of course the only p-Sylow subgroup (trivial case).

23.2.2. Z/6Z. In every abelian group the p-Sylow subgroups are normal and unique. The 2-
Sylow subgroup is < 3 > and the 3-Sylow subgroup is < 2 >.

23.2.3. S3. Consider the symmetric group S3. Its 2-Sylow subgroups are given by {1, (12)},
{1, (13)}, {1, (23)}. There are thus three of them and note that indeed 3|m = 3!/2 = 3 in this
case, and 3 ≡ 1 (mod 2). The group S3 has a unique 3-Sylow subgroup {1, (123), (132)}. This
is expected since n3|2 = 3!/3 and n3 ≡ 1 (mod 3) implies n3 = 1.

23.2.4. S4. We want to find the 2-Sylow subgroups. Their number is given by n2|3 = 24/8 and
is congruent to 1 modulo 2. It is thus either 1 or 3. Using the expression of a permutation as a
product of disjoint cycles, we see that every element of S4 has order 1, 2, 3 or 4. The number of
elements of order 3 is 8 (the 3-cycles) and so there are 16 elements of order 1, 2 or 4. Thus, we
cannot have a unique subgroup of order 8 (it will need to contain any element of order 1, 2 or 4).
We conclude that n2 = 3. One such subgroup is D8 ⊂ S4; the rest are conjugates of it.

Further, n3|24/3 and n3 ≡ 1 (mod 3). If n3 = 1 then that unique 3-Sylow would need to
contain all 8 element of order 3 but is itself of order 3. Thus, n3 = 4.

Remark 23.2.1. A group of order 24 is never simple, though it does not mean that one of the
Sylow subgroups is normal, as the example of S4 shows. However, consider the representation
of S4 on the cosets of P, where P is its 2-Sylow subgroup. As we have seen in Example 16.0.1,
this coset representation is surjective onto S3 and its kernel is the Kline group V.

The group V is is contained in P and is normal. Thus, it is also contained in all the conjugates
of P; namely, in all the 2-Sylow subgroups. We therefore have the following picture

S4
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|| DD

DD
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yy
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Further, as S4/V ∼= S3, the subgroups P, P′, P′′ are in bijection with the 2-Sylow subgroups of S3
of which there are 3.
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23.2.5. Groups of order pq. Let p < q be primes. Let G be a group of order pq. Then nq|p, nq ≡ 1
(mod q). Since p < q we have nq = 1 and the q-Sylow subgroup is normal (in particular, G
is never simple). Also, np|q, np ≡ 1 (mod p). Thus, either np = 1, or np = q and the last
possibility can happen only for q ≡ 1 (mod p).

We conclude that if p - (q− 1) then both the p-Sylow P subgroup and the q-Sylow subgroup
Q are normal. Note that the order of P ∩ Q divides both p and q and so is equal to 1. Let
x ∈ P, y ∈ Q then [x, y] = (xyx−1)y−1 = x(yx−1y−1) ∈ P ∩ Q = {1}. Thus, PQ, which is equal
to G, is abelian. And it is not hard to prove it is cyclic.

We shall later see that whenever p|(q − 1) there is a non-abelian group of order pq (in fact,
unique up to isomorphism). The case of S3 falls under this.

23.2.6. Groups of order p2q. Let G be a group of order p2q, where p and q are distinct primes. We
prove that G is not simple:

If q < p then np ≡ 1 (mod p) and np|q < p, which implies that np = 1 and the p-Sylow
subgroup is normal.

Suppose that p < q, then nq ≡ 1 (mod q) and nq|p2, which implies that nq = 1 or nq = p2. If
nq = 1 then the q-Sylow subgroup is normal and we are done.

Assume that nq = p2. Each pair of the q-Sylow subgroups, and there are p2 of them, intersects
only at the identity (since q is prime). Hence, together with the identity element, they account
for 1 + p2(q− 1) elements of the group. Suppose that there were 2 p-Sylow subgroups. They
intersect at most at a subgroup of order p (and they intersect any of the q-Sylow subgroups at
the identity alone). Thus, they contribute at least 2p2 − p new elements. All together we got at
least 1 + p2(q− 1) + 2p2 − p = p2q + p2 − p + 1 > p2q elements. That’s a contradiction, and so
if nq 6= 1 we must have np = 1; the p-Sylow subgroup is normal.

Remark 23.2.2. A theorem of Burnside states that a group of order paqb with a + b > 1 is not
simple. We leave it as an exercise that groups of order pqr (p < q < r primes) are not simple.
Note that |A5| = 60 = 22 · 3 · 5 and A5 is simple. A theorem of Feit and Thompson – among the
hardest theorems in mathematics – says that a finite simple group is either of prime order, or of
even order. We can also state it as saying that non-commutative finite simple group has even
order.

23.2.7. GLn(F). Let F be a finite field with q elements. The order of GLn(F) is
(qn − 1)(qn − q) · · · (qn − qn−1) = q(n−1)n/2(qn − 1)(qn−1 − 1) · · · (q − 1). Thus, a p-Sylow has
order q(n−1)n/2. One such subgroup consists of the upper triangular matrices with 1 on the
diagonal (the unipotent group): 

1 ∗ . . . ∗

0 1 · · · ∗
. . .

0 0 . . . 1

 .

See the exercises for further treatment of this example.
Let us look at the particular case of G = GL2(F3), a group with (32− 1)(32− 3) = 48 elements.

As 48 = 243, we are looking for 2-Sylow subgroups and for 3-Sylow subgroups, one of which
we already know. The stabilizer of the unipotent subgroup under conjugation can be checked to
be the upper triangular matrices. And so, the number of 3-Sylow subgroups is 48/12 = 4. How
does a 2-Sylow subgroup Q of G looks like?

To give a subgroup Q of index 3 is to give a transitive action of G on 3 elements, Q being the
stabilizer of one of the elements in this action. Can we find a set of 3 elements on which G acts?
I don’t have a good idea for doing this, but we can find Q in a different way.
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Consider the dihedral group of 8 elements. As this is the group of symmetries of a square in
the plane, we can realize it as matrices in GL2(R); as such, it is generated by the matrices y =( −1

1

)
and x =

(
1

−1
)
. We can view these matrices as having entries in F3 and that way D4 is

realized as a subgroup of GL2(F3) consisting of the matrices
{( ±1

±1

)
,
( ±1
±1

)}
. Now consider

the matrix t =
( −1 1

1 1

)
. It is invertible and t2 =

( −1
−1

)
. So t has order 4, t2 ∈ D4. It is therefore

a good guess that Q = 〈t, D4〉. To check 〈t, D4〉 is a subgroup we need to check that t normalizes
D4. We find that tyt−1 = xy and txt−1 = (txyt−1)(tyt−1) = (t2yt−2)(xy) = yxy = x−1 and that’s
enough to show that t normalizes D4. Now |〈t, D4〉| = |〈t〉| · |D4|/|〈t〉 ∩ D4| = 4 · 8/2 = 16 and
so we may take Q to be 〈t, D4〉.

The number of 2-Sylow subgroups is either 1 or 3. In fact, there are 3, but that requires some
additional work (calculate the conjugate of Q by

(
1 1
0 1

)
).

23.2.8. More examples.

Example 23.2.3. We look now at groups of order 12. We would need to use a surprising amount
of theory to gain insight into their structure and, in fact, we will only be able to complete our
discussion later in §28.5, making use of the theory of semi-direct products.

One can wonder why is the determination of groups of order 12 so complicated. Perhaps the
following will help: a group of order is determined by its multiplication table and for a group
of order 12 this table has 144 cells. A priori in each cell there could be any element of the group
and so we have 12144 possibilities. We can of course improve on that, but not by much: for
example, the column and row of multiplying by the identity are determined, so we really have
121 cells. Further, each row, or column contains every element of G and exactly once. That is,
the multiplication table is a Latin Square, with one predetermined row and one predetermined
column – a so-called reduced Latin square. According to Wikipedia (June 2020) the number of
reduced Latin squares of size 12 is about 1.62× 1044. On the other hand, there are precisely 5
groups of order 12 up to isomorphism, and the size of their automorphism groups is rather
small too, so we may conclude that the number of Latin squares arising as multiplication tables
is tiny in comparison to 1.621044 (in the hundreds, perhaps). This suggest that there is a lot of
structure for groups of order 12 which dramatically cuts down the number of possibilities for
multiplication tables.

Suppose then that G is a group of order 12. If G is abelian, it is a consequence of The-
orem 26.2.1 that either G ∼= Z/4Z × Z/3Z, which is also isomorphic to Z/12Z, or G ∼=
(Z/2Z)2 ×Z/3Z, which is also isomorphic to Z/2Z×Z/6Z (use CRT to show the isomor-
phisms). The p-Sylow subgroups are unique because G is abelian. In the first case they are
Z/4Z×{0} and {0}×Z/3Z and in the second case they are (Z/2Z)2×{0} and {0}×Z/3Z.

Assume now that G is not abelian. Let P be some 2-Sylow of G and Q some 3-Sylow of G.
We claim that we cannot have that both P and Q are normal. If they are, let x ∈ P, y ∈ Q then
xyx−1y−1 ∈ P ∩ Q (read it first as (xyx−1)y−1 to see it is in Q, and then as x(yx−1y−1) to see it
is in P). But P ∩ Q = {1}. Thus, elements of P commute with elements of Q. However, both P
and Q are commutative so we deduce that the subgroup PQ is commutative. But this subgroup
has 12 elements, so G itself is commutative and that is a contradiction. Thus, either P or Q are
not normal.

On the other hand, if Q is not normal, then n3 > 1. As n3|4, n3 ≡ 1 (mod 3), it follows that
n3 = 4. So there are 4 3-Sylow subgroups, say Q = Q1, . . . , Q4. Note that any pair of which
intersects at {1} only. Thus, ∪Qi contains 9 elements. On the other hand, as P doesn’t have an
element of order 3, P ∩ ∪Qi = {1}. As G− ∪Qi has 3 elements and P has 4 elements, we must
have

P = {1} ∪ (G−∪Qi).

Thus, P is uniquely determined and so is normal.
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The situation therefore is as follows: either P is normal, or Q is normal, but not both.

Suppose that P is normal. There is another piece of information here that is completely gen-
eral so we state it as a lemma. We denote by Aut(G) the automorphism group of a group G.
This is the group whose elements are bijective homomorphisms f : G → G, where the group law
is composition. Cf. Exercise 29.

Lemma 23.2.4. Let G be a group and P a normal subgroup of G. There is a homomorphism:

τ : G → Aut(P), g 7→ τg,

where
τg(x) = gxg−1.

If P is abelian, τ induces a homomorphism

τ : G/P→ Aut(P).

Proof. We will be brief here, as part of it is Exercise 29. In general, we have a homomorphism

τ : G → Aut(G),

provided by the same formula. If P is normal, τg(P) = P and so the τ of the lemma is really τg|P
(the restriction of τg to P). If P is abelian and g ∈ P then conjugating by g elements of P is trivial:
gxg−1 = x, ∀g, x ∈ P. That is τg|P is the identity. Hence, by the First Isomorphism Theorem, we
may factor τ through G/P and get a homomorphism τ : G/P→ Aut(P). �

To apply it to our study of groups of order 12 we need another fact, left as an exercise.

Exercise 23.2.5. Let d, n be positive integers.

Aut((Z/nZ)d) ∼= GLd(Z/nZ).

Let return now to the situation where G is a non-abelian group of order 12 and assume that P,
the 2-Sylow subgroup, is normal. If P = Z/4Z then Aut(P) = GL1(Z/4Z) = (Z/4Z)× =
{1, 3} is a group of 2 elements. (Recall that GLd(R) are matrices whose determinant is a unit
of R. In particular, for d = 1, GL1(R) = R×.)

However, by the lemma, we have a homomorphism

G/P→ (Z/4Z)×.

As G/P is a group of order 3, this homomorphism is trivial. That means that P is contained in
the centre of G and in particular Q and P commute. We saw this is not possible. Thus, if P is
normal, we must have P ∼= (Z/2Z)2.

So, to summarize, for non-abelian groups of order 12, we have one of the following situations:
(1) P is normal and Q is not, and P ∼= (Z/2Z)2. (The group A4 has this property where

P = V is the Klein group and Q = 〈(123)〉.)
(2) Q is normal and P is not, and P ∼= (Z/2Z)2. (The group D6 has this property where

P = 〈y, x3〉 and Q = 〈x2〉.)
(3) Q is normal and P is not, and P ∼= Z/4Z. (There is a group with this property. We

denote T; we will later construct it using the theory of semi-direct product.)

Example 23.2.6. Let G be a group of order 231 = 3 · 7 · 11. As n11|21 and n11 ≡ 1 (mod 11)
we must have that n11 = 1. Let R be the unique 11-Sylow subgroup. R is normal. As R has a
prime order R ∼= Z/11Z, is abelian, and Aut(R) ∼= (Z/11Z)× is a group of 10 elements. The
homomorphism

G/R→ Aut(R),
must therefore be trivial (the l.h.s. is a group of order 21). Thus, G has a non-trivial centre; in
fact, R ⊆ Z(G). We leave it as an exercise to show that if G is non-abelian then R = Z(G).
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23.3. Being a product of Sylow subgroups.

Proposition 23.3.1. Let G be a finite group of order pa1
1 pa2

2 · · · p
ar
r , where the pi are distinct primes and

the ai > 0. Choose for every prime pi a Sylow subgroup Pi. Then

G ∼= P1 × P2 × · · · × Pr ⇐⇒ PiCG, ∀i.

Before the proof we need to collect a few more facts. The proofs are easy; in fact, in one way
or another we have seen them in the previous examples, and we leave them as exercises.

Lemma 23.3.2. Let G be a finite group, p 6= q primes dividing the order of G and P, Q corresponding
Sylow subgroups then P ∩Q = {1}.

Lemma 23.3.3. Let G be a group with normal subgroups A, B. If A ∩ B = {1} then the elements of A
commute with those of B, namely, for all a ∈ A, b ∈ B,

ab = ba.

We now prove the Proposition 23.3.1. Suppose that each Pi is normal. Define a function

f : P1 × · · · Pr → G, f (x1, . . . , xr) = x1x2 · · · xr.

Using the lemmas above, we see that Pi and Pj commutes for all i 6= j. A direct verification now
gives that f is a homomorphism. The homomorphism f is surjective because the image contains
f ({1} × · · · × Pi × · · · {1}) = Pi and 〈P1, . . . , Pr〉 is a group whose order is divisible by pai

i for all
i, hence equal to G. As the source has the same number of elements, f is bijective.

Conversely, if G ∼= P1 × P2 × · · · × Pr, then, in the left hand side, each group {1} × · · · × Pi ×
· · · × {1} is a normal pi-Sylow subgroup. Thus, also, in the right hand side, each pi-Sylow is
normal.

Definition 23.3.4. A finite group is called nilpotent if it is a product of its p-Sylow subgroups.

We remark that usually one defines nilpotent completely differently, but it is a theorem that
the other definition is equivalent to the one given here.
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Part 6. Composition series, the Jordan-Hölder theorem and solvable groups

24. COMPOSITION SERIES

24.1. Two philosophies. In the study of finite groups one can sketch two broad philosophies:
The first one, that we may call the “Sylow philosophy” (though such was not made by Sy-

low, I believe), is given a finite group to study its p-subgroups and then study how they fit
together. Sylow’s theorems guarantee that the size of p-subgroup is as big as one can hope for,
guaranteeing the first step can be taken. The theory of p-groups, the second step, is a beautiful
and powerful theory, which is quite successful. I know little about a theory that tells us how
p-groups fit together.12

The second philosophy, that one may call the “Jordan-Hölder philosophy”, suggests given a
group G to find a non-trivial normal subgroup N in G and study the possibilities for G given N
and G/N. The first step then is to hope for the classification of all finite simple groups. Quite
astonishingly, this is possible and was completed towards the end of the last (20th) century.

The second step is figuring out how to create groups G from two given subgroups N and H
such that N will be a normal subgroup of G and G/N will be isomorphic to H. There is a lot
known here. We will shortly study one machinery for that: the semi-direct product N o H.

25. THE JORDAN-HÖLDER THEOREM AND SOLVABLE GROUPS

25.1. Composition series and composition factors. Let G be a group. A normal series for G is
a series of subgroups

G = G0 B G1 B · · · B Gn = {1}.
Unless stated otherwise, we will assume that normal series are strictly descending. A compo-
sition series for G is a series of subgroups

G = G0 B G1 B · · · B Gn = {1},
such that Gi−1/Gi is a nontrivial simple group for all i = 1, . . . , n. The composition factors
are the quotients {Gi−1/Gi : i = 1, 2, . . . , n}. The quotients are considered up to isomorphism,
where the order of the quotients doesn’t matter, but we do take the quotients with multiplicity.
For example, the group D4 has a composition series

D4 B 〈x〉 B 〈x2〉 B {1}.
The composition factors are {Z/2Z, Z/2Z, Z/2Z}. More generally, from our results on p-
groups, we know that any finite p-group has a composition series with quotients Z/pZ.

A group G is called solvable if it has a normal series in which all the composition factors are
abelian groups.

Lemma 25.1.1. Let G be a finite group. Any strictly descending normal series

G = G0 B G1 B · · · B Gn = {1},
for G can be refined to a composition series. Moreover, if the quotients Gi−1/Gi are abelian, then the
quotients for the composition series are groups isomorphic to Z/pZ for some prime p.

Proof. Note that since the series is strictly descending the quotients Gi−1/Gi are non-trivial and
their order divides the order of the group. In fact, |G| = ∏n

i=1 |Gi−1/Gi|. Thus any strictly
descending normal series has bounded length. As a result, it is enough to show that a strictly

12The class of nilpotent groups turns out to be the same as the class of groups that are a direct product of their
p-Sylow subgroups.
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descending normal series that is not a composition series can be refined to a series of longer
length.

Let
G = G0 B G1 B · · · B Gn = {1}

be a strictly descending normal series that is not a composition series. Choose i such that
Gi−1/Gi is not simple. Let H′ be a non-trivial normal subgroup of Gi−1/Gi and let H be the
subgroup of Gi−1 that corresponds to it. We then have

G = G0 B G1 B · · ·Gi−1 B H B Gi B · · · B Gn = {1}.
Note that, indeed, by the correspondence theorem, since in Gi−1/Gi we have (Gi−1/Gi) B H′ B
{1}, indeed Gi−1 B H B Gi and

Gi−1/H ∼= (Gi−1/Gi)/H′, H/Gi
∼= H′.

Thus, we have a longer strictly descending normal series. If the original quotients were abelian
then the new series also has abelian quotients, because (Gi−1/Gi)/H′ is a quotient of the abelian
group Gi−1/Gi (hence abelian) and H′ is a subgroup of an abelian group (hence abelian).

Thus, as explained, by repeating this refinement process finitely many times, we obtain a
composition series. If the original series had abelian quotients, so does the composition series.
The only thing remaining to show that is that a simple finite abelian group must have prime
order.

Let A be a simple finite abelian group. Choose x ∈ A such that x 6= 1. Since 〈x〉 is a non-trivial
subgroup of A, automatically normal, we have 〈x〉 = A. Let p be a prime dividing the order of
x. Then also 〈xp〉 is a normal subgroup and is a proper subgroup of 〈x〉. Thus, we must have
〈xp〉 = {1}. It follows that A has order p. �

Corollary 25.1.2. Let G be a finite group. G is solvable if and only if it has a composition series whose
composition factors are cyclic groups of prime order.

25.2. Jordan-Hölder Theorem. The Jordan-Holder theorem clarifies greatly the yoga behind
the concept of composition series.

Theorem 25.2.1. Let G be a finite group. Any two composition series for G have the same composition
factors (considered with multiplicity).

Note that a consequence of the theorem is that any two composition series have the same
length, since the length determines the number of composition factors.

The proof of the theorem is quite technical, unfortunately. It rests on the following lemma.13

Lemma 25.2.2. (Zassenhaus) Let ACA∗, BCB∗ be subgroups of a group G. Then

A(A∗ ∩ B)CA(A∗ ∩ B∗), B(B∗ ∩ A)CB(B∗ ∩ A∗),

and
A(A∗ ∩ B∗)
A(A∗ ∩ B)

∼=
B(B∗ ∩ A∗)
B(B∗ ∩ A)

.

Before the proof, recall the following facts: (i) Let SCG, T < G be subgroups of a group G. Then
ST is a subgroup of G (and ST = TS). (ii) If also TCG then STCG.

Proof. Let D be the following set:

D = (A∗ ∩ B)(A ∩ B∗).

We show that D is a normal subgroup of A∗ ∩ B∗, D = (A ∩ B∗)(A∗ ∩ B) and

B(B∗ ∩ A∗)
B(B∗ ∩ A)

∼=
A∗ ∩ B∗

D
.

13Our proof follows Rotman’s in An introduction to the theory of groups.
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The lemma then follows from the symmetric role played by A and B.
It is easy to check directly from the definitions that (A∗ ∩ B)CA∗ ∩ B∗ and, similarly, (A ∩

B∗)CA∗ ∩ B∗. It follows that DCA∗ ∩ B∗ and that D = (A ∩ B∗)(A∗ ∩ B). The subtle point of
the proof is to construct a homomorphism

f : B(B∗ ∩ A∗)→ A∗ ∩ B∗

D
.

Let x ∈ B(B∗ ∩ A∗), say x = bc for b ∈ B, c ∈ (B∗ ∩ A∗). Let

f (x) = cD

(which is an element of A∗∩B∗
D .)

First, f is well defined. If x = b1c1 then c1c−1 = b−1
1 b ∈ (B∗ ∩ A∗) ∩ B ⊂ D. As DC(B∗ ∩ A∗)

and c1 ∈ (B∗ ∩ A∗) also c−1c1 ∈ D, and so cD = c1D. Next, f is a homomorphism. Suppose that
x = bc, y = b1c1 and so xy = bcb1c1. Note that cb1c−1 ∈ B (as B is normal in B∗ and c ∈ B∗) and
so xy = bb′cc1 for some b′ ∈ B. It now follows that f (xy) = f (x) f (y).

It is clear from the definition that f is a surjective homomorphism. When is x = bc ∈ Ker( f )?
This happens if and only if c ∈ D, that is x ∈ B(A∗ ∩ B)(A ∩ B∗) = B(A ∩ B∗). This shows that
B(A ∩ B∗)CB(A∗ ∩ B∗) and the desired isomorphism. �

Theorem 25.2.3. Let G be a group. Any two finite composition series for G are equivalent; namely, have
the same composition factors.

Proof. More generally, we prove that any two normal series for G have refinements that are
equivalent; namely, have the same composition factors (with the same multiplicities). This holds
also for infinite groups that may not have composition series, and so is useful in other situations.
In the case of composition series, since they cannot be refined in a non-trivial way because the
quotients are simple groups, we get that any two composition series for G (if they exist at all)
are equivalent.

Thus, consider two normal series of G,

G = G0 B G1 B · · · B Gn = {1},

and
G = H0 B H1 B · · · B Hm = {1}.

First, use the second series to refine the first. Define:

Gij = Gi+1(Gi ∩ Hj).

For fixed i, this is a descending series of sets, beginning at Gi0 = Gi+1Gi = Gi and ending at
Gim = Gi+1. Taking in the Zassenhaus lemma A = Gi+1, A∗ = Gi, B = Hj+1, B∗ = Hj gives us
that Gi,j+1 = A(A∗ ∩ B)CGij = A(A∗ ∩ B∗) (and, in particular, that these are all subgroups).

Similarly, use the first series to refine the second by defining

Hij = Hj+1(Hj ∩ Gi).

As above, the series Hj = H0j ⊃ H1j ⊃ · · · ⊃ Hnj = Hj+1 is a series of subgroups, each normal
in the former. Finally, applying the Zassenhaus lemma again, we find that

Gij

Gi,j+1
=

A(A∗ ∩ B∗)
A(A∗ ∩ B)

∼=
B(B∗ ∩ A∗)
B(B∗ ∩ A)

=
Hij

Hi+1,j
.

This gives a precise matching of the factors. �
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Note that every finite group G has a composition series. While the composition series itself is
not unique, the composition factors are. So, in a sense, the Jordan-Hölder theorem is a unique
factorization theorem for groups. From this point of view, the simplest groups are the so-called
solvable groups; these are the groups with the simplest factors - cyclic groups of prime order.
We therefore now focus our attention on solvable groups for a while.

25.3. Solvable groups. Recall that a group G is called solvable if there is a finite normal series
for G,

G = G0 B G1 B · · · B Gn = {1},
with abelian quotients.

Example 25.3.1. Every abelian group is solvable.

Example 25.3.2. It follows from our results on p-groups that every p-group is solvable.

Example 25.3.3. Any group of order pq, where p < q are primes, is solvable as the q-Sylow is
always normal and the quotient is a group of order p, hence cyclic.

Example 25.3.4. Groups of order p2q are solvable. Indeed, as we have seen, either the p-Sylow
or the q-Sylow is normal. Whatever is the case, not that automatically groups of order p2 and of
order q are abelian.

We leave it as an exercise that a group of order pqr, where p, q, r are distinct primes, is solvable.

Example 25.3.5. A product of solvable groups is solvable.

Of course, not every group is solvable. Any non-abelian simple group (such as An for n ≥ 5,
and PSLn(Fq) for n ≥ 2 and (n, q) 6= (2, 2) or (2, 3)) is non-solvable.

The class of solvable groups is closed under basic operations. More precisely we have the
following results.

Proposition 25.3.6. Let G be a solvable group and K < G a subgroup. Then K is solvable.

Proof. Let
G = G0 B G1 B · · · B Gn = {1},

be a normal series with abelian quotients. Consider the normal series

K = K ∩ G0 B K ∩ G1 B · · · B K ∩ Gn = {1}.
It need not be strictly descending but that is not a problem. It is enough to show that K ∩
Gi−1/K ∩ Gi is abelian. Consider the homomorphism which is the composition

K ∩ Gi−1 → Gi−1 → Gi−1/Gi.

The image is an abelian group and the kernel is K∩Gi. Thus, by the First Isomorphism Theorem,
K ∩ Gi−1/K ∩ Gi is isomorphic to a subgroup of the abelian group Gi−1/Gi, hence abelian. �

Before continuing, it will convenient to introduce some terminology. A sequence of groups
and homomorphisms

· · · // Ga
fa // Ga+1

fa+1 // Ga+2
fa+2 // · · ·

is called exact, if for every a, Im( fa) = Ker( fa+1). If the sequence terminates at Ga there is no
condition on Im( fa), and if it begins with Ga there is no condition on Ker( fa). A short exact
sequence (or ses, for short) is an exact sequence of the sort

1 // G1
f
// G2

g
// G3 // 1 ,
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where 1 stands for the group of 1 element. Note that the maps 1→ G1 and G3 → 1 are uniquely
determined, hence we do not specify them. Thus, this sequence is short exact if f is injective, g
is surjective and Im( f ) = Ker(g).

Proposition 25.3.7. Let

1→ K
f→ G

g→ H → 1
be a short exact sequence of groups. Then G is solvable if and only if both K and H are solvable.

Proof. Assume that G is solvable. We already proved that f (K) < G is solvable. As f : K → f (K)
is an isomorphism, K is solvable too. Let

G = G0 B G1 B · · · B Gn = {1},
be a normal series with abelian quotients. Let

Hi = g(Gi).

The series of subgroups H = H0 > H1 > · · · > Hn = {1} is a series of normal subgroups.
Indeed, for every i, g : Gi−1 → Hi−1 is a surjective homomorphism and so, as Gi is normal in
Gi−1, Hi is normal in Hi−1. We therefore have a normal series

H = H0 B H1 B · · · B Hn = {1}.
We prove that its quotients are abelian. Consider the surjective homomorphism obtained as the
composition

Gi−1 → Hi−1 → Hi−1/Hi.
The kernel contains Gi. Thus, by the first isomorphism theorem we get a surjective homomor-
phism

Gi−1/Gi → Hi−1/Hi.
Therefore, Hi−1/Hi is a quotient of an abelian group and so is abelian too.

Now suppose that K and H are solvable. Thus, we have normal series

H = H0 B H1 B · · · B Hn = {1},
and

K = K0 B K1 B · · · B Km = {1},
with abelian quotients. Let

Ji =

{
g−1(Hi), 0 ≤ i ≤ n
f (Ki−n), n ≤ i ≤ m + n.

.

(Note that f (K0) = f (K) = Ker(g) = g−1(Hn) and so Jn is well defined.) Then Ji is a normal
series with abelian quotients:

Ji−1/Ji
∼=
{

Hi−1/Hi, 0 ≤ i ≤ n
Ki−n−1/Ki−n, n < i ≤ m + n.

.

�

Example 25.3.8. Every group G of order paqb, where p, q is are distinct primes and pa! < paqb has a
non-trivial normal subgroup. Indeed, let Q be the q-Sylow subgroup and let G act on its cosets by
the coset representation. Since the index of Q is pa we get a homomorphism:

f : G → Spa .

As |G| > pa! the kernel of f is not trivial. On the other hand Ker( f ) < Q. Thus, Ker( f ) is a
non-trivial normal subgroup of G.
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Theorem 25.3.9. Every group of order less than 60 is solvable.

Proof. First note that the following integers are prime:

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59.

The following are prime powers:

4, 8, 9, 16, 25, 27, 32, 49.

The following are a product of two distinct primes:

6, 10, 14, 15, 21, 22, 26, 33, 34, 35, 38, 39, 46, 51, 55, 57, 58.

The following are of the form p2q, where p and q are distinct primes:

12, 18, 20, 28, 44, 45, 50, 52.

And, the following are for the form pqr for distinct primes p, q, r:

30, 42.

We already know that groups of the order listed are solvable. The orders left to consider are

24, 36, 40, 48, 54, 56

Of those, 24 = 3 · 23, 36 = 22 · 32, 48 = 3 · 24 and 54 = 2 · 33 are of the form paqb, where p, q is are
distinct primes and pa! < paqb, so they have a non-trivial normal subgroup K. By induction on
the order of the group, both K and G/K are solvable. Hence, by Proposition 25.3.7, G is solvable.
It remains to consider groups of order 40 = 23 · 5 and 56 = 23 · 7.

Let G be a group of order 40. Let P be the 5-Sylow subgroup. As n5|8 and n5 ≡ 1 (mod 5)
we must have n5 = 1 and so P is normal. By induction, the groups P and G/P are solvable and
therefore so is G.

Let G be a group of order 56. Suppose that the 7-Sylow of G is not normal. Then there are eight
7-Sylow subgroups. These already account for a set S consisting of 1 + (7− 1)× 8 = 49 distinct
elements of G. If P is a 2-Sylow subgroup then P ∩ S = {e} and it follows that P = G \ S ∪ {e}.
Since this holds for any 2-Sylow subgroup, we conclude that P is the unique 2-Sylow subgroup
and hence is normal. As above, using induction we find that G is solvable. �

The motivation for the study of solvable groups comes from Galois theory. Let f (x) = xn +
an1 xn−1 + · · ·+ a0 be an irreducible polynomial with rational coefficients. In Galois theory one
associates to f a finite group G f ⊆ Sn, called the Galois group of f . It is a transitive subgroup of
Sn whose exact structure depends on the polynomial. It may be Sn and it may be 〈(1 2 · · · n)〉,
or many other subgroups of Sn. One of Évariste Galois’s main achievements was to prove that
one can solve f in radicals – meaning, express the solutions of f using operations such as taking
roots (of any order), adding and multiplying – if and only if G f is a solvable group. This explains
the origin of the terminology “solvable”.

It follows that there are formulas in radicals to solve equations of degree ≤ 4; every group
that can possibly arise as G f has order less than 60, hence is solvable. On the other hand, one
can produce easily an equation f of degree 5 such that G f = S5, which is not a solvable group.
Indeed, if S5 is solvable, so is A5. But A5 is a non-abelian simple group hence not solvable.

Remark 25.3.10. Here are two theorems concerning solvable groups. The first is hard, but can be
done in a graduate course in algebra. The second is among the most difficult proofs in algebra
ever written. (Please do not use these theorems in the assignments.)

Theorem 25.3.11 (Burnside). Let p, q be primes. A finite group of order paqb is solvable.

Theorem 25.3.12 (Feit-Thompson). Every finite group of odd order is solvable.
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Part 7. Finitely Generated Abelian Groups, Semi-direct Products and Groups of Low Order

26. THE STRUCTURE THEOREM FOR FINITELY GENERATED ABELIAN GROUPS

26.1. Generators. A group G is called finitely generated if there are elements g1, g2, . . . , gn in G
such that G = 〈g1, . . . , gn〉. We saw two interpretations of this: (i) G is the minimal subgroup
of G that contains all the elements g1, . . . , gn (namely, no proper subgroup of G will contain all
these elements). (ii) Every element of G can be written in the form x1x2 · · · xN , where each xi is
either gj or g−1

j for some j.
It is sometimes easier to use the first, seemingly more abstract, definition. For example, con-

sider the elements {(1234), (13), (123), (12345)} of S5. S5 is generated by them. Indeed, the first
two elements generate a copy of D4 and so it follows that every subgroup containing these ele-
ments will have order divisible by 8, 3 and 5 and so will have order divisible by 120, thus equal
to S5. On the other hand, it is a rather unpleasant exercise to explicitly write every one of the
120 permutations in S5 as a product of these generators.

Let G be an abelian group and use additive notation. Then G is finitely generated if and only if
there exist elements g1, g2, . . . , gn of G such that

G =

{
n

∑
i=1

aigi : ai ∈ Z

}
.

Lemma 26.1.1. An abelian group G is finitely generated if and only if for some positive integer n there
is a surjective homomorphism

Zn → G.

Proof. Suppose that G is finitely generated by elements {g1, g2, . . . , gn}. Define a homomor-
phism

Zn → G, (a1, . . . , an) 7→
n

∑
i=1

aigi.

This is a surjective homomorphism.
Conversely, given a surjective homomorphism f : Zn → G, let

gi = f (ei) = f (0, . . . , 1, . . . , 0) (1 in the i-th place).

Every element of G is of the form f (a1, . . . , an) for some ai ∈ Z. But, f (a1, . . . , an) = ∑n
i=1 ai f (ei) =

∑n
i=1 aigi and so G is generated by {g1, g2, . . . , gn}. �

26.2. The structure theorem. The structure theorem for finitely generated abelian groups will
be proven in the next semester as a corollary of the structure theorem for modules over a prin-
cipal ideal domain. That same theorem will also yield the Jordan canonical form of a matrix,
which we have already studied in the course in Linear Algebra. It is really the “correct way” to
prove both these theorems, hence we defer the proof to that time.

Theorem 26.2.1. Let G be a finitely generated abelian group. Then there exists a unique data consisting
of a non-negative integer r, and integers 1 < n1|n2| . . . |nt (t ≥ 0) such that

G ∼= Zr ×Z/n1Z× · · · ×Z/ntZ.

Remark 26.2.2. The integer r is called the rank of G. The subgroup in G that corresponds to
Z/n1Z × · · · ×Z/ntZ under such an isomorphism is canonical (independent of the isomor-
phism). It is the subgroup of G consisting of all elements of finite order; it is called the torsion
subgroup of G and sometime denoted Gtor. On the other hand, the subgroup corresponding to
Zr is not canonical and depends very much on the isomorphism.
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A group is called free abelian group if it is isomorphic to Zr for some r (the case t = 0 in the
theorem above). In this case, elements x1, . . . , xr of G that correspond to a basis of Zr are called
a basis of G; every element of G has the form a1x1 + · · ·+ arxr for unique integers a1, . . . , ar.

The Chinese Remainder Theorem gives that if n = pa1
1 · · · p

as
s , pi distinct primes, then

Z/nZ ∼= Z/pa1
1 Z× · · · ×Z/pas

s Z.

Thus, one could also write an isomorphism G ∼= Zr ×∏i Z/pbi
i Z for suitable primes and expo-

nents. More precisely, we have the following variant of the structure theorem:

Theorem 26.2.3. Let G be a finitely generated abelian group. There exists a unique data consisting
of a non-negative integer r, unique primes p1, . . . , ps (s ≥ 0), and for each prime pa unique integers
0 < ba,1 ≤ · · · ≤ ba,na , such that

G ∼= Zr ×
s

∏
a=1

Z/pba,1
a × · · · ×Z/pba,na

a .

We shall also prove the following corollary in greater generality next semester.

Corollary 26.2.4. Let G, H be two free abelian groups of rank r. Let f : G → H be a homomorphism
such that G/ f (H) is a finite group. There are bases, x1, . . . , xr of G and y1, . . . , yr of H, and integers
1 ≤ n1| . . . |nr such that f (yi) = nixi.

Example 26.2.5. Let G be a finite abelian p-group, |G| = pn. Then G ∼= Z/pa1
1 Z× · · · ×Z/pas

s Z

for unique ai satisfying 1 ≤ a1 ≤ · · · ≤ as and a1 + · · ·+ as = n. It follows that the number of
isomorphism classes of finite abelian groups of order pn is p(n) (the partition function of n).

27. SEMI-DIRECT PRODUCTS

Semi-direct products are a powerful method to create new groups, or to describe very pre-
cisely the structure of certain groups. They appear often in applications.

Given two groups B, N we have formed their direct product G = N × B. Identifying B, N with
their images {1} × B, N × {1} in G, we find that: (i) G = NB, (ii) NCG, BCG, (iii) N ∩ B = {1}.
Conversely, one can easily prove that if G is a group with subgroups B, N such that: (i) G = NB,
(ii) NCG, BCG, (iii) N ∩ B = {1}, then G ∼= N × B. The definition of a semi-direct product
relaxes the conditions a little.

Definition 27.0.1. Let G be a group and let B, N be subgroups of G such that: (i) G = NB; (ii)
N ∩ B = {1}; (iii) NCG. Then we say that G is a semi-direct product of N and B.

Let N be any group. Let Aut(N) be the set of automorphisms of the group N. It is a group in
its own right under composition of functions.

Let B be another group and φ : B→ Aut(N), b 7→ φb be a homomorphism (so φb1b2 = φb1 ◦
φb2). Define a group, called the semi-direct product of N and B relative to φ

G = N oφ B

as follows: as a set G = N × B, but the group law is defined as

(n1, b1)(n2, b2) = (n1 · φb1(n2), b1b2).
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We check associativity:

[(n1, b1)(n2, b2)](n3, b3) = (n1 · φb1(n2), b1b2)(n3, b3)

= (n1 · φb1(n2) · φb1b2(n3), b1b2b3)

= (n1 · φb1(n2 · φb2(n3)), b1b2b3)

= (n1, b1)(n2 · φb2(n3), b2b3)

= (n1, b1)[(n2, b2)(n3, b3)].

The identity is clearly (1N , 1B). The inverse of (n2, b2) is (φb−1
2
(n−1

2 ), b−1
2 ). Thus G is a group.

The two bijections

N → G, n 7→ (n, 1); B→ G, b 7→ (1, b),

are group isomomorphisms. We identify N and B with their images in G. We claim that G is
indeed a semi-direct product of N and B: Clearly the first two properties of the definition hold.
It remains to check that N is normal and it’s enough to verify that B ⊂ NG(N). According to the
calculation above:

(1, b)(n, 1)(1, b−1) = (φb(n), 1).

The last formula is interesting: the construction of the semi-direct product G = N oφ B trans-
forms the abstract action of B on N provided by φ : B→ Aut(N), into conjugation inside the
group G.

We now claim that every semi-direct product is obtained this way: Let G be a semi-direct prod-
uct of N and B. Let φb : N → N be the map n 7→ bnb−1. That is, φb(n) = bnb−1. This is an
automorphism of N and the map

φ : B→ Aut(N)

is a group homomorphism. We claim that N oφ B ∼= G. Indeed, define a map

(n, b) 7→ nb.

It follows from the definition that the map is surjective. It is a group homomorphism, because
(n1 · φb1(n2), b1b2) 7→ n1φb1(n2)b1b2 = n1b1n2b−1

1 b1b2 = (n1b1)(n2b2). It is also injective since
nb = 1 implies that n = b−1 ∈ N ∩ B, hence n = 1.

The construction of direct product also follows into this paradigm. To be precise:

Proposition 27.0.2. A semi-direct product N oφ B is the direct product N × B if and only if the homo-
morphism φ : B→ Aut(N) is the trivial homomorphism.

Proof. Indeed, we get the direct product if and only if for all pairs (n1, b1), (n2, b2) we have
(n1φb1(n2), b1b2) = (n1n2, b1b2). That is, iff for all b1, n2 we have φb1(n2) = n2, which implies
φb1 = id for all b1. That is, φ is the trivial homomorphism. �

Example 27.0.3. The Dihedral group D2n is a semi-direct product. Take N =< x >∼= Z/nZ and
B =< y >∼= Z/2Z. Then D2n ∼= Z/nZ oφ Z/2Z with φ1 = −1.

27.1. Application to groups of order pq. We have seen in § 23.2.5 that if p < q and p - (q− 1)
then every group of order pq is abelian. Assume therefore that p|(q− 1).

Proposition 27.1.1. If p|(q− 1) there is a unique non-abelian group of order pq, up to isomorphism.
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Proof. Let G be a non-abelian group of order pq. We have seen that in every such group G the q-
Sylow subgroup Q is normal. Let P be any p-Sylow subgroup. Then P ∩Q = {1} and G = QP.
Thus, G is a semi-direct product of Q and P.

It is thus enough to show then that there is a non-abelian semi-direct product and that any
two such products are isomorphic. We may consider the case Q = Z/qZ, P = Z/pZ.

Lemma 27.1.2. Aut(Q) = (Z/qZ)×.

Proof. Since Q is cyclic any group homomorphism f : Q→ H is determined by its value on a
generator of Q, say the generator 1. Conversely, if h ∈ H is of order dividing q then there is such
a group homomorphism with f (1) = h.

Now, take H = Q. The image of f is the cyclic subgroup 〈h〉 and thus f is surjective (equiv-
alently, isomorphic) iff h is a generator. Thus, any element h ∈ (Z/qZ)× determines an auto-
morphism fh of Q by a 7→ fh(a) := ha, and every automorphism must have this shape. Note
that fh( fg)(a) = fh(ga) = hga = fhg(a) and so the association h ↔ fh is a group isomorphism
(Z/qZ)× ∼= Aut(Q). �

Since (Z/qZ)× is a cyclic group of order q − 1 (Corollary 4.2.3), and since by assumption
p|(q− 1), there is an element h of exact order p in (Z/qZ)×. We denote, as above, the matching
element in Aut(Z/qZ) by fh.

Let φ be the homomorphism determined by φ1 = fh and let G = Q oφ P. We claim that G is
not abelian.

(n, 0)(0, b) = (n, b), (0, b)(n, 0) = (φb(n), b).

The two are always equal only if φb(n) = n for all b and n, i.e., φb = Id for all b, but choosing
b = 1 we get φ1 = fh, which is not the identity map. Contradiction.

We now show that G is unique up to isomorphism. If H is another such semi-direct product
then H = Z/qZ oψ Z/pZ, where ψ1 is an element of order p (if it is the identity H is abelian)
and thus ψ1 = φr

1 = φr for some r prime to p.
Define a map

Z/qZ oψ Z/pZ→ Z/qZ oφ Z/pZ, (n, b) 7→ (n, rb).

This function is easily checked to be injective, hence bijective. We check it is a group homomor-
phism:

In G we have (n1, rb1)(n2, rb2) = (n1 + φrb1(n2), r(b1 + b2)) = (n1 + ψb1(n2), r(b1 + b2)). This
is the image of the element t := (n1 + ψb1(n2), b1 + b2) of H; but t is the product (n1, b1)(n2, b2)
in H. The finishes the proof of the Proposition. �

Example 27.1.3. Is there a non-abelian group of order 165 = 3 · 5 · 11 containing Z/55Z?
In such a group G, the subgroup Z/55Z would be normal (because, say, its index is the min-

imal prime dividing the order of G – see Exercise 37). Since there is always a 3-Sylow, we con-
clude that G is a semi-direct product Z/55Z o Z/3Z. This is determined by a homomorphism
Z/3Z → Aut(Z/55Z) ∼= (Z/55Z)×. The right hand side has order ϕ(55) = 4 · 10. Thus, the
homomorphism is trivial and G is a direct product. It follows that G must be commutative.

27.2. Cases where two semi-direct products are isomorphic. It is useful to generalize the ar-
guments showing that all non-trivial semi-direct products Z/qZ oφ Z/pZ are isomorphic.

Let φ : B→ Aut(N), b 7→ φb, be a homomorphism and consider the group

G = N oφ B.

Consider two automorphisms of groups

f : N → N, g : B→ B.
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Let S be G, considered merely as a set, and consider the bijective self map h defined by

h : S→ S, (n, b) h7→ ( f (n), g(b)).

We may define a new group law on S by “transport of structure”; that is, let

(n1, b1) ∗ (n2, b2) = h
[

h−1(n1, b1) · h−1(n2, b2)
]

= h
[
( f−1(n1), g−1(b1)) · ( f−1(n2), g−1(b2))

]
= h

[
( f−1(n1) · φg−1(b1)

( f−1(n2)), g−1(b1) · g−1(b2))
]

= (n1 · ( f ◦ φg−1(b1)
◦ f−1)(n2), b1b2)

Clearly, S with the new group law is isomorphic as a group to G; the isomorphism is provided
by h : G → S. Let

ψ : B→ Aut(N), ψb := f ◦ φg−1(b) ◦ f−1.
Then ψ is a group homomorphism, and we have the isomorphism

G = N oφ B ∼= N oψ B,

where the isomorphism is
(n, b) 7→ ( f (n), g(b)).

It is sometimes convenient to replace g by g−1 and conclude the following

Summary: Let
ψ : B→ Aut(N), ψb := f ◦ φg(b) ◦ f−1.

Then ψ is a group homomorphism, and we have the isomorphism

G = N oφ B ∼= N oψ B, (n, b) 7→ ( f (n), g−1(b)).

To illustrate, in the case of groups of order pq we took f = id and let g vary over all possible
automorphisms of Z/pZ so see that as g varies the maps ψ that we get are all the non-zero
homomorphisms Z/pZ→ (Z/qZ)× thereby proving the uniqueness of non-abelian groups of
order pq.
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28. GROUPS OF LOW, OR SIMPLE, ORDER

28.1. Groups of prime order. Let p be a prime and G a group of order p. We have seen that all
such groups are cyclic. By Example 7.1.2, the unique cyclic group of order p up to isomorphism
is Z/pZ.

28.2. Groups of order p2. Every such group is abelian. By the structure theorem it is either
isomorphic to Z/p2Z or to Z/pZ×Z/pZ.

28.3. Groups of order pq, p < q primes. This case was discussed in § 27.1 above. We summarize
the results: there is a unique abelian group of order pq and it is cyclic. If p - (q− 1) then every
group of order pq is abelian. If p|(q− 1) there is a unique non-abelian group up to isomorphism;
it can be taken as any non trivial semi-direct product Z/qZ o Z/pZ.

28.3.1. Groups of order 1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 13, 14, 15. The results about groups of prime order
and of order pq, p ≤ q allow us to determine the following possibilities:

order abelian groups non-abelian groups

1 {1}
2 Z/2Z

3 Z/3Z

4 Z/2Z×Z/2Z, Z/4Z

5 Z/5Z

6 Z/6Z S3

7 Z/7Z

9 Z/3Z×Z/3Z, Z/9Z

10 Z/10Z D5

11 Z/11Z

13 Z/13Z

14 Z/14Z D7

15 Z/15Z

28.4. Groups of order 8. We know already the structure of abelian groups of order 8: (Z/2Z)3,
Z/2Z×Z/4Z, Z/8Z. We also know two non-isomorphic non-abelian groups of order 8: the
dihedral group D4 and the quaternion group Q (in Q there are six elements of order 4, while in
D4 there are two).

We prove that every non-abelian group G of order 8 is isomorphic to either D4 or Q. Suppose
that G has a non-normal subgroup of order 2. Then the kernel of the coset representation G → S4
is trivial. Thus, G is a 2-Sylow subgroup of S4, but so is D4. Since all 2-Sylow subgroups are
conjugate, hence isomorphic, we conclude that G ∼= D4.
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Thus, assume that G doesn’t have a non-normal subgroup of order 2. Consider the center
Z(G) of G. We claim that the center has order 2. Indeed, otherwise G/Z(G) is of order 2 hence
cyclic. But G/Z(G) can never be a non-trivial cyclic group (see Lemma 21.1.1).

We now claim that Z(G) = {1, z} is the unique subgroup of G of order 2. Indeed, if {1, h} =
H < G is a subgroup of order 2 it must be normal by hypothesis. Then, for every g ∈ G,
ghg−1 = h, i.e. h ∈ Z(G) and so H = Z(G).

It follows that every element x in G apart from 1 or z has order 4, and so every such x satisfies
x2 = z. Rename z to−1 and the rest of the elements (which are of order 4, so come in pairs) may
then denoted by i, i−1, j, j−1, k, k−1. Since i2 = j2 = k2 = −1 we can write i−1 = −i, etc.

Note that the subgroup 〈i, j〉 must be equal to G and so i and j do not commute. Thus, ij 6=
1,−1, i,−i, j,−j (for example, ij = −i implies that j = (−i)ij = (−i)2 = −1 and so commutes
with i). Without loss of generality ij = k and then ji = −k (because the only other possibility is
ji = k which gives ij = ji). We therefore get the relations (the new ones are easy consequences):

G = {±1,±i,±j,±k}, i2 = j2 = k2 = −1, ij = −ji = k.

This determines completely the multiplication table of G which is identical to that of Q. Thus,
G ∼= Q.

28.5. Groups of order 12. We continue our discussion from Example 23.2.3. We know that the
abelian groups are Z/12Z and Z/2Z×Z/6Z. We are also familiar with the groups A4 and D6.
One checks that in A4 there are no elements of order 6 so these two groups are not isomorphic.

Note that in A4 a 3-Sylow is not normal, but the 2-Sylow subgroup is normal (it is the Klein
group V = {1, (12)(34), (13)(24), (14)(23)}). Note that in D6 the 3-Sylow is normal. It is given
by {1, x2, x4}. To see it is normal one can note that the rest of the elements of D6 are the 6
reflections and the rotations x, x3, x5, none of which is an element of order 3. As conjugation
preserves order, the conclusion follows.

As we have already seen, in a non-abelian group of order 12 = 223, either the 3-Sylow is
normal or the 2-Sylow is normal, but not both.

We conclude that a non-abelian group of order 12 is the semi-direct product of a group of
order 4 and a group of order 3. For example, one checks that

A4 = (Z/2Z×Z/2Z)o Z/3Z,

and
D6 = (Z/2Z×Z/2Z)n Z/3Z.

We have already explained that every semi-direct product Z/4Z o Z/3Z is actually a direct
product and so is commutative. Let us then consider a semi-direct product Z/4ZnZ/3Z Here
1 ∈ Z/4Z acts on Z/3Z as multiplication by −1. This gives a non-abelian group with a cyclic
group of order 4 that is therefore not isomorphic to the previous groups. Call it T:

T = Z/4Z n Z/3Z.

The proof that these are all the non-abelian groups of order 12 is easy given the results of
§27.2. We already know that every such group is a non-trivial semi-direct product (Z/2Z×
Z/2Z)o Z/3Z, (Z/2Z×Z/2Z)n Z/3Z or Z/4Z n Z/3Z.

A non-trivial homomorphism Z/3Z→ Aut(Z/2Z×Z/2Z) = GL2(F2) ∼= S3 corresponds
to an element of order 3 in S3. All those elements are conjugate and by § 27.2 all these semi-direct
products are isomorphic.

A non-trivial homomorphism Z/2Z×Z/2Z→ Aut(Z/3Z) ∼= Z/2Z is determined by its
kernel which is a subgroup of order 2 = line in the 2-dimensional vector space Z/2Z×Z/2Z

over Z/2Z. The automorphism group of Z/2Z×Z/2Z acts transitively on lines and by § 27.2
all these semi-direct products are isomorphic.
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A non-trivial homomorphism Z/4Z→ Aut(Z/3Z) ∼= Z/2Z is uniquely determined.

29. FREE GROUPS, GENERATORS AND RELATIONS

Let X be a set. It will be called the alphabet. A word ω in the alphabet X is a finite string
ω = ω1ω2 . . . ωn, where each ωi is equal to either x ∈ X or x−1 for x ∈ X. Here x−1 is a formal
symbol. So, for example, if X = {x} then words in X are x, xxx−1x, ∅, etc. If X = {x, y} we
have as examples x, y, x−1yyxy, x−1y−1y, and so on. We say that two words ω, σ are equivalent
words if one can get from one word to the other performing the following basic operations:

Replace ω1 . . . ωixx−1ωi+1 . . . ωn and ω1 . . . ωix−1xωi+1 . . . ωn by ω1 . . . ωiωi+1 . . . ωn, and the op-
posite of those operations (i.e., inserting xx−1 or x−1x at some point in the word).

We denote this equivalence relation by ω ∼ σ. For example, for X = {x, y} we have

x ∼ xyy−1 ∼ xyxx−1y−1 ∼ xyy−1yxx−1y−1.

A word is called reduced if it does not contain a string of the form xx−1 or x−1x for some x ∈ X.

We now construct a group F (X) called the free group on X as follows. The elements of the
group F (X) are equivalence classes

[ω] = {σ|σ ∼ ω}
of words in the alphabet X. Multiplication is defined using representatives:

[σ][τ] = [στ]

(the two words are simply written one after the other). It is easy to see that this is well-defined
on equivalence classes: the operations performed on σ to arrive at an equivalent word σ′ can be
performed on the initial part of στ to arrive at σ′τ, etc. The identity element is the empty word;
we also denote it 1, for convenience. The inverse of [ω] where ω = ω1 . . . ωn is the equivalence
class of ω−1

n . . . ω−1
1 (where we define (x−1)−1 = x for x ∈ X). Finally, the associative law is

clear. We have constructed a group. Clearly this group depends up to isomorphism only on
the cardinality of the set X. Name, if we have a bijection of sets X ∼= Y then it induces an
isomorphism F (X) ∼= F (Y); for that reason we may denote F (X) simply by F (d), where d is
the cardinality of X.

29.1. Properties of free groups. The group F (d) has the following properties:
(1) Given a group G, and d elements s1, . . . sd in G, there is a unique group homomorphism

f : F (d)→ G such that f (xi) = si. Indeed, one first defines for a word y1 . . . yt, yi =
xei

n(i), ei ∈ {±1}, f (y1 · · · yt) = se1
n(1) · · · s

et
n(t). One checks that equivalent words have the

same image and so one gets a well defined function F (d)→ G. It is easily verified to be
a homomorphism.

(2) If G is a group generated by d elements there is a surjective group homomorphism
F (d)→ G. This follows immediately from the previous point. If s1, . . . , sd are gener-
ators take the homomorphism taking xi to si.

(3) If w1, . . . wr are words in F (d), let N be the minimal normal subgroup containing all the
wi (such exists!). The group F (d)/N is also denoted

〈x1, . . . , xd|w1, . . . , wr〉
and is said to be given by the generators x1, . . . xd and relations w1, . . . , wr. For example,
one can prove the isomorphisms Z ∼= F (1), Z/nZ ∼= 〈x1|xn

1 〉, Z2 ∼= 〈x1, x2|x1x2x−1
1 x−1

2 〉,
S3 ∼= 〈x1, x2|x2

1, x3
2, (x1x2)2〉, D2n ∼= 〈x, y|xn, y2, xyxy〉. This is discussed in more detail

below.
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(4) If d = 1 then F (d) ∼= Z, but if d > 1 then F (d) is a non-commutative infinite group. In
fact, for every k, Sk is a homomorphic image of F (d) if d ≥ 2. And since Sk is not abelian
for k ≥ 3, so must be the groups F (d) for d ≥ 2

29.2. Reduced words.

Theorem 29.2.1. Any word is equivalent to a unique reduced word.

Proof. It is clear that every word is equivalent to some reduced word. We need to show that two
reduced words that are equivalent are in fact equal. Let ω and τ be equivalent reduced words.
Then, there is a sequence

ω = σ0 ∼ σ1 ∼ · · · ∼ σn = τ,

where at each step we either insert, or delete, one couple of the form xx−1 or x−1x, x ∈ X. Let
us look at the lengths of the words. The length function, evaluated along the chain, receives a
relative minimum at ω and τ. Suppose it receives another relative minimum first at σr (so the
length of σr−1 is bigger than that of σr and the length of σr is smaller than that of σr+1. We can
take σr and reduce it by erasing repeatedly pairs of the form xx−1, or x−1x, until we cannot do
that any more. We get a chain of equivalences σr = α0 ∼ α1 ∼ · · · ∼ αs, where αs is a reduced
word. We now modify our original chain to the following chain

ω = σ0 ∼ σ1 ∼ · · · ∼ σr = α0 ∼ · · · ∼ αs−1 ∼ αs ∼ αs−1 ∼ · · · ∼ α0 = σr ∼ σr+1 . . . σn = τ.

A moment reflection shows that by this device, we can reduce the original claim to the following.

Let σ and τ be two reduced words that are equivalent as follows:

ω = σ0 ∼ σ1 ∼ · · · ∼ σn = τ

where the length increases at every step from σ0 to σa and decreases from σa to σn = τ. Then σ = τ.

We view σ and τ as two reduced words obtained by cancellation only from the word σa. We
argue by induction on the length of σa.

If σa is reduced, there’s nothing to prove because then necessarily 0 = a = n and we are
considering a tautology. Else, there is a pair of the form dd−1 or d−1d in σa. We allow ourselves
here (d−1)−1 = d and then we may say that there is a pair dd−1 where d or d−1 are in X. Let
us highlight that pair using a yellow marker and keep track of it. If in the two cancellations
processes (one leading to σ, the other to τ) the first step is to delete the highlighted pair, then
using induction for the word σa with the highlighted pair deleted, we may conclude that σ = τ.
If in the cancellation process leading to σ at some point the highlighted pair is deleted, then we
may change the order of the cancellations so that the highlighted pair is deleted first. Similarly
concerning the reduction to τ. And so, in those cases we return to the previous case. Thus,
we may assume that in either the reduction to σ, or the reduction to τ, the highlighted pair is
not deleted. Say, in the reduction to σ. How then can σ be reduced? The only possibility is
that at some point in the reduction process (not necessarily the first point at which it occurs)

we arrive at a word of the form · · · d−1 dd−1 · · · or · · · dd−1 d · · · and then it is reduced to

· · ·d−1 dd−1 · · · or · · · dd−1 d · · · . But note that the end result is the same as if we strike out
the highlighted pair. So we reduce to the previous case. �

Note that as a consequence, if ω ∈ [ω] is a word whose length is the minimum of the lengths
of all words in [ω] then ω is the unique reduced word in the equivalence class [ω].
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29.3. Generators and relations. Let X be a set. Denote by F (X) the free group on X, as above.
Let R = {rα} a collection of words in the alphabet X. We define the group G generated by X,
subject to the relations R as follows. Let N be the minimal normal subgroup of F (X) containing
[r] for all r ∈ R. Define G as F (X)/N. Note that in G any word r ∈ R becomes trivial. Note
also that G is a universal object for this property. Namely, given a function f : X → H, H a
group, such that f (r) = 1H for all r ∈ R (where if r = ω1 . . . ωn, ωi = x±1 for x ∈ X, then
f (r) := f (ω1) · · · f (ωn) (with f (x−1) := f (x)−1)), there is a unique homomorphism F : G → H
such that F([r] (mod N)) = f ([r]). We denote G also by

〈X|R〉.

A presentation of a group H is an isomorphism

H ∼= 〈X|R〉

for some X and R. A group can have many presentations. There is always the tautological
presentation. Take X = {g : g ∈ G} - we write g so that we can distinguish between g as an
element of the group G and g an element of X, and take

R = {r = ω1 . . . ωn : in the group G we have that the product ω1 · · ·ωn = 1G}.

But usually there are more interesting, and certainly more economical presentations.

(1) Let F (X)′ be the commutator subgroup of F (X) then 〈X : F (X)′〉 is a presentation
of the free abelian group on X. But, for example, for X = {x, y}, we have the more
economical presentation

〈{x, y} : xyx−1y−1〉.
Lets prove it. First, from the universal property, since in Z2 all commutators are trivial,
there is a unique homomorpism

〈{x, y} : xyx−1y−1〉 → Z2, x 7→ (1, 0), y 7→ (0, 1).

Clearly this is a surjective homomorphism. Define now a homomorphism

Z2 → 〈{x, y} : xyx−1y−1〉, f (m, n) = xmyn.

We need to show that f is a homomorphism. Namely, that in the group 〈{x, y} : xyx−1y−1〉
we have

xaybxcyd = xa+cyb+d.

It’s enough to show that xy = yx because then we may pass the powers of x through
those of y one at the time. But we have the equality yx = (xyx−1y−1)(yx) = xy. It is easy
to check that f is an inverse to the previous homomorphism.

(2) Sn is generated by the permutations (12) and (12 · · · n) and so it follows that it has a
presentation of the kind 〈{x, y} : R〉 for some set of relations R; for example, R could be
the kernel of the surjective homomorphism F ({x, y})→ Sn that takes x to (12) and y to
(12 · · · n). As such, R is an infinite set. But, can we replace R be a finite list of relations?
The answer is yes. It follows from the following two theorems, that we will not prove
in this course. One reason for that being that the best proofs use the theory of covering
spaces and fundamental groups that we do not assume as prerequisites to this course.

Theorem 29.3.1. (Nielsen-Schreier) A subgroup of a free group is free.

Theorem 29.3.2. Let F be a free group of rank r and let H be a subgroup of F of finite index h.
The H is free of rank h(r− 1) + 1.
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It follows that we can determine all the relations in Sn as a consequence of certain
n! + 1 relations. However, this is far from optimal. For example, S3 has the presentation

〈{x, y} : x2, y3, xyxy〉
The explanation for this particular saving is that we take the minimal normal subgroup
generated by the relations and not the minimal subgroup generated by the relations.
In this example, the minimal normal subgroup generated by these relations has rank
7 = 3! + 1, while the minimal subgroup generated by these relations has rank at most 3.
We leave it as an exercise to prove that this is indeed a presentation for S3 and to find a
similar presentation for S4.

(3) After experimenting a little with examples, one easily concludes that it is in general dif-
ficult to decide whether a finitely presented group is isomorphic to a given one. In fact,
a theorem (which is essentially “the word problem” for groups) says that there is no al-
gorithm that given as an input a finite presentation 〈X|R〉, X and R finite, will decide in
finite time whether this is a presentation of the finite group or not.

29.4. Some famous problems in group theory. Fix positive integers d, n. The Burnside prob-
lem asks if a group generated by d elements in which every element x satisfies xn = 1 is finite.
Every such group is a quotient of the following group B(d, n): it is the free group F (d) generated
by x1, . . . , xd moded out by the minimal normal subgroup containing the expressions f n where
f is an element of F (d). It turns out that in general the answer is negative; B(d, n) is infinite for
d ≥ 2, n ≥ 4381, n odd. There are some instances where it is finite: d ≥ 2, n = 2, 3, 4, 6.

One can then ask, is there a finite group B0(d, n) such that every finite group G, generated by
d elements and in which f n = 1 for every element f ∈ G, is a quotient of B0(d, n)? E. Zelmanov,
building on the work of many others, proved that the answer is yes. He received the 1994 Fields
medal for this.

The word problem asks whether there is an algorithm (guaranteed to stop in finite time) that
determines whether a finitely presented group, that is a group gives by generators and relations
as 〈x1, . . . , xd|w1, . . . , wr〉 for some integers d, r, is the trivial group or not. It is known that the
answer to this question (and almost any variation on it!) is no. This has applications to topology.
It is known that every finitely presented group is the fundamental group of a manifold14 of
dimension 4. It then follows that there is no good classification of 4-manifolds. If one can decide
if a manifold X is isomorphic to the 4-dimensional sphere or not, one can decide the question
of whether the fundamental group of X is isomorphic to that of the sphere, which is the trivial
group, and so solve the word problem.

14A manifold of dimension 4 is a space that locally looks like R4. The fundamental group is a topological construction
that associate a group to any topological space. The group has as its elements equivalent classes of closed loops in
the space, starting and ending at some arbitrarily chosen point, where if we can deform, within the space, one loop
to another we consider them as the same element of the fundamental group.
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Part 8. Complex representations of finite groups

30. THE SETTING AND THE MAIN THEOREMS

30.1. Basic definitions and conventions. In this part of the notes, a vector space V would always
denote a finite dimensional vector space over the complex numbers. If V, W, are vector spaces
then

Hom(V, W),
denotes the C-linear maps T : V →W; Hom(V, W) is a C-vector space whose dimension is
dim(V) · dim(W). A particular case is

End(V) := Hom(V, V),

which is not just a C-vector space of dimension dim(V)2, but in fact a ring under addition of
linear maps and where multiplication is given by composition of maps. By

Aut(V)

we mean the invertible elements of End(V), namely, all the invertible linear transformations
T : V → V. Throughout, G denotes a finite group.

The main definition of this part of the course is the following:

Definition 30.1.1. A finite dimensional linear representation of G is a homomorphism

ρ : G → Aut(V),

for some finite dimensional vector space V.

We will usually just say “representation” and not “finite-dimensional linear representation”,
which is a bit of a mouthful. Note: a representation of G is really two pieces of data: (i) ρ and
(ii) V. And so, we will often say that (ρ, V) is a representation of G. Also note that when we
are given a representation, the group G acts on the set V in the sense of groups actions on sets,
albeit in a very particular way – through linear invertible transformations.

Definition 30.1.2. A morphism of representations T : (ρ1, V1)→ (ρ2, V2) is a linear map

T : V1 → V2,

such that
ρ2(g) ◦ T = T ◦ ρ1(g), ∀g ∈ G.

In diagram:

V1
ρ1(g)

//

T
��

V1

T
��

V2
ρ2(g)

// V2

, ∀g ∈ G.

An isomorphism of representations is such a bijective morphism T.

There is therefore an important distinction. Even if V1, V2 are representations of G we use
Hom(V1, V2) to denote the linear maps from V1 to V2. We shall use

HomG(V1, V2)

to denote the morphisms of representations (ρ1, V1)→ (ρ2, V2). It is a subspace of Hom(V1, V2)
(and more on that below). A more accurate notation for HomG(V1, V2) is HomG((ρ1, V1), (ρ2, V2))
but we shall avoid if we can, because it is harder to read.
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Let (ρ, V) be a representation of G. A sub-representation is a subspace W ⊆ V such that for all
g ∈ G we have

ρ(g)(W) ⊆W.

In fact, we then have necessarily ρ(g)(W) = W because ρ(g) is invertible and so ρ(g)(W)
and W have the same dimension. In that case (ρ|W , W) is a representation and the inclusion
map (ρ|W , W)→ (ρ, V) is a morphism of representations. Note that V and {0} are always sub-
representations and we shall refer to them as trivial sub-representations.

The following definition is one of the key concepts.

Definition 30.1.3. A representation (ρ, V) is called irreducible if V 6= {0} and its only sub-
representations are the trivial ones.

Before giving some examples, we give some general constructions of representations that will
be used repeatedly.

30.2. Constructing new representations from old. Let G be a group and (ρ, V), (τ, W) be two
representations of G. Then

(ρ⊕ τ, V ⊕W)

is a representation of G where
(ρ⊕ τ)(g) = (ρ(g), τ(g)).

This representation is called the direct sum representation. If we wish, we can also use the
notation ρ(g) ⊕ τ(g), which we have used before for the direct sum of two linear maps. We
will often be rather loose with our notation and write either V ⊕W, or ρ⊕ τ, for the direct sum.
Similarly, we shall write the direct sum of (ρ, V) with itself a-times as either (ρ, V)a, Va or ρa.

Another construction is
Hom(V, W).

Let us the denote the representation simply by

σ : G → Aut(Hom(V, W)),

where for every g ∈ G, T : V →W,

σ(g)(T) := τ(g) ◦ T ◦ ρ(g−1).

There is actually quite a bit to verify here. We only indicate what should be verified and leave
the verification as an exercise.

• As Hom(V, W) is a complex vector space, we need to verify that for every g ∈ G, σ(g)
is an endomorphism of that space. Namely, that indeed τ(g) ◦ T ◦ ρ(g−1) is a linear map
from V to W, and that

T 7→ τ(g) ◦ T ◦ ρ(g−1),

is linear in T. This just establishes that σ(g) is a linear map of the vector space Hom(V, W).
• Next, one needs to verify that σ(gh) = σ(g) ◦ σ(h). This shows that we have a multiplica-

tive map G → End(Hom(V, W)). But note that since every element in G is invertible and
σ(1) is the identity map, automatically σ(g) is invertible, because σ(g) ◦ σ(g−1) = σ(1) =
Id, etc. Thus, it follows that we get a homomorphism

σ : G → Aut(Hom(V, W)).
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Let (σ, U) be a representation of G and let

UG := {u ∈ U : σ(g)(u) = u, ∀g ∈ G}.
This is the space of invariant vectors. Note that UG is a sub-representation of U on which G acts
trivially. The homomorphism

G → Aut(UG),
induced from σ is simply g 7→ Id, ∀g ∈ G.

Applying this to to U = Hom(V, W) and σ as given above, we make the following observa-
tion:

HomG(V, W) = Hom(V, W)G.

Remark 30.2.1. We also remark that the construction Hom(V, W), besides its theoretical useful
that we shall see repeatedly below, is a very good way to construct representations. For ex-
ample, if W is a representation and V is a one dimensional representation then Hom(V, W) is
another representation of the same dimension as W. In fact, if W is irreducible, it will be the
case that Hom(V, W) is irreducible too, but that requires a proof; it would be much easier to
give once we have the main theorems available. It may be the case that Hom(V, W) ∼= W as
representations, but often this is not the case, and so once we have constructed an irreducible
representation W we are often able to construct more as Hom(V, W) for various one dimensional
representations V.

Lemma 30.2.2. Let (ρ, V) be an irreducible representation then either VG = {0} or V = VG and is
then a one-dimensional space on which G acts trivially.

Proof. As VG is a sub-representation and V is irreducible, either VG = {0} or VG = V. In
the latter case, let v ∈ V be a non-zero vector. Then SpanC(v) is a sub-representation and
consequently V = SpanC(v), hence a one-dimensional subspace. �

30.3. Examples of represenations.

30.3.1. Passing to coordinates. Let
ρ : G → GLn(C)

be a homomorphism of groups. Then (ρ, Cn) is a representation as we have a canonical identifi-
cation

GLn(C) = Aut(Cn),
by sending every linear map T to the matrix [T]St representing it in the standard basis.

More generally, let V be an n-dimensional vector space and (ρ, V) a representation of G. Let B
be a basis for V. We get then

T : (ρ, V) ∼= (τ, Cn),
where T : V → Cn is the map sending v to [v]B and

τ(g) = [ρ(g)]B.

The identity T ◦ ρ(g) = τ(g) ◦ T, namely, for all v ∈ V, T ◦ ρ(g)(v) = τ(g) ◦ T(v) translates in
this case to the identity [ρ(g)(v)]B = [ρ(g)]B[v]B, which is precisely the property defining the
matrix [ρ(g)]B.

Thus, in some sense, all linear representations can be viewed as group homomorphisms
G → GLn(C). However, this perspective is not canonical. If we choose another basis C we
get a different represenation

τ′ : G → GLn(C), τ′(g) = [ρ(g)]C.

The two representations are isomorphic

(τ, Cn) ∼= (τ′, Cn)
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via the change of basis matrix C MB that may be viewed as an isomorphism

C MB : Cn → Cn;

Indeed, we have
τ′(g) C MB = C MB τ(g).

30.3.2. The standard representation of Sn. We define the standard representation ρst of Sn by as-
sociating to σ ∈ Sn the linear transformation given on the standard basis by

ei 7→ eσ(i).

In matrices
σ 7→ Mσ,

where Mσ is the matrix whose (σ(j), j) entry is 1 (for any j), and all the other entries are zero. To
illustrate, for n = 3, we have the following matrices

M1 =
( 1 0 0

0 1 0
0 0 1

)
, M(12) =

( 0 1 0
1 0 0
0 0 1

)
, M(123) =

( 0 0 1
1 0 0
0 1 0

)
.

The standard representation has two sub-representations

U1 = SpanC{(1, 1, . . . , 1)}, U0 = {(x1, . . . , xn) : x1 + · · ·+ xn = 0}.

In fact, let ρst denote the standard representation, ρst|U1 and ρst|U0 the sub-representations, then

ρst ∼= ρst|U1 ⊕ ρst|U0 .

We also denote the representation ρst|U0 by ρst,0.

Proposition 30.3.1. Assume that n ≥ 2. U0 is an irreducible n− 1 dimensional representation of Sn.

Proof. We assume that n ≥ 2. The case n = 2 is easy as U0 is 1-dimensional.
Let U′ ⊆ U0 be a non-zero sub-representation. Let x = (x1, . . . , xn) be a non-zero vector

in U′. If x has precisely two zero elements, by multiplying x by a scalar we may assume that
x = (0, . . . , 0, 1, 0 . . . , 0,−1, 0, . . . , 0). Then, by acting by Sn we see that every vector of the form
ei − ej (where ei are the standard basis) is also in U′. But these vectors span U0 and it follows
that U′ = U0.

Thus, it remains to prove that U′ always contains such a vector. Let x ∈ U′ be a non-zero
vector. If x has more than 2 non-zero coordinates, we show that there is vector y ∈ U′ that is not
zero and has fewer non-zero coordinates. This suffices to reduce to the case considered above.

Assume therefore that x has at least 3 non-zero coordinates. First, by rescaling we may assume
that one of these coordinates is 1. Then, as ∑ xi = 0, there exists a non-zero coordinate that is
not equal to 1. By applying a permutation to x we may assume that

x = (1, x2, x3, . . . , xn),

where x2 6= 1 and is non-zero and also x3 6= 0. In this case, also the vector

x′ =
1
x2

(x2, 1, x3, . . . , xn),

belongs to U1. Therefore, also

y = x− x′ = (0, x2 −
1
x2

, x3(1−
1
x2

), . . . , xn(1−
1
x2

)),

belongs to U′ and this vector has fewer non-zero coordinates, yet is not zero (consider its third
coordinate). �
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30.3.3. The regular representation. This is one of the key examples, in fact. Let G be a group of
order n. Then G acts by left multiplication on itself giving us an embedding

G ↪→ ΣG
∼= Sn.

(This, in a nutshell, is the proof of Cayley’s theorem!) We have constructed above the standard
representation ρst of Sn. Thus, by composition, we get a representation that we denote ρreg,

ρreg : G → GLn(C).

It is called the regular representation of G.
There is a slightly more canonical way to describe this representation. Let us consider a vector

space with a basis given by vectors indexed by elements of G. Thus,

{vg : g ∈ G}
is a basis to this vector space and its general element is written as ∑g∈G ag · g, where ag ∈ C.
Addition and multiplication by scalar are done in the expected way:

∑
g∈G

ag · g + ∑
g∈G

bg · g = ∑
g∈G

(ag + bg) · g,

and
α ∑

g∈G
ag · g = ∑

g∈G
αag · g.

We may use the notation V = ⊕g∈GC · vg or V = C[G]. The representation ρreg takes an element
h ∈ G to the linear map (denoted ρreg(h)) of V that has the following effect on basis vectors:

vg 7→ vhg, ∀g ∈ G.

Or, in a different notation,
ρreg(h)(∑

g∈G
ag · g) = ∑

g∈G
ag · hg.

30.3.4. One dimensional representations. The one dimensional representations of a group G are,
up to isomorphism, homomorphisms

G → C×.
Let

G∗ = {ρ|ρ : G → C× homomorphism}.
Then G∗ is an abelian group, called the character group of G, where the group operation is

(ρ · τ)(g) = ρ(g) · τ(g).

The identity is the trivial homomorphism ρ1 giving us the trivial representation (ρ1, C), namely,
ρ1 : G → C×, ρ1(g) = 1 for all g ∈ G. Note that if G is a finite group, any such ρ takes elements
of G to elements of C× that have finite order. Thus, in this case, also

G∗ = {ρ|ρ : G → S1 homomorphism},
where S1 is the unit circle

S1 = {z ∈ C : |z| = 1}.
The following are not too difficult to check (see also Exercise 86):

• (H × G)∗ ∼= H∗ × G∗.
• (Z/nZ)∗ ∼= Z/nZ.
• Therefore, combining the two facts provided above, if G is a finite abelian group G∗ ∼= G.
• For a general group G, we have G∗ = (G/G′)∗, where G′ is the commutator subgroup.
• In particular, for a general group G, G∗ may be very small compared to G. For example,

for n ≥ 5 we have A∗n = {1}.
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Given elements α1, . . . , αn of G∗ (any elements, repetitions allowed), we get an n-dimensional
representation of G

g 7→


α1(g)

α2(g)
. . .

αn(g)

 .

We leave it as an exercise to show that if G is an abelian group, any n-dimensional representation
of G is isomorphic to a representation as constructed above for a suitable choice of α1, . . . , αn.
(You would need the theorem about simultaneous diagonalization of commuting diagonalizable
matrices).

Thus, in a sense, we know all the representations of finite abelian groups. Any irreducible
representation is 1-dimensional, given by an element of α ∈ G∗. Any representation is a sum of
1-dimensional representations.

30.3.5. A representation of Dn and A4. Let n ≥ 3 and consider the dihe-
dral group Dn generated by x, y. The symmetries of a regular n-gon
in the plane, provided by elements of Dn, are naturally linear trans-
formations of R2 and we can associate to x, y, the following matrices

x 7→
(

cos(2π/n) sin(2π/n)
− sin(2π/n) cos(2π/n)

)
, y 7→

( −1 0
0 1

)
.

We view these as complex matrices thereby obtaining a homomor-
phism

ρplane : Dn → GL2(C).

Another geometric example is the representation of A4 coming from
its action on a regular tetrahedron. We view A4 as permuting the let-
ters a, b, c, d, thereby acting by symmetries on the tetrahedron. This
action comes from a linear representation

A4 → GL3(R) ⊆ GL3(C).

Although this representation certainly looks irreducible, and it is, one
has to be careful. Also the action of Z/4Z on R2, where a 7→

(
0 1
−1 0

)a

looks irreducible (and indeed, it cannot be decomposed as a real rep-
resentation). But, viewed as a representation

Z/4Z→ GL2(C),

it is reducible. Every representation of dimension greater than 1 of an abelian group is reducible!

30.4. The character of a representation. We now arrive a key concept: a character. In fact, the
whole theory of representations of finite groups relies on it.

Let (ρ, V) be a representation of G. Define the character of ρ, χρ, by

χρ : G → C, χρ(g) = Tr(ρ(g)).

Here Tr denotes the trace of a square matrix, Tr(mij) = ∑ mii.
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Lemma 30.4.1. The function χρ is well defined and depends on ρ only up to isomorphism. Furthermore,
χρ is a class function on G. That is, for all g, h ∈ G, we have

χρ(g) = χρ(hgh−1).

In addition,
χρ⊕τ = χρ + χτ, χρ(1) = dim(ρ), χρ(g−1) = χρ(g).

(By dim(ρ) we mean the dimension of V where ρ : G → Aut(V).)

Proof. By “well-defined” we mean the following: we have defined the trace of a linear transfor-
mation T as the trace of a matrix representing it in a given basis B. That is Tr(T) := Tr([T]B).
But, we also proved in linear algebra that the value obtained this way was independent of the
choice of basis. We concluded that from the fact, proven there, that for any two square matri-
ces of the same size M1, M2, one has Tr(M1M2) = Tr(M2M1), from which one deduces that
Tr(M−1

2 M1M2) = Tr(M1). Applying this to M1 = [T]B and M2 = B MC, where C is a another
basis we find that

Tr([T]B) = Tr(M−1
2 [T]B M2) = Tr([T]C).

Therefore χρ is well-defined.
If ρ ∼= τ, then by choosing bases we may assume that

ρ : G → GLn(C), τ : G → GLn(C).

As invertible linear transformations Cn → Cn are represented by invertible matrices, the infor-
mation that ρ ∼= τ translates into the statement that there is an invertible matrix M ∈ GLn(C)
such that for all g ∈ G

Mρ(g)M−1 = τ(g).
But then,

χρ(g) = Tr(ρ(g)) = Tr(Mρ(g)M−1) = Tr(τ(g)) = χτ(g).
Actually, the same computation gives

χρ(hgh−1) = Tr(ρ(hgh−1)) = Tr(ρ(h)ρ(g)ρ(h)−1) = Tr(ρ(g)) = χρ(g).

Therefore, χρ is a class function.

If we have two representations (ρ, V), (τ, W), by choosing bases we may assume that

ρ : G → GLm(C), τ : G → GLn(C),

and so

ρ⊕ τ : G → GLm+n(C), (ρ⊕ τ)(g) =

ρ(g) 0

0 τ(g)

 .

Therefore,

χρ⊕τ(g) = Tr

ρ(g) 0

0 τ(g)

 = Tr(ρ(g)) + Tr(τ(g)) = χρ(g) + χτ(g).

Now, χρ(1) = Tr(In), where In is the n× n identity matrix and n = dim(V). Thus, χρ(1) =
dim(ρ).

For the last property stated in the Lemma, fix the element g and let k be its order in the group
G. Then, ρ(g)k = ρ(gk) = ρ(1) = id. That means that ρ(g) solves the polynomial xk − 1, which
has distinct roots, and so the minimal polynomial of g, which divides xk − 1, also has distinct
roots and therefore ρ(g) is diagonalizable. And so, we may find a basis B of V in which

[ρ(g)]B = diag(α1, . . . , αn).
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In addition, as ρ(g)k = In, the αi are roots of unity of order (dividing) n.
Note that the basis B is chosen specifically for g. There is no reason for ρ(h) to be diagonal in

this basis if h 6= g. However, because of the homomorphism property, one exception is that

ρ(g−1) = diag(α−1
1 , . . . , α−1

n ) = diag(ᾱ1, . . . , ᾱn),

where the second equality is a consequence of αi being roots of unity, hence lying on the unit
circle in C. Therefore,

χρ(g−1) = χρ(g).
�

Characters are the heart of the whole story. Everything will be determined by characters.

Here are some interesting examples:
(1) For the standard representation of the symmetric group Sn we have

χρst(σ) = Tr(ρst(σ)) = the number of fixed points of σ.

(2) For the dihedral group Dn we have

χρplane(y) = 0, χρplane(x) = 2 cos(2π/n).

(3) If (ρ, V) is a trivial representation, namely ρ(g) = Id for all g ∈ G, then χρ is the constant
function

χρ ≡ n,
where n = dim(V).

(4) Consider the 1-dimension sign representation of Sn given by

sgn : Sn → {±1} ⊂ C×.

Then χsgn(σ) = +1 if σ is even, and χsgn(σ) = −1, if σ is odd.
(5) If α ∈ G∗ is a 1-dimensional representation then χα is simply α.

30.5. Decomposition into irreducible representations. We show that every representation de-
composes as a sum of irreducible representations. This places the irreducible representations as
the fundamental building blocks of representations. Many of the theorems we will study are
concerned with classifying the irreducible representations and with understanding how exactly
a representation is built from irreducible representations.

Lemma 30.5.1. Let (ρ, V) be a representation of G. There is an inner product 〈·, ·〉 on V that is G-
invariant. That is, for all v, w ∈ V and g ∈ G one has

〈ρ(g)v, ρ(g)w〉 = 〈v, w〉.

Proof. Let (v, w) be any inner product on V. Define

〈v, w〉 = 1
|G| ∑

g∈G
(ρ(g)v, ρ(g)w).

First, this is a G-invariant function. If h ∈ G then

〈ρ(h)v, ρ(h)w〉 = 1
|G| ∑

g∈G
(ρ(g)ρ(h)v, ρ(g)ρ(h)w)

=
1
|G| ∑

g∈G
(ρ(gh)v, ρ(gh)w)

= 〈v, w〉,
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because when h is fixed and g varies over G the products gh are all the elements of G, each
occurring once.

We also have

〈αv, w〉 = 1
|G| ∑

g∈G
(ρ(g)(αv), ρ(g)w)

=
1
|G| ∑

g∈G
(αρ(g)v, ρ(g)w)

=
1
|G| ∑

g∈G
α(ρ(g)v, ρ(g)w)

= α〈v, w〉.
And,

〈(v + v′), w〉 = 1
|G| ∑

g∈G
(ρ(g)(v + v′), ρ(g)w)

=
1
|G| ∑

g∈G
(ρ(g)v + ρ(g)v′, ρ(g)w)

=
1
|G| ∑

g∈G

[
(ρ(g)v, ρ(g)w) + (ρ(g)v′, ρ(g)w)

]
= 〈v, w〉+ 〈v′, w〉.

Furthermore,

〈w, v〉 = 1
|G| ∑

g∈G
(ρ(g)w, ρ(g)v)

=
1
|G| ∑

g∈G
(ρ(g)v, ρ(g)w)

= 〈v, w〉.
Finally, for v 6= 0

〈v, v〉 = 1
|G| ∑

g∈G
(ρ(g)v, ρ(g)v),

and each of the summands on the right hand side are positive. Therefore,

〈v, v〉 > 0.

�

Theorem 30.5.2. Any representation (ρ, V) of G is a direct sum of irreducible representations.

Proof. We prove that by induction on dim(V). Whenever dim(V) = 1, V is irreducible. When-
ever V is irreducible (of any dimension) the statement is clear.

Let V be any representation and suppose that V is reducible. Let U be a non-zero sub-
representation and let 〈·, ·〉 be a G-invariant inner product. Then,

U⊥ = {v ∈ V : 〈u, v〉 = 0, ∀u ∈ U}
is a sub vector space and

V = U ⊕U⊥.
It remains to check that U⊥ is a sub representation as well. Let g ∈ G and w ∈ U⊥. Then, for all
u ∈ U,

〈u, ρ(g)(w)〉 = 〈ρ(g)−1(u), w〉 = 0,
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because ρ(g)−1(u) ∈ U as well. This proves that ρ(g)(w) ∈ U⊥. Therefore, for all g ∈ G,
ρ(g)(U⊥) ⊆ U⊥. That is, U⊥ is a sub representation.

Using induction for U and U⊥, we can decompose them into a sum of irreducible representa-
tions. And so V itself is a sum of irreducible representations. �

31. THE MAIN THEOREMS

In this chapter we list the main theorems concerning representations of finite groups so as to
give a compact overview of what we aim to achieve in the following chapters.

31.1. Unique decomposition. To simplify notation we use the following device. Let (ρi, Vi), i =
1, ..., t be representations of G and ai positive integers. Then, by

ρa1
1 ⊕ · · · ⊕ ρat

t , or Va1
1 ⊕ · · · ⊕Vat

t ,

we mean the representation of G,

(ρ1, V1)⊕ · · · ⊕ (ρ1, V1)⊕ · · · ⊕ (ρt, Vt)⊕ · · · ⊕ (ρt, Vt),

where the summand (ρ1, V1) appears a1 times, the summand (ρ2, V2) appears a2 times and so
on.

Theorem 31.1.1 (Theorem A). Let (ρ, V) be a representation of G. Then, there are non-isomorphic
irreducible representations ρ1, . . . , ρt and positive integers ai such that

ρ ∼= ρa1
1 ⊕ · · · ⊕ ρat

t .

Moreover, up to isomorphism, the representations ρi are uniquely determined by ρ and the ai are uniquely
determined as well.

31.2. Class functions and an inner product structure. Let G be a group. Recall that a class
function on G is a function f : G → C that is constant on conjugacy classes. That is,

f (x) = f (gxg−1), ∀x, g ∈ G.

One calls the number of conjugacy classes of G the class number of G. Let us denote it by
h = h(G). The class functions form a vector space of dimension h that we shall denote Class(G).
As we have seen, for every representation ρ its character χρ is a class function.

We define now a structure of inner product on Class(G) by

〈φ, ψ〉 = 1
|G| ∑

g∈G
φ(g)ψ(g).

For example, the constant function 1, that is also the character of the trivial one-dimensional
representation of G, is a class function and its norm ‖1‖ = 1 (which explains the choice of
normalization).
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31.3. Orthogonality relations.

Theorem 31.3.1 (Theorem B). Let ρ, τ be irreducible representations of G. Then

〈χρ, χτ〉 =
{

1, if ρ ∼= τ

0, if ρ 6∼= τ
.

Theorem 31.3.2 (Theorem C). The characters of irreducible representations of G, taken up to isomor-
phism, form an orthonormal basis for Class(G). In particular, there are precisely h = h(G) irreducible
representations up to isomorphism. Let ρ1, . . . , ρh be representatives for the irreducible representations
and χ1, . . . , χh their characters. Let ρ be any representation. Then

ρ ∼= ρa1
1 ⊕ · · · ⊕ ρah

h ,

where
ai = 〈χρ, χρi〉.

Corollary 31.3.3. A representation ρ is irreducible if and only if ‖χρ‖2 = 1.

Proof. Write χρ = ∑ aiχi as a sum of characters of irreducible representations. Note that the ai are
non-negative integers. Then, by orthonormality, ‖χρ‖2 = ∑ a2

i and the statement follows. �

Corollary 31.3.4. The dimension of VG, namely, the multiplicity of the trivial 1-dimensional represen-
tation in (ρ, V) is 〈χ1, χρ〉, where χ1 is the character of the trivial representation. It is given by

(4) dim(VG) =
1
|G| ∑

g∈G
χρ(g).

Proof. We have χρ = ∑ aiχρi and let us agree that, at the expense of putting a1 = 0 if needed, our
notation is such that ρ1 is indeed the trivial representation. Using orthogonality of characters:
a1 = 〈χ1, χρ〉. On the other hand, 〈χ1, χρ〉 is precisely the right hand side of Equation (4).

Note that if V = ⊕Vai
i then VG = ⊕((Vi)

G)ai as taking invariants commutes with direct sum
of representations. But, as Vi is irreducible and not trivial, by Lemma 30.2.2, VG

i = {0} for i > 1
and so VG = Va1

1 . �

Corollary 31.3.5. The regular representation ρreg of G decomposes as

ρreg = ⊕h
i=1ρ

dim(ρi)
i .

Proof. Write χreg = χρreg = ∑ aiχρi where χρi are the characters of the irreducible representations
of G and ai ≥ 0. Then

ai = 〈χρi , χρreg〉,
by orthogonality of characters. On the other hand, :

〈χρi , χρreg〉 = 1
|G| ∑

g∈G
χρi(g)χρreg(g) =

1
|G|χρi(1)χρreg(1) = χρi(1) = dim(ρi).

�

Example 31.3.6. Consider the standard representation ρ of Sn for n ≥ 2. We saw that it decom-
poses as a direct sum U1 ⊕U0, where U1 is the trivial one dimensional representation, and we
proved that U0 is an irreducible representation. Here we offer another proof based on character
calculus.

Let χ be the character of ρ, χ1 the character of ρ1 and χ0 of U0. Then

χ = χ0 + χ1.

Claim:‖χ‖2 = 2.
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Proof. Let T = {1, . . . , n}. Let Sn act on T × T diagonally,

σ(a, b) = (σ(a), σ(b)).

It is easy to see that there two orbits for this action: the orbit of (1, 1) and the orbit of (1, 2). Thus,
by CFF,

1
|Sn| ∑

σ∈Sn

I(σ) = 2.

Note that I(σ) is equal to the square of the number of fixed points of σ in its action on T because
the fixed points of σ in its action on T × T are of the form (a, b) where both a and b are fixed
points of σ in its action on T.

On the other hand, χ(σ) is the number of fixed points of σ in T. We find

‖χ‖2 =
1
|Sn| ∑

σ∈Sn

χ(σ)χ̄(σ)

=
1
|Sn| ∑

σ∈Sn

χ(σ)2

=
1
|Sn| ∑

σ∈Sn

I(σ)

= 2

�

Now,
‖χ‖ = ‖χ1‖2 + 2〈χ1, χ0〉+ ‖χ0‖2.

As χ1 is an irreducible representation, ‖χ1‖2 = 1 (and it is easy to do the calculation by hand,
too). 〈χ1, χ0〉 is equal to the multiplicity of χ1 in χ0. But, there is no non-zero fixed vector in U0,
because if x = (x1, . . . , xn) is a fixed vector, all its coordinates are equal, but ∑i xi = 0 and we
get that x = 0.

If follows that ‖χ0‖2 = 1 and so that U0 is an irreducible representation.

31.4. The number and dimension of irreducible representations.

Theorem 31.4.1 (Theorem D). Let ρ1, . . . , ρh be representatives for the irreducible representations and
let χ1, . . . , χh be their characters. Then h = h(G) is the number of conjugacy classes of G and we have
the formula

|G| =
h

∑
i=1

dim(ρi)
2.

Proof. This is a direct consequence of Theorem 31.3.2 and Corollay 31.3.5. �

As we shall see in several examples, this formula is very useful for finding the irreducible
representations of a group G, especially when one already knows some of the representations
(for example, the 1-dimensional representations are easy to find as their number is |G/G′|).
Another numerical fact that is very useful, but whose proof lies beyond the techniques available
for us in this course, is the following.

Fact. Let ρ be an irreducible representation of a group G then

dim(ρ)|] G.
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32. REPRESENTATIONS OF GROUPS OF SMALL ORDER

After the overview of the main results we are going to prove about representations of groups,
we wish to give some examples so as to make the theory more tangible.

32.1. The case where G is abelian. If G is an abelian group of order n then n = h(G). As we
have precisely n irreducible representations, the formula

|G| =
h

∑
i=1

dim(ρi)
2

shows that each irreducible representation is one-dimensional.
We remark that we actually knew that already. Using simultaneous diagonalization of com-

muting diagonalizable operators, one knows that every representation of an abelian group is a
direct sum of 1-dimensional representations. On the other hand, the 1-dimensional representa-
tions are the elements of the group G∗ and, as we have asserted before, G and G∗ are isomorphic
and so, in particular, G∗ has n elements as well.

32.2. Character tables. In the following we will give the character tables of certain groups of
small order. The columns will be named by representatives to the distinct conjugacy classes
in the group, and the rows will be named by the various characters. The number [x] appear-
ing near a representative for a conjugacy class indicates how many elements are in that con-
jugacy class (which is handy when one calculates inner products of characters). Note that if ρ
is 1-dimensional, ρ = χρ. As the groups Z/2Z, Z/3Z and (Z/2Z)2 are abelian, we have the
following character tables.

0 [1] 1 [1]

χ1 1 1

χ2 1 -1

TABLE 2. Character table of Z/2Z

0 [1] 1 [1] 2 [1]

χ1 1 1 1

χ2 1 e2πi/3 e4πi/3

χ3 1 e4πi/3 e2πi/3

TABLE 3. Character table of Z/3Z

Remark 32.2.1. Note that the rows of character tables should be orthonormal vectors (but be
careful when calculating the inner product - every entry χ(x) must be weighted by the size of
the conjugacy class of x that appears as [y] in the heading of the column). It is also true that the
columns of the character table are orthogonal – see §35, Equation (91), below.

Another check that could be performed is based on the following. Recall that

χρreg =
h

∑
i=1

χi(e) · χi.
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0 [1] (1, 0) [1] (0, 1) [1] (1,1) [1]

χ1 1 1 1 1

χ2 1 -1 -1 1

χ3 1 -1 1 -1

χ4 1 1 -1 -1

TABLE 4. Character table of (Z/2Z)2

(We are using here e to denote the identity element so as to avoid confusion when the group is
abelian.) That means that if we multiply each row χi in the character table by χi(e) (which is
listed in the second column) and then sum up all the rescaled rows, we should get a row vector
of the form (|G|, 0, . . . , 0). Sometimes we can turn it around and find a missing character. This
is our next example.

32.2.1. The character table of S3. Consider the group S3. We have Sab
3
∼= Z/2Z and so there are

precisely two 1-dimensional representations. These are the trivial representations χ1 and the
sign representation χsgn. Since we have

6 = 12 + 12 + sum of squares,

where each square is at least 22, we conclude that there is a unique additional irreducible rep-
resentation of S3 and it is two dimensional. From the remark above, we can even figure out its
character:

2χ3 = χreg − χ1 − χ2.
We thus find the character table:

Representation 1 [1] (12) [3] (123) [2]

χ1 1 1 1

χ2 1 -1 1

χ3 2 0 -1

TABLE 5. Character table of S3

Luckily, we have a model for this irreducible representation: S3 = D3 acts on the equilat-
eral triangle in the plane by linear tranformations; this is the representation ρplane considered
previously.

y = (23)↔
( −1 0

0 1

)
, x = (123)↔

(
cos(2π/3) sin(2π/3)
− sin(2π/3) cos(2π/3)

)
=
(
−1/2

√
3/2

−
√

3/2 −1/2

)
.

We easily check that the character of ρplane is χ3.
We actually have yet another model for this representation arising from the standard rep-

resentation of S3: this model consists of the vectors in C3 whose coordinates sum to 0, where
S3 acts by permuting the coordinates. A basis for this 2-dimensional space is given by u =
e1 − e2, v = e2 − e3. In this basis we have

y = (23)↔
(

1 0
1 −1

)
, x = (123)↔

( 0 −1
1 −1

)
.

Call this representation ρst,0.
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These two representations, ρst,0 and ρplane, are isomorphic – we see they have the same char-
acter – but that is not immediately visible from the matrices. There “ought to be” an invertible
matrix M that conjugation by it takes the first representation to the second.

32.2.2. The character table of D4. The last example we give in this section is the case of G = D4.
The commutator subgroup is given by {1, x2} and G/G′ ∼= (Z/2Z)2. We can thus lift every one
dimensional representation ρi of (Z/2Z)2 to D4 and get a one dimensional representation

ρ′i : D4 → (Z/2Z)2 → C×.

This gives us the four 1-dimensional representations of D4. Once more, by using the formula
|G| = ∑h

i=1 dim(ρi)
2, we find that there is a unique additional irreducible representation and it

is 2-dimensional. A natural guess is the representation coming from the action on the plane:

y = (23)↔
( −1 0

0 1

)
, x = (1234)↔

(
0 1
−1 0

)
.

(This is the representation we have denoted ρplane previously.) From this we find the following
values for its character:

1 x x2 x3 y xy x2y x3y

χplane 2 0 -2 0 0 0 0 0

We calculate that ‖χ‖ = 1 and therefore this representation is irreducible (even over the complex
numbers!). Thus, the character table is:

1 [1] x [2] x2 [1] y [2] xy [2]

χ1 1 1 1 1 1

χ2 1 -1 1 -1 1

χ3 1 -1 1 1 -1

χ4 1 1 1 -1 -1

χplane 2 0 -2 0 0

TABLE 6. Character table of D4

To illustrate how useful this information is, let us consider D4 as a subgroup of S4 and let

ρ : D4 → GL4(C),

be the restriction of the standard representation of S4 to D4 (where x = (1234), y = (24), xy =
(12)(34)). Recall that χρstd(σ) is the number of fixed points of σ. Thus, we find that

1 [1] x [2] x2 [1] y [2] xy [2]

χρ 4 0 0 2 0

Therefore, 〈χρ, χ1〉 = 〈χρ, χ3〉 = 1, 〈χρ, χ2〉 = 〈χρ, χ4〉 = 0 and 〈χρ, χplane〉 = 1. Thus, ρ
decomposes as

ρ = ρ1 ⊕ ρ3 ⊕ ρplane.
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Here ρ1 is the trivial representation and ρ3 is the representation where x2 and y act trivially, but
x acts as multiplication by −1. Consequently, there is a coordinate system on C4 in which D4
acts as follows

x 7→
( 1

−1
0 1
−1 0

)
, y 7→

( 1
1
−1 0
0 1

)
.

Also visible from these calculations is that there is a unique line that is fixed by the action of D4.
Indeed, the dimension of the invariants is the multiplicity of the trivial representation which is
given by 1.

33. PROOF OF THE MAIN THEOREMS

33.1. Schur’s lemma.

Lemma 33.1.1. Let (ρ, V), (τ, W) be two irreducible representations of G. Then,

HomG(V, W) ∼=
{

C, ρ ∼= τ;
{0}, else.

Proof. First note that whether V, W, are irreducible or not, if T ∈ HomG(V, W) then both Ker(T)
and Im(T) are sub-representations of V and W, respectively.

In our situation, Ker(T) is either {0} or V, so if T is not the zero map then Ker(T) = {0},
and so T is injective. Then also Im(T) is not trivial. Thus, Im(T) = W and T is therefore an
isomorphism.

Fix one such T and use it to identify V with W. Then, we need to show that

EndG(V) ∼= C.

Let S ∈ EndG(V) and let λ be an eigenvalue of S and Vλ the corresponding (non-zero) eigenspace.
Then, S is a subrepresentation: If g ∈ G and v ∈ Vλ then S(ρ(g)v) = ρ(g)(Sv) = ρ(g)λv =
λ · ρ(g)v; that is, ρ(g)v ∈ Vλ. As V is irreducible, we must haveVλ = V. That is, S = λ · Id.

On the other hand, clearly every scalar matrix λ · Id belongs to EndG(ρ). �

Let now (ρ, V), (τ, W) be any two representations of G then

Hom(V, W)

is a representation of G as well. We wish to calculate its character. This is delicate calculation so
we would like to reassure the reader that it is well worth the effort.

Let {e1, . . . , en} be a basis for V, {e∗1 , . . . , e∗n} the dual basis of V∗ = Hom(V, C) and let
{ f1, . . . fm} be a basis for W. For a vector φ ∈ V∗ and w ∈W we introduce the notation

φ⊗ w

to denote a very particular element of Hom(V, W).15 It is the linear transformation that takes

ei 7→ φ(ei) · w.

Lemma 33.1.2. The elements e∗i ⊗ f j, i = 1, . . . , n, j = 1, . . . , m, are a basis of Hom(V, W). Assume
that ρ(g−1) = (gij) and τ(g) = (hij) then

σ(g)(e∗i ⊗ f j) = ∑
k,`

ak`(g)e∗k ⊗ f`,

where
ak`(g) = gikh`j.

15The symbol ⊗ is called “tensor”. There is indeed a theory of tensor products lurking in the background which is
the reason I chose this symbol, but we don’t need to know it for this course.
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Proof. In the bases {e1, . . . , en} and { f1, . . . fm}, the linear map e∗k ⊗ f` is the matrix M = (mij)
having a unique non-zero entry, which is equal to 1, appearing in the (`, k) place. Thus, from the
identification Hom(V, W) ∼= Mm,n(C) coming from the choice of bases, the independence claim
is clear.

We need to figure out where does a vector basis et goes under the linear map σ(g)(e∗i ⊗ f j)
from V to W. By definition,

σ(g)(e∗i ⊗ f j)(et) = τ(g)((e∗i ⊗ f j)(ρ(g−1)(et))

= τ(g)((e∗i ⊗ f j)(∑
s

gstes))

= τ(g)(git f j)

= ∑
s

githsj fs.

On the other hand,
(∑

k,`
ak`(g)e∗k ⊗ f`)(et) = ∑

`

at` f`.

Whence,
ats(g) = githsj.

�

33.2. Uniqueness of decompositions. By Theorem 30.5.2, every representation (ρ, V) decom-
poses as a direct sum of irreducible representations. Buy clamping together isomorphic irre-
ducible representations, we may assume that

V ∼= Va1
1 ⊕ · · · ⊕Vas

s ,

where (ρi, Vi) are irreducible representations that are not isomorphic to each other. Suppose we
have another such decomposition. By allowing also exponents ai = 0, we may assume that the
other decomposition is also written as

V ∼= Vb1
1 ⊕ · · · ⊕Vbs

s ,

and our theorem is that ai = bi for all i. To show that we calculate

dim(HomG(Vi, V)).

First, note the general fact that

Hom(W, U ⊕V) = Hom(W, U)⊕Hom(W, V),

and likewise
HomG(W, U ⊕V) = HomG(W, U)⊕HomG(W, V).

Therefore, by using Schur’s Lemma, we conclude that

HomG(Vi, V) = ⊕s
j=1HomG(Vi, Vj)

ai = HomG(Vi, Vi)
ai = Cai ,

and, in particular,
dim(HomG(Vi, V)) = dim(Cai) = ai.

As the left hand side of this last equation “doesn’t know” about the decomposition, it follows
that ai = bi. We have proven:

Theorem 33.2.1 (= Theorem 31.1.1 = Theorem A). Every representation of V decomposes into a direct
sum of irreducible representations. The irreducible representations and the multiplicities to which they
appear are determined uniquely (up to isomorphism).
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33.3. The character of Hom(V, W).

Corollary 33.3.1. The character χ of the representation Hom(V, W) is

χ(g) = χτ(g) · χρ(g).

Proof. The formula we found in Lemma 33.1.2, ats(g) = githsj, should really be written as to
indicate the dependence on i and j as the scalar ats describe the action of σ(g) on the particular
basis element e∗i ⊗ f j. Thus, to indicate this dependence on i and j, we could write

aij
ts(g) = githsj.

In this notation,

Tr(σ(g)) = ∑
ij

aij
ij(g) = ∑

ij
giihjj = (∑

j
hjj)(∑

i
gii) = χτ(g) · χρ(g−1) = χτ(g) · χρ(g).

�

33.4. The projection π. Let (ρ, V) be a representation of G. Let

π =
1
|G| ∑

g∈G
ρ(g).

Then π ∈ EndG(V) and is a projection onto the subspace VG.

Proof. As π is a sum of linear maps, it is a linear map itself. If h ∈ G then

ρ(h) ◦ π =
1
|G| ∑

g∈G
ρ(hg) = (

1
|G| ∑

g∈G
ρ(hgh−1))ρ(h) = π ◦ ρ(h),

because as g ranges over G and h is fixed, also hgh−1 ranges over G.
The image of π is fixed by G: let v ∈ V then

ρ(h)(π(v)) = (
1
|G| ∑

g∈G
ρ(hg))(v) = (

1
|G| ∑

g∈G
ρ(g))(v) = π(v),

where we have used that g ranges over G so does hg.
Finally, if v ∈ VG then π(v) = 1

|G| ∑g∈G ρ(g)(v) = 1
|G| ∑g∈G v = v. �

Corollary 33.4.1. Let (ρ, V) be a representation of G and let χ1 be the character of the trivial one dimen-
sional representation (ρ1, C) of G. Consider the decomposition of ρ into irreducible representations

ρ = ρa1
1 ⊕ · · · ⊕ ρat

t ,

where the ai are positive, except a1 which is allowed to be zero and (ρi, Vi) are non-isomorphic and
irreducible. Then

VG = Va1
1

and
a1 =

1
|G| ∑

g∈G
χρ(g) = 〈χρ, χ1〉,

where χ1 = χρ1 is the constant function 1.

Proof. Clearly Va1
1 ⊆ VG. Let v ∈ V and suppose that v = (v1, . . . , vt) with vi ∈ Vai

i . Then, as G
acts diagonally, v ∈ VG if and only if each vi ∈ VG. But, any x ∈ VG ∩Vai

i gives a morphism of
representations

V1 → Vai
i , λ 7→ λx.

However, for i > 1 by Schur’s lemma,

HomG(V1, Vai
i ) = HomG(V1, Vi)

ai = {0}.
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Thus, x = 0 and VG = Va1
1 .

Now, the projection operator π ∈ HomG(V, V) and in the decomposition above

π = ida1 ⊕ 0⊕ · · · ⊕ 0.

Therefore,

a1 = Tr(π) = Tr(
1
|G| ∑

g∈G
ρ(g))

=
1
|G| ∑

g∈G
Tr(ρ(g))

=
1
|G| ∑

g∈G
χρ(g)

= 〈χρ, χ1〉.
�

33.5. Irreducible characters are orthonormal functions. Let (ρ, V), (τ, W) be irreducible repre-
sentations. We apply the considerations of Corollary 33.4.1 to the representation

Hom(V, W).

Recall that its invariants are Hom(V, W)G = HomG(V, W). On the one hand, by Schur’s
Lemma, the dimension of HomG(V, W) is 0 if ρ 6∼= τ and 1 if ρ ∼= τ. On the other hand, by
Corollary 33.3.1 and Corollary 33.4.1,

dim Hom(V, W)G =
1
|G| ∑

g∈G
χ̄ρ(g)χτ(g) = 〈χτ, χρ〉.

Therefore, we have obtained

Theorem 33.5.1 (=Theorem 31.3.1 = Theorem B). Let ρ, τ be irreducible representations of G. Then

〈χρ, χτ〉 =
{

1, if ρ ∼= τ

0, if ρ 6∼= τ
.

We arrive the following remarkable result.

Corollary 33.5.2. The characters of irreducible representations of G form an orthonormal set in Class(G).
In particular, there are finitely many irreducible representations up to isomorphism, in fact at most
dim Class(G) = h(G).

We shall shortly see that there are precisely that many irreducible representations and so their
characters are an orthonormal basis of Class(G).

Corollary 33.5.3. The character of a representation determines it up to isomorphism. More precisely, if

ρ ∼= ρa1
1 ⊕ · · · ⊕ ρat

t

then the ai may be found in terms of characters alone:

ai = 〈χρ, χρi〉.

Proof. Indeed, if ρ ∼= ⊕iρ
ai
i , where the ρi are non-isomorphic irreducible representations then

χρ = ∑ aiχρi and by orthogonality we can retrieve the ai by

ai = 〈χρ, χρi〉.
In addition, as the χρi are linearly independent, the expression χρ = ∑ aiχi is unique. �
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Corollary 33.5.4. A representation ρ is irreducible if and only if ‖χρ‖ = 1.

Proof. This was already proven as Corollary 31.3.3. �

33.6. Further study of the regular representation. Recall the regular representation ρreg of G
from § 30.3.3.

Proposition 33.6.1. Any irreducible representation ρ appears in ρreg. In fact, it appears in multiplicity
equal to its dimension. In particular, if ρ1, . . . , ρt are the irreducible representations of G then

|G| = ∑
i=1

dim(ρi)
2.

Proof. This is essentially 31.3.5; the last statement is obtained by consider the dimensions of the
representation spaces on both sides. �

Lemma 33.6.2. Let α ∈ Class(G). For any representation (ρ, V)

∑
g∈G

α(g) · ρ(g) ∈ EndG(V).

Proof. As a sum of linear maps, certainly ∑g∈G α(g) · ρ(g) ∈ End(V). We only need to check that
it commutes with the group action. Now, using that ρ is a homomorphism, for h ∈ G

ρ(h) ◦ (∑
g∈G

α(g) · ρ(g)) = ∑
g∈G

α(g) · ρ(hgh−1)ρ(h)

= (∑
g∈G

α(hgh−1) · ρ(hgh−1))ρ(h)

= (∑
g∈G

α(g) · ρ(g)) ◦ ρ(h),

because α(g) = α(hgh−1) for all g and h. �

Theorem 33.6.3 (= the key part of Theorem 31.3.2 = Theorem C). The number of irreducible repre-
sentations of G is h(G) and the characters of the irreducible representations form an orthonormal basis
for Class(G).

Proof. We know that the characters of the irreducible representations are an orthonormal set in
Class(G). If they are not a basis, there is some function β ∈ Class(G) that is orthogonal to all
these characters. Let α be the function α(g) = β(g); note that also α ∈ Class(G). We will show
that α ≡ 0 (namely, α is the zero function), thus β ≡ 0, and so the characters of irreducible
representations are a basis for Class(G). Consequently, their number is the class number of G.

Let (ρ, V) be an irreducible representation of G of dimension d. We claim that the operator

Aρ : V → V, Aρ = ∑
g∈G

α(g) · ρ(g),

is the zero operator.
First, by Schur’s lemma EndG(V) = C, where the isomorphism is given by T 7→ 1

d Tr(T).
Second, Aρ ∈ EndG((ρ, V)) by Lemma 33.6.2. Therefore, we can determine whether Aρ is zero
or not by calculating 1

d Tr(Aρ). Let us calculate:

1
d

Tr(Aρ) =
1
d ∑

g∈G
α(g) · χρ(g) = 〈χρ, β〉 = 0.

It follows that Aρ is zero.
Now, this holds for any irreducible representation (ρ, V) and, therefore, for any sum of irre-

ducible representations. In particular, it holds for the regular representation C[G] of G. (Note
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that for ρ⊕ τ we have naturally, Aρ⊕τ = Aρ ⊕ Aτ, etc. ) The last step in the proof is to realize
that the linear operators {ρreg(g) ∈ Aut(C[G]) : g ∈ G} are linearly independent and thus,
Aρreg = 0 implies that α ≡ 0.

Suppose a linear dependence between the operators {ρreg(g)}; namely, suppose that we have
∑g γ(g)ρreg(g) = 0 for some scalars γ(g) ∈ C. Apply this operator to the vector ve ∈ C[G]
(where e is the identity element of G). Then

∑
g

γ(g)ρreg(g)(ve) = ∑
g

γ(g)vg = 0.

As {vg : g ∈ G} are a basis for C[G], we conclude that all γ(g) = 0. �

33.7. The layout of the proofs. As we have presented the theory in a non-linear way, first pre-
senting the key theorems and easy consequences and examples of which, and then back pad-
dling to actually provide the proofs, it may be useful to summarize the logical structure again.

(1) Every representation (ρ, V) is a sum of irreducible representations.
(Key point: there is a G-invariant inner product on V; proved by “averaging”).

(2) Schur’s Lemma: if ρ, τ are irreducible then Hom(ρ, τ) is zero if ρ 6∼= τ and is C other-
wise.
(Essentially an easy argument: we analyzed the kernel and the image of a map T using
irreducibility and when ρ = τ the kernel of T − λ · I.)

(3) Key calculation: the character of Hom(ρ, τ) is χ̄ρ · χτ.
(Just a careful complicated calculation).

(4) Introduced the projection operator π : (ρ, V)→ VG and concluded concluded that
dim(VG) = 1

|G| ∑g∈G χρ(g).
(The main point was after showing π is a projection, to understand its effect in terms of
the decomposition into irreducible representations.)

(5) If ρ, τ are irreducible then 〈χρ, χτ〉 = 1 if ρ ∼= τ and 0 otherwise. (We combined
Schur’s Lemma and the fact that Hom(V, W)G = HomG(V, W) to find a formula for
dim(HomG(V, W)); This is a key result, from which many theorems and corollaries fol-
low.)

(6) Uniqueness of decomposition follows immediately. That ρ is irreducible if and only
if ‖χρ‖ = 1 followed immediately. The formula for the multiplicities ai = 〈χρ, χi〉 fol-
lowed immediately. That a representation is determined by its character followed im-
mediately. The decomposition of the regular representation followed easily and in par-
ticular that if ρ1, . . . , ρt are the irreducible representations of G then |G| = ∑t

i=1 dim(ρi)
2.

(7) The last step was to established that the characters of irreducible representations are an
orthonormal basis for Class(G) and to conclude therefore that the number of irreducible
representations of G is its class number (so t is really h(G)). We did that by associating
to a class function α a linear operator Aρ on every representation ρ and analyzed the
effect of such operator, for a suitably chosen α on the regular representation.

34. FURTHER EXAMPLES AND APPLICATIONS

34.1. Representations of S4. To begin with, the number of conjugacy classes of S4 is p(4) = 5.
Thus, there are 5 irreducible representations. As the commutator of S4 is A4, Sab

4
∼= Z/2Z and
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thus has precisely two 1-dimensional representations that must be the trivial one χ1 and the sign
representation χsgn. We also know the 3-dimensional irreducible sub representation ρst,0 of the
standard representation.

As we have
24 = 12 + 12 + 32 + x2 + y2,

we conclude that S4 has a 2-dimensional irreducible representation ρ and an additional 3 dimen-
sional representation τ and this list (χ1, χsgn, ρst,0, ρ, τ) is the full list of irreducible representa-
tions of S4.

Recall the surjective homomorphism with kernel K

S4 → S3,

by means of which we can pull-back the irreducible 2-dimensional representation of S3. We get
a representation ρ whose character χ is

1 [1] (12) [6] (123) [8] (1234) [6] (12)(34) [3]

χ 2 0 -1 0 2

Being a pull-back of an irreducible representation, it is of course irreducible, but one can also
check that ‖χ‖2 = 1.

Now consider the representation Hom(ρsgn, ρst,0). Its character, by Corollary 33.3.1, is χst,0 ·
χ̄sgn = χst,0 · χsgn and thus is given by

1 [1] (12) [6] (123) [8] (1234) [6] (12)(34) [3]

χst,0 3 1 0 -1 -1

χst,0 · χsgn 3 -1 0 1 -1

One calculates that ‖χst,0 · χsgn‖2 = 1 and so χst,0 · χsgn is the character of the missing irre-
ducible representation τ. We conclude that the character table of S4 is the following:

1 [1] (12) [6] (123) [8] (1234) [6] (12)(34) [3]

χ1 1 1 1 1 1

χsgn 1 -1 1 -1 1

χ 2 0 -1 0 2

χst,0 3 1 0 -1 -1

χτ 3 -1 0 1 -1

TABLE 7. The character table of S4.
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34.2. Representations of A4. The commutator of A4 is the Klein group V. As A4/V is a group
of order 3, A4 has three 1-dimensional representations. Denote them χ1, χ2, χ3. On the other
hand, it has 4 conjugacy classes that are represented by 1, (12)(34), (123), (132). We conclude
from 12 = 12 + 12 + 12 + x2 that A4 has precisely one more irreducible representation ρ and it is
3 dimensional. One natural guess is that this representation is obtained from the action of A4 on
a tetrahedron, but here we proceed differently. We have

A4 → S4 → GL3(C),

by means of ρst,0. We can easily calculate χρ:

1 [1] (12)(34) [3] (123) [4] (132) [4]

χ 3 -1 0 0

As ‖χ‖2 = 1 this is an irreducible representation of A4 too. The character table is therefore
the following:

1 [1] (12)(34) [3] (123) [4] (132) [4]

χ1 1 1 1 1

χ2 1 1 e2πi/3 e4πi/3

χ3 1 1 e4πi/3 e2πi/3

χ 3 -1 0 0

TABLE 8. The character table of A4.

34.3. Representations of Dn. Our usual method falls short of finding all the irreducible rep-
resentations. The commutator of Dn is 〈x2〉 and so, if n is odd, Dab

n
∼= Z/2Z and if n is even

Dab
n
∼= (Z/2Z)2. It thus has two 1-dimensional representations if n is odd and four if n is even.

We also know ρplane, an irreducible 2 dimensional representation. Note though that at best the
sum of the squares of these irreducible representations is 8 that is almost negligent compared to
2n if n is large. That is, (except for D3 and D4) we are missing most of the irreducible represen-
tations.

We will now construct irreducible representations of Dn in a somewhat ad hoc way. The
main tool here goes under the name “induced representations” but we will not discuss it in this
course. Fix an n-th root of unity ζ and let

ρζ : 〈x〉 → C×

be the 1-dimension character given by the homomorphism

ρ(xa) = ζa.

We now let xa act on C2 by

xa 7→
(

ζa 0
0 ζ−a

)
, y 7→

(
0 1
1 0

)
.

Note that we do have a homomorphism

〈x〉 → GL2(C).

To show that extends to a well-defined homomorphism

rζ : Dn → GL2(C),



COURSE NOTES - MATH 370 99

we need to check that yxy and x−1 map to the same element. Namely, that we have(
0 1
1 0

) ( ζa 0
0 ζ−a

) (
0 1
1 0

)
=
(

ζ−a 0
0 ζa

)
.

But this is straightforward. We have obtained n representations rζ of dimension 2. The character
of χζ of ρζ is given by

χζ(xa) = ζa + ζ−a, χζ(xay) = 0.

We see that χζ = χζ−1 and otherwise the characters are distinct. This, for n odd, gives us (n−
1)/2 distinct two dimensional representations. They are, in fact, all irreducible – we leave that
as an exercise. In addition, still for n odd, we have two 1-dimensional representations. But, as

12 + 12 +
n− 1

2
· 22 = 2n,

we have found all the irreducible representations of Dn for n odd. Similar considerations apply
for the case n even.

35. SOME OF THE APPLICATIONS OF GROUP REPRESENTATIONS

This is a very sketchy section that mainly contains pointers to the literature. I will leave it to
you to chase these references down, if you are interested. First, there are the two survey articles
by T. Y. Lam, “Representations of Finite Groups: A Hundred Years, Part I, and Part II”. You can find
the articles here:

http://www.ams.org/notices/199803/lam.pdf
http://www.ams.org/notices/199804/lam2.pdf

Secondly, there is the following post on Math overflow about ”Fun applications of represen-
tations of finite groups”, from which I have learned a lot myself.

https://mathoverflow.net/questions/11784/fun-applications-of-representations-of-finite-groups

I don’t know if I would have used the adjective “fun”, but there are certainly diverse and inter-
esting applications. You would note in particular applications to:

(1) Chemistry and Physics, specifically quantum chemistry and quantum physics. For exam-
ple, one user mentions ”The symmetry group of a molecule controls its vibrational spec-
trum, as observed by IR spectrosocopy. When Kroto et al. discovered C60, they used this
method to demonstrate its icosahedral symmetry.” They suggest Group Theory and Chem-
istry by David M. Bishop as a reference. Another post suggests the book Group Theory
and Physics by S. Sternberg for the connections to Physics quoting Sternberg saying that
“molecular spectroscopy is an application of Schur’s lemma”. Another very convincing
book is Group theory and its applications to physical problems by M. Hamermesh.

(2) Combinatorics. A lot of this is done through representations of the symmetric group and
related groups. This is a topic to which many books, book chapters, and articles are de-
voted. The symmetric group plays a crucial role in combinatorics, of course. Mathscinet
returns 455 references for searching for “Representation” and ”symmetric group” in title,
among which 14 are books.

(3) Probability and Statistics. Here perhaps we can rest our case by referring to a book by one
of the leading statisticians and probablists of our time Group representations in probability
and statistics by P. Diaconis.
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(4) Within algebra, the celebrated Feit-Thompson theorem uses the following theorem of
Frobenius, to which the only known proofs use representation theory.

A finite group G is called a Frobenius group with Frobenius kernel K and Frobenius
complement H if G has a subgroup H, such that for any g 6∈ H we have

H ∩ gHg−1 = {1}.

One lets in this case
K = {1} ∪ (G−

⋃
g∈G

gHg−1).

K is called the Frobenius kernel.
An example of a Frobenius group is the group of affine linear transformations of the

line {ax + b}with H being the linear transformations {ax}. We can also write this group
as {

(
a b
0 1

)
}.

Theorem 1 (Frobenius’ theorem) Let G be a Frobenius group with Frobenius complement H
and Frobenius kernel K. Then K is a normal subgroup of G, and G is the semidirect product
K o H.

The hard part is to show that K is a group!

Theorem 2 (Frobenius’ theorem, equivalent version) Let G be a group of permutations acting
transitively on a finite set X, with the property that any non-identity permutation in G fixes at
most one point in X. Then the set of permutations in G that fix no points in X, together with the
identity, is closed under composition.

Apparently, there is still no proof of these theorems that avoids using group represen-
tations in an essential way. Although recently, Terrence Tao gave a proof that only uses
character theory for finite groups. I have learned much about this from reading Tao’s
blog

https://terrytao.wordpress.com/2013/04/12/the-theorems-of-frobenius-and-suzuki-
on-finite-groups/

Another very nice application within Algebra is the proof of Burnside’s theorem already
cited: if p, q are primes then a group of order paqb is solvable. The proof is almost within our
reach, but not quite. It uses several ideas from algebra that we hadn’t discussed at all
(such as the theory of modules and algebraic integers) and a little more than we had done
regarding representations of groups. In particular, it uses an additional orthogonality
relation: the columns of the character table are orthogonal in the following sense. Let G be a
finite group and g, h ∈ G elements. Let χi be the irreducible characters of G (that is, the
characters of its irreducible representations) then:

(5) ∑
χi

χi(g)χi(h) =

{
|CentG(g)| , if g, h are conjugate
0 otherwise.

(The summation extending over the irreducible characters.) The main idea here is the
the rows are “essentially” a collection of orthonormal basis. Thus, if properly modified,
one can make them into truly orthogonal matrix. That is, into a matrix M that satisfies
MM∗ = Ih (h = h(G)). But then also M∗M = Ih and reading this information carefully
gives the orthogonality of the columns.

Finally, but still within the real of pure Algebra, group representations have a lot to
do with the study of simple groups. The classification of simple groups puts them in
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large families (Z/pZ, An, PSLn(F), . . . ,) but some escape this classification and fall into
a category of themselves: the sporadic simple groups. There are finitely many such
groups – 27, in fact. The largest simple group is the Monster group, its order is
808, 017, 424, 794, 512, 875, 886, 459, 904, 961, 710, 757, 005, 754, 368, 000, 000, 000.

Its existence is a non-trivial fact. Before constructing the Monster, mathematicians
suspected its existence and in fact predicted the dimensions of some of its smallest ir-
reducible representations as 1, 196883 and 21296876, and were able, more generally, to
work out its character table. John McKay, of Concordia university, made the audacious
observation that those numbers are related to Fourier coefficients of the j-function, a
function appearing in the theory of elliptic curves, which is part of number theory. Fol-
lowing that, precise conjectures were made by Conway and Norton, going under the
name of “Moonshine”.

Some of the key aspects of these conjectures were proven by R. Borcherds, a work that
got him the Fields prize in 1998.

36. WHAT IS MISSING

We have barely scratched the surface when it comes to group representations. But, I would
say that at the very basic entry level to representations of finite groups there is one more topic
that we could have discussed if we had more time. This is the subject of induced representations
and Frobenius reciprocity. Besides it’s theoretical importance it is a powerful computational
tool. This subject is completely within reach and those wishing to have a more complete picture
are encouraged to pursue it using any textbook dealing with group representations.

Besides this topic, other glaring omissions are some study of (i) the representations of sym-
metric group and their connections to Young tableaux, hook lengths and other mysterious ter-
minology; (ii) Representations of nilpotent groups, and in particular p-groups (Blichfeldt’s theo-
rem). Once more, these topics would (or should) be covered in most textbooks dealing with rep-
resentations of finite groups; (iii) Representations of finite matrix groups, for example GLn(Fp).

Blichfeldt’s theorem asserts that every irreducible representation of a finite nilpotent group G,
for example, every irreducible representation of a finite p-group, is induced from a 1-dimensional
representation of a subgroup H of G.

Going perhaps further back, some topics that should be covered in more detail as part of an
introduction to finite groups are the topics: (i) Free groups and free products and the Nielsen-
Schreier theorem; (ii) Nilpotent groups and the notions of ascending and descending central
series. (iii) Simplicity of the groups PSLn(Fq). Once more, these topics are certainly accessible
and it is only for reasons of time that we have omitted them.
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Part 9. Exercises

(1) Prove directly from the definitions that every group of order 3 is cyclic (and in particular
commutative). Do the same for order 5.

(2) Let G be a group of even order. Show, directly from the definitions, that G has an element
of order 2.

(3) Prove directly from the definitions that a group G in which every element a satisfies
a2 = e is commutative. Prove further that if G is finite then G has 2n elements for some
integer n.

(4) Write down all the elements of GL2(F2). Consider the action of this group on the set of
non-zero vectors in F2

2 (the two dimensional vector space over F2). Show that this allows
one to identify the group GL2(F2) with the symmetric group S3.

(5) Let D2n, n ≥ 3, be the dihedral group with 2n elements. It is generated by x, y, satisfying
xn = y2 = xyxy = 1. Prove (algebraically) that every element not in the subgroup 〈x〉 is
a reflection and find (geometrically) the line through which it is a reflection.

(6) Let n ≥ 2. Prove that Sn is generated by the set of all transpositions {(ij) : 1 ≤ i < j ≤ n}.
Prove that in fact the transpositions (12), (23), . . . , (n− 1 n) alone generate Sn.

(7) Let α ∈ Rn, n ≥ 2, be a non-zero vector. We define a reflection in the hyperplane perpen-
dicular to α by the formula

σα(v) = v− 2(v, α)

(α, α)
· α.

Here (x, y) is the standard inner product on Rn. Prove that σα is indeed a linear map
that fixes the hyperplane orthogonal to α and sends α to−α. Given α, β non-zero vectors,
determine when the subgroup 〈σα, σβ〉 is infinite. Further, in case it is finite, determine
it’s order. (Suggestion: reduce to the case of n = 2.)

(8) Let T be a non-empty set (possibly infinite) and define ΣT as the set of all functions
f : T → T that are bijective. Show that ΣT is a group under composition of functions (if
T = {1, 2, . . . , n} we can identify ΣT with Sn). Show that for T = Z there are elements
σ, τ ∈ ΣT, each of order 2, that generate a subgroup of infinite order.

(9) Find the lattice of subgroups of the groups Z/4Z, Z/2Z × Z/2Z, Z/6Z, S3, and A4.
Namely, write all the subgroups and determine which is contained in which. The fol-
lowing simple observation may help: Any subgroup of a finite group is generated by
finitely many elements (for instance, all its elements). Thus, we can start by writing all
the subgroups generated by one element - the cyclic subgroups, then all the subgroups
generated by two elements, and so on. It is useful to note that if we find two subgroups
H1 ⊂ H2 such that |H2|/|H1| is prime, there is no subgroup strictly between H1 and H2
(why?).

(10) The Euler φ-function,
φ : Z>0 → Z,

defined by
φ(n) = ]{0 < a ≤ n : gcd(a, n) = 1}.

Prove that it has the following properties:
• If n and m are relatively prime then φ(nm) = φ(n)φ(m).
• If p is a prime φ(pa) = pa − pa−1.
• φ(n) = n ∏p|n(1− 1/p) (the product taken over the prime divisors p of n).
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(11) Let p be an odd prime. Prove that for every n ≥ 1 the group (Z/pnZ)× is cyclic. Sug-
gestion: consider first the subgroup B = {a ∈ Z/pnZ : a ≡ 1 (mod p)}.

(12) Prove that the group (Z/2nZ)× is trivial for n = 1, cyclic for n = 2 and isomorphic to
Z/2Z×Z/2n−2Z for n ≥ 3. Suggestion: for n ≥ 3 consider the elements −1 and 5.

(13) (Fermat primes). Use group theory to prove the following: Let h be an integer such that
p = 2h + 1 is prime. Prove that h = 2j for some non-negative integer j. (Prove first that
the order of 2 in (Z/pZ)× is 2h.) Thus, p has the form 22j

+ 1. Such primes are called
Fermat primes. 16

(14) Use group theory to prove Wilson’s theorem: For every prime p, (p− 1)! ≡ −1 (mod p).

(15) Let G be a finite group. The exponent of G, exp(G), is defined as the minimal positive
integer m such that xm = 1 for all x ∈ G. Prove:
(a) If G is abelian then exp(G) = max{ord(x) : x ∈ G}.
(b) If G is not-abelian the previous statement may fail.

(16) Give an example of groups H1CG1, H2CG2, such that H1
∼= H2 and G1/H1

∼= G2/H2,
but G1 6∼= G2.

(17) Give an example of groups ACBCC such that A is not normal in C.

(18) Let σ ∈ Sn be a permutation. Find a formula (in terms of the factorization of σ into
disjoint cycles) for the cardinality of CentSn(σ). Fix n; for which permutations σ the
minimum is obtained?

(19) Give an example of a group G and a subgroup H of G for which H ∩ CentG(H) = {1}
and CentG(H) 6= {1}.

(20) Prove that if N < G and [G : N] = 2 then NCG. (This can be done without using group
actions.)

(21) Let m < n be positive integers. Calculate NSn(Sm). In particular, find when NSn(Sm) =
Sm.

(22) Let G be a group and let C ⊂ G be a left coset of some subgroup of G. Prove that C is
also a right coset of some (usually different) subgroup of G.

(23) Characteristic subgroups. A subgroup H of a group G is called characteristic if for every
automorphism f : G → G we have f (H) = H.
(a) Prove that a characteristic subgroup is a normal subgroup. (Hint: consider x 7→

gxg−1 for g fixed.)
(b) Prove that the centre of G, Z(G) is a characteristic subgroup, as well as the commu-

tator subgroup G′.
(c) Give an example of a normal subgroup that is not characteristic.
(d) Prove that if H is normal in G and K is a characteristic subgroup of H, then K is

normal in G.

16For j = 0, 1, 2, 3, 4 we indeed get primes. They are the primes 3, 5, 17, 257, 65537. To date (June 2020) no other
Fermat prime is known. In particular, 225

+ 1 = 4294967297 was famously factored by L. Euler as 641× 6700417
and it known today that all numbers of the form 22j

+ 1 are composite for 5 ≤ j ≤ 32. It is interesting to note that
Fermat conjectured that all numbers of the form 22j

+ 1 are primes. Well, he did better with conjecturing Fermat’s
last theorem.
Fermat primes are interesting in the context of constructing a regular polygon with n sides using only a straightedge
and a compass. This is possible if and only if n if of the form n = 2k p1 p2 · · · ps, where k is a non-negative integer and
the pi are distinct Fermat primes.
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(24) If G, H are finite groups such that (|G|, |H|) = 1 prove that every group homomorphism
f : G → H is trivial ( f (G) = {1}).

(25) Find all possible homomorphisms Q→ S3. Is there an injective homomorphism Q→ S4?
(As usual, Q is the quaternion group of order 8).

(26) Prove that a non-abelian group of order 6 is isomorphic to S3. Prove that every abelian
group of order 6 is isomorphic to Z/6Z.

Here are some hints: start by showing that every group G of order 6 must have an
element x of order 2 and an element y of order 3. This in fact follows from some general
theorems but I want you to argue directly using only what we covered in class. (A typical
problem here is why can’t all the elements different from 1 have order 3. If this is the case,
show that there are two cyclic groups K1, K2 of G of order 3 such that K1 ∩ K2 = {1}.
Calculate |K1K2|.)

Having shown that, if G is abelian show it implies the existence of an element of order
6. In the non-abelian case show that we must have xyx−1 = y2 and that every element
in G is of the form xayb, a = 0, 1, b = 0, 1, 2. Show that the map x 7→ (1 2), y 7→ (1 2 3)
extends to an isomorphism.

(27) Let G be a finite group with a unique maximal subgroup. Prove that G is cyclic of prime
power order.

(28) Prove that Q, considered as an abelian group relative to addition, has no maximal sub-
groups.

(29) Let G be a group. Let Aut(G) be the collection of automorphisms of G (isomorphisms
from the group onto itself). Show that Aut(G) is a group under composition. For every
g ∈ G let τg : G → G be the map τg(x) = gxg−1. Prove that τg ∈ Aut(G) and that
the map G → Aut(G), g 7→ τg, is a homomorphism of groups whose kernel is the centre
Z(G) of G. The image is called the inner automorphisms of G and is denoted Inn(G).
Prove that Inn(G) is a normal subgroup of Aut(G). The quotient group Aut(G)/Inn(G)
is called the outer automorphism group of G and is denoted Out(G).

(30) Prove that Aut(Z/nZ) is isomorphic to (Z/nZ)×.

(31) In this exercise we shall prove that Aut(Sn) = Sn for n > 6. (The results holds true for
n = 4, 5 too and fails for n = 6.) Thus, Sn is complete for n > 6.

(a) Prove that an automorphism of Sn takes an element of order 2 to an element of
order 2.

(b) For n > 6 use an argument involving centralizers to show that an automorphism of
Sn takes a transposition to a transposition.

(c) Prove that every automorphism has the effect (12) 7→ (a b2), (13) 7→ (a b3), ..., (1n) 7→
(a bn),for some distinct a, b2, ..., bn ∈ {1, 2, ..., n}. Conclude that ]Aut(Sn) ≤ n!.

(d) Show that for n > 6 there is an isomorphism Sn ∼= Aut(Sn).

(32) Double cosets. Let G be a group and A, B be subgroups of G. A double coset is a set of
G of the form AgB for some g ∈ G.
(a) Prove that double cosets are either equal or disjoint. Prove that G is a disjoint union

of double cosets.
(b) Provide a necessary and sufficient condition for AgB = AhB.
(c) Give a formula for |AgB|. Is it true that all double cosets have the same cardinality?
(d) Interpret double cosets as orbits for a certain group action. (Make sure that your

initial guess really defines a group action!)
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(e) Let A be a subgroup of G such that every double coset AgA of A is equal to some
coset hA of A. Prove that A is normal, and vice-versa.

(33) Let G be a finite group consisting of linear transformations of a finite dimensional vector
space V over the field Fp of p elements (p prime). Suppose that the order of G is a power
of p. Show that there is a vector v ∈ V, v 6= 0 that is an eigenvector with eigenvalue 1 for
the elements of the group G.

Arguing inductively, show that there is a basis in which G consists of upper-triangular
unipotent matrices. (Suggestion: let W be the span of v and consider V/W.)

(34) Let H, K be subgroups of a group G. Prove that

[G : H ∩ K] ≤ [G : H] · [G : K].

(35) Find the number of necklaces with 16 beads, 8 of them blue, 4 red and 4 white, up to
symmetries by D16.

(36) Find the number of necklaces with 12 beads, 2 red, 4 green, 3 blue and 3 yellow.

(37) Let G be a finite group. Let p be the minimal prime dividing the order of G and sup-
pose that G has a subgroup K of index p. Prove that K is normal. (Hint: use the coset
representation.)

(38) Let A be a proper subgroup of a finite group G. Prove that G 6= ∪g∈GgAg−1. Prove that
this statement may fail for infinite groups (suggestion: Try G = GL2(C) for the second
part).

(39) Let S3 act on F3, where F is a finite field with more than two elements, by permuting the
coordinates. Find the number of orbits for this action. The size of an orbit is a divisor of
6 (why?). For each such divisor determine if there is an orbit of that size or not. (Either
provide an example, or prove that none exists). Consider the action of S3 on the subspace
given by x1 + x2 + x3 = 0. How many orbits are there?

(40) Let G be a group and H a subgroup of G and let [G : H] = n. We consider here the
question of whether there is an element in g ∈ G such that {H, gH, . . . , gn−1H} are all
the cosets of H in G.
(a) Show that if n is not prime this may fail.
(b) Show that if n is prime such g always exists. (Suggestion: Show first that a transitive

subgroup of Sn has order divisible by n. Show then that if p is prime, a transitive
subgroup of Sp has an element of order p. Use the coset representation to finish the
proof. )

(41) Let G be a group acting transitively on a set S and let s ∈ S be some element. Let K be
a normal subgroup of G. Prove that the number of orbits for K in its action on S is the
cardinality of G/(K StabG(s)).

(42) Show that if G acts transitively on a set of size n then G has a subgroup of index n and,
conversely, if G has a subgroup of index n then G acts transitively on some set with n
elements.

For example, suppose we didn’t know that the group Γ of rigid transformation of the
cube was isomorphic to S4. We can deduce that Γ has a subgroup of index 8 by its action
on the vertices, a subgroup of index 12 by its action on the set of edges, a subgroup of
index 6 by its action on the faces and a subgroup of index 4 by its action on the long
diagonals; a subgroup of index 3 by its action on the 3 pairs of opposite faces and a
subgroup of index 2 by doing a similar construction with the long diagonals.
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(43) If there are a colours available, prove that there are 1
n ∑d|n ϕ(n/d)ad coloured roulette

wheels with n sectors. (One puts no restriction on how many sectors are painted by a
particular color.)

(44) Prove that the free group on 2 elements, F2 has a subgroup of index n for every positive
integer n.

(45) Prove that for n ≥ 5, An is the unique normal subgroup of Sn.

(46) Let the symmetric group Sn act transitively on a set of m elements. Assume that n ≥ 5
and that m > 2. Show that m ≥ n. Show that for every 1 ≤ a ≤ n there is a transitive
action of Sn on a set with (n

a) elements.

(47) For which n, if any, is there an injective homomorphism Sn → An+1?

(48) Prove that for n ≥ 5 the commutator subgroup of Sn is An.

(49) Let n ≥ 5. Prove that An is generated by the 3-cycles (namely, permutations of the form
(i j k), where i, j, k, are distinct). Prove that An is generated by 5-cycles too.

(50) Write the conjugacy classes of S4. For each conjugacy class choose a representative x and
calculate its centralizer CentS4(x). Verify the class equation. Do the same for A4. Use the
results to find the normal subgroups of A4 and, in particular, deduce that A4 does not
contain a subgroup of order 6.

(51) There is an obvious embedding of S3 in S6, the one in which S3 acts on {1, 2, 3} ⊂
{1, 2, 3, 4, 5, 6}. This embedding is not transitive, that is, given 1 ≤ i < j ≤ 6 we cannot
always find an element of S3 that takes i to j. Prove that there is a transitive embed-
ding S3 ↪→ S6 (i.e., such that the image acts transitively on the 6 elements). Given such
embedding, write the image of (12) and (123).

(52) Write the conjugacy classes of A6. Devise a direct proof that A6 is simple.

(53) Let G act transitively on a set S. We say that G acts primitively if no partition of S, except
for the trivial partitions S = S and S = äs∈S{s}, is preserved by the action of G. Prove
G acts primitively if and only if the point stabilizer of a point of S is a proper maximal
subgroup of G.

(54) A group G acts on a set doubly transitively if for any two elements a 6= b and for any
two elements c 6= d there is g ∈ G such that ga = c and gb = d. Prove that if G acts
doubly transitively then it acts primitively. Give an example of a group G acting on a set
primitively, but not 2-transitively.

(55) In the class equation for finite groups, the number of conjugacy classes is called the class
number of G. Thus, for example, if G is abelian of order n its class number is n. The
group S3 has class number 3, and more generally Sn has class number p(n) (the number
of possible cycle structures). What is the class number of the quaternions Q? Of An for
n ≤ 7? Of An in general? Prove that if G has even class number then G has even order
and provide a counter example for the converse.

(56) Let G be a finite non-trivial p-group. Prove that G′ (the commutator subgroup of G) is a
proper subgroup of G.

(57) Let G be a finite p-group and HCG a non-trivial normal subgroup. Prove that H ∩
Z(G) 6= {1}.

(58) Let G be a finite p-group and H a normal subgroup of G with pa elements, a > 0. Prove
that H contains a subgroup of order pa−1 that is normal in G. (Hint: use the previous
exercise to prove the result by induction.)
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(59) Let G = GLn(Fq), where Fq is a finite field, q = pr where p is prime.

(a) Prove that the upper unipotent matrices N :=


 1 ∗ ∗ ... ∗

0 1 ∗ ... ∗
...

...
0 ... 1

 are a p-Sylow sub-

group P of G by calculating the order of P and G.
(b) Find conditions so that every element of P has order dividing p. (Hint: use the

binomial theorem for (I + N)p, where I is the identity matrix.)
(c) In particular, deduce that for any p 6= 2 there are non-abelian p-groups such that

every element different from the identity has order p.
(d) Prove that a group G in which a2 = 1 for all a ∈ G is an abelian group.

(60) There are up to isomorphism precisely two non-abelian groups of order 8; they are the
dihedral group D4 and Q the quaternion group. Q is the group whose elements are
{±1,±i,±j,±k}, where −1 is a central element and the relations ij = k, jk = i, ki = j,
i2 = j2 = k2 = −1 hold (in addition to the implicit relations such as−12 = 1,−1 · j = −j,
. . . ). Prove the following
(a) D4 is not isomorphic to Q.
(b) D4 and Q are non-abelian. (Calculate, for instance what is ji.)
(c) Let P be the 2-Sylow subgroup of GL3(F2). Find whether P is isomorphic to D4 or

to Q.

(61) In Exercise 59 we found a p-Sylow subgroup N of G = GLn(F) where F is a finite field
with q = pr elements. Prove that given a p-subgroup H of G, viewed as a group of linear
transformations, there is a basis to the vector space in which the elements of H are upper-
unipotent (this is, essentially, Exercise 33). Conclude that every maximal p-subgroup of
GLn(F) has qn(n−1)/2 elements and that they are all conjugate.

Improve your argument to show that to give a p-Sylow subgroup of GLn(F) is equiv-
alent to giving a chain of subspaces {0} $ V1 $ V2 $ · · · $ Vn = Fn. Find how many
p-Sylow subgroups there are.

(62) Frattini’s argument. Let G be a finite group, H a normal subgroup of G and p a prime
dividing the order of H. Let P be a p-Sylow subgroup of H. Prove that G = HNG(P).

Use Frattini’s argument to show that if J is a subgroup of G such that J ⊇ NG(P),
where now P is a p-Sylow of G, then NG(J) = J. In particular, NG(NG(P)) = NG(P).

(63) Let G be a finite group and H a normal subgroup of G. Let P be a p-Sylow subgroup of G
for some prime p. Show that P ∩ H is a maximal p-subgroup of H (where here we allow
that P ∩ H = {1} which is not technically a p-subgroup...). Further, show that HP/H is
a p-Sylow subgroup of G/H.

(64) Let p be an odd prime. Find the order and generators for a p-Sylow subgroup of Sp and
S2p.

(65) Find all Sylow subgroups, up to conjugation, for the groups S3, S5 and GL3(F2).

(66) If the order of G is 231, show that the 11-Sylow subgroup of G is contained in the centre
of G. (After establishing it’s normal you would need eventually to use exercise 30.)

(67) If the order of G is 385, show that the 7-Sylow subgroup of G is contained in the centre
of G and the 11-Sylow is normal.

(68) Let p be an odd prime. In this exercise we show that a non-abelian group G of order p3

that has an element x of order p2 is isomorphic to the group we have constructed in class.
It is enough to show it is a semi-direct product Z/p2Z o Z/pZ.
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(a) Show that Z(G) = G′ is a subgroup of order p and that G/Z(G) ∼= Z/pZ⊕Z/pZ.
In particular, any commutator is in the centre of G and is killed by raising to a p
power.

(b) Prove that xp generates the centre of G.
(c) Prove that to show that G is a semi-direct product Z/p2Z o Z/pZ, it is enough to

show that there is an element y ∈ G such that yp = 1 and y 6∈ Z(G).
(d) Let y 6∈ 〈x〉 and suppose that y is of order p2. Show that G is generated by x and y.

We want to show that we can find an element ỹ of order p such that ỹ 6∈ Z(G). We
show that by counting how many elements of order p the group G has.

(e) Prove the surprising property, that the function f : G → G, f (t) = tp, is a ho-
momorphism of groups. For that, explain why it is enough to prove the identity
xpyp = (xy)p and proceed to prove this property by making use of identities of the
form xyxy = x[y, x]xyy = [y, x]x2y2, etc.

(f) By estimating the image and the kernel of f show that there exists an element ỹ as
wanted.

(69) Let G be a finite p-group. An element g of G is called a non-generator if whenever
S ∪ {g} is a set of generators of G, so is S. Prove that Φ(G) is the set of non-generators
of G. Prove further that the minimal number of generators of G is dimFp(G/Φ(G)) and
that, in fact, any minimal set of generators has dimFp(G/Φ(G)) generators.

(70) Calculate the Frattini subgroup of the upper unipotent matrices N in GL3(Fp). Conclude
that N is generated by 2 elements. Find such 2 elements.

(71) Let G be a solvable group. Prove that G 6= G′.

(72) Consider the groups of order bigger than 60 and less than 100. Prove that they are all
solvable. (The choice of 100 is random. In fact, the next non-abelian simple group has
168 elements.)

(73) Let F be a field and consider the invertible matrices of the form
(

a b
0 1

)
with a, b ∈ F.

Exhibit this group as a semi-direct product.

(74) Let G = N oφ B. Prove that G is abelian if and only if both N and B are abelian and
φ : B→ Aut(N) is the trivial homomorphism.

(75) Construct a non-abelian group of order 75 as a semi-direct product. (Hint: at some point
you may wish to use the matrix

( 0 −1
1 −1

)
.)

(76) Find a composition series for A4 and find the composition factors. Prove that A4 doesn’t
have a composition series A4 = G0 B G1 · · · such that G0/G1

∼= Z/2Z. Thus, although
the Jordan-Hölder theorem tells us that two composition series have the same quotients
up to isomorphism and permutation, the converse is not true. Namely, given the compo-
sition factors we cannot necessarily find them arising from a composition series in any
way we want.

(77) If G = H1 × · · · × Hm = K1 × · · · × Kn, where each Hi and Kj are simple groups then
m = n and there is a permutation σ ∈ Sn such that Hi

∼= Kσ(i) for all i = 1, 2, . . . , n.

(78) Let A, B be solvable subgroup of a group G. Suppose that B ⊆ NG(A) (and so AB is a
group). Prove that AB is also solvable.

(79) Prove that a group of order pqr is solvable, where p < q < r are distinct primes.

(80) Prove that for every positive integer n, the group F (2) has a subgroup of index n. (Hint:
think of transitive group actions on n elements instead of subgroups of index n.)



COURSE NOTES - MATH 370 109

(81) Let n ≥ 3. Show that 〈x, y|xn, y2, xyxy〉 is a presentation of the dihedral group Dn.

(82) Find a presentation for the group Q of quaternions of order 8.

(83) Prove that 〈x, y|x2, y2〉 is an infinite group.

(84) Let G be a finite abelian group and let H be a subgroup of G. Prove that there is a
subgroup N of G such that G/N ∼= H. Prove also that there is a subgroup M of G
such that M ∼= G/H. (Hint: use G∗). Already S3 shows that those properties are not
necessarily true for non-abelian groups.

(85) Let p(·) be the partition function. That is, p is defined on positive integers and p(a) is
the number of distinct partitions a = λ1 + λ2 + · · ·+ λs, λ1 ≥ λ2 ≥ · · · ≥ λs > 0, of a
into positive integers (s is allowed to vary at will). Prove that if n = pa1

1 · · · p
ar
r , where

the pi are distinct primes, then there are precisely p(a1) · · · p(as) isomorphism classes of
abelian groups of order n. Find their structure for n = 10800.

(86) Let S1 = {z ∈ C : |z| = 1}, which is a group under multiplication. For a finite group G
define

G∗ = Hom(G, S1),
the character group of G. Prove that G∗ is indeed a group under multiplication of func-
tions. Prove:
(a) (A⊕ B)∗ ∼= A∗ ⊕ B∗.
(b) If G is a finite abelian group then G ∼= G∗.
(c) Let G be a finite abelian group and H a subgroup of G. Show that there is a subgroup

N of G such that G/N ∼= H. Similarly, if H is isomorphic to a quotient group of G
then H is isomorphic to a subgroup of G. (Hint: use duality arguments using the
character group G∗.)

(d) Show that if G is a finite abelian group, then any n-dimensional representation of G
is of the form α1 ⊕ · · · ⊕ αn for some αi ∈ G∗. Cf. §30.3.4.

(87) (a) Find the four 1-dimensional representations of the quaternion group Q and calculate
for each its character.

(b) The quaternion group Q acts on C2 via its embedding Q ⊆ GL2(C). Write the
character χ for this action and calculate ‖χ‖2.

(c) Write the character table of Q.

(88) Let (ρ, V) be a 3-dimensional representation of the quaternion group Q. Show that there
is a vector v 6= 0 that is an eigenvector for every ρ(g), g ∈ Q.

(89) The group A4 acts on R3 via its action on a regular tetrahedron. Write the character χ for
this action and calculate ‖χ‖2. (Hint: you don’t have to work with the usual basis. There
is a another basis for R3 in which the computations are much easier!)

(90) Find the decomposition of the representation Z/4Z→ GL2(C), a 7→
(

0 1
−1 0

)a into a sum
of irreducible representations.

(91) Let G be a finite group of order n and class number h and consider its character table.
Modify the rows of the character table suitably so as to obtain genuine orthogonal rows
and so a h × h orthogonal matrix. Use this modified matrix to prove that the columns
of the character table are orthogonal too and so for g, h ∈ G and {χi} the irreducible
characters of G:

∑
χi

χi(g)χi(h) =

{
|CentG(g)| , if g, h are conjugate;
0, otherwise.

(The summation extending over the irreducible characters.)
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(92) The group Sn acts {1, 2, . . . , n}. Consider all pairs of distinct elements in {1, 2, . . . , n}.
There are n(n− 1)/2 such. The group Sn acts on these elements by

σ ∗ {i, j} = {σ(i), σ(j)}.
Consider now a vector space of dimension n(n− 1)/2 with basis

{v{i,j}, i 6= j}.
Or, put differently, let T be the set whose elements are the n(n− 1)/2 subsets {i, j}. Then
Sn acts on T. And we take a vector space with basis

{vt, t ∈ T}.
There is a linear representation ρ of Sn on this vector space such that

ρ(σ)(vt) = vσ(t).

Nothing to prove so far. Now, specialize all this to the case n = 4. Write the character
of the representation ρ. Using the character table of S4 (it appears in the course notes)
decompose the 6-dimensional representation ρ into irreducible representations. You are
not required to decompose the vector space itself, only to find the abstract decomposition
of ρ into a sum of irreducible representations.

Now view ρ merely as representation of the Klein group. Factor it into irreducible
representations (in the same sense as above).

(93) Show that for n ≥ 4, ρst,0, viewed as a representation of An, is irreducible.

(94) Let z be a central element of a finite group G and V an irreducible representation of G.
Show that z acts on V as a multiple of the identity endomorphism. (Hint: use Schur’s
lemma.)

(95) One of the first, and fundamental, results we proved about representations of finite
groups is their decomposition into irreducible representations, provided that we are
dealing with representations on finite dimensional complex vector spaces. In this ex-
ercise we show that this fails in characteristic p.

Let F be a field of characteristic p, hence we may assume that Z/pZ ⊂ F. Consider the
group of upper unipotent matrices in GLn(Z/pZZ), which acts naturally of Fn, thought
of as columns vectors of length n with coordinates in F. Call this representation (ρ, Fn).

For every 1 ≤ a ≤ n − 1, find an a-dimensional sub-representation U of (ρ, Fn)
and prove that it doesn’t have a complement; that is, prove that there is no other sub-
representation V of (ρ, Fn) such that U ⊕V = Fn.

Additional and challenging exercises about groups:

(96) A group G is called complete if Z(G) = {1} and Out(G) = {1}. Otherwise said, if
G ∼= Aut(G) via the natural homomorphism G → Aut(G). Prove that if G is a simple
non-abelian group then Aut(G) is complete.

(97) Let G be a finite group and K a normal subgroup of G. Suppose that K is a simple group
and that |K|2 - |G|. Prove that G doesn’t have any subgroup that is isomorphic to K
besides K. In particular, conclude that K is a characteristic subgroup.

(98) Let G be a finite simple group. Let H be a subgroup of G whose index is a prime p. Prove
that p is the maximal prime dividing the order of G and that p2 - |G|.



INDEX

〈x1, . . . , xd|w1, . . . , wr〉, 72
Class(G), 85
Dn, 4
G× H, 9
G/H, 31
G/N, 16
G∗, 80
Gn, 9
Gp, 50
Gab, 16
K, 16
N oφ B, 66
NG(H), 15
Q, 9
Sn, 4
UG, 78
V = C[G], 80
V ⊕W, 77
Z(G), 15
Aut(G), 57, 104
Aut(V), 76
End(V), 76
GLn(R), 8
Hom(V, W), 76
HomG(V1, V2), 76
Ker( f ), 20
Λ(G), 28
Pn(F), 26
Φ(G), 50
SLn(F), 21
ΣT , 5, 35
Z, 3
Z/nZ, 3
Z/nZ×, 3
χρ, 81
dim(ρ), 82
C, 15
πN , 21
ρ⊕ τ, 77
ρplane, 81
ρreg, 80
ρst,0, 79
ρst, 79
ρ1, 80
F (X), 72
F (d), 72
sgn, 5
PGLn(F), 26
ϕ, 3
h(G), 85
np, 52
CentG(H), 15
CentG(h), 15
Conj(x), 47
Orb(s), 30
Stab(s), 30

abelianization, 16

action
doubly transitive, 106
primitive, 106
transitive, 32

alphabet, 72
Artin, 14

Borel, 9
Burnside problem, 75
Burnside’s lemma, 36
Burnside’s theorem, 55, 64, 100

Cauchy’s theorem, 51, 53
Cauchy-Frobenius formula, 36
Cayley

graph, 41
center, 15
centralizer, 15
CFF (Cauchy-Frobenius Formula), 36
character

table, 88
character table, 100
characteristic subgroup, 103
Chinese Remainder Theorem, 22
class equation, 47, 48, 53
class function, 82
class funtion, 85
class number, 85
commutator, 14
composition

factors, 59
series, 59

conjugacy class, 47
coset, 11
coset representation, 35
cycle, 4

direct product, 9

Euler’s function ϕ, 3, 13

Feit-Thompson theorem, 55, 64, 100
Frattini subgroup, 50
Frobenius’ theorem, 100

G’, 14
generator, 3
group

p-group, 48
abelian, 2
action, 30
automorphism, 57, 104
commutative, 2
complete, 110
cyclic, 2, 13
definition, 1
dihedral, 4
finite order, 2
finitely generated, 65

111



112 EYAL Z. GOREN, MCGILL UNIVERSITY
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