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Abstract

In this thesis, we investigate the problem of obtaining meaningful low

dimensional representation of high dimensional data, often referred to as

manifold learning. We examine classical methods for manifold learning such

as PCA and cMDS as well as some modern techniques of manifold learning

namely Isomap, Locally Linear Embedding and Laplacian Eigenmaps. The

algorithms for these individual methods are presented in mathematically

consistent, concise and easy to understand fashion so that people with no

computer science background can use the methods presented in their own

research. Motivations and justifications of these manifold learning methods

are provided. Finally we prove the convergence of Laplacian Eigenmaps

method in a self contained and compact fashion following the work of

Mikhail Belkin and Partha Niyogi.
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Abrégé

Dans cette thèse, on aborde le problème de l’apprentissage de variété afin de

réduire la dimensionalité d’ensembles de données pour obtenir une

représentation significative de basse dimension. On examine les méthodes

classiques d’apprentissage de variété telles que l’analyse en composantes

principales (PCA) et le positionnement multidimensionnel classique (cMDS).

On présente de plus trois techniques modernes pour résoudre ce problème:

les méthodes Isomap, Locally Linear Embedding et Laplacian Eigenmaps.

On expose les détails mathématiques de ces quelques algorithmes en termes

concis et simples tout en préservant leur cohérence mathématique. Ces

développements aideront sans doute d’autres chercheurs sans expérience en

informatique à utiliser ces méthodes. Par la suite, on justifie l’applicabilité de

ces techniques pour résoudre le problème de réduction de dimension.

Finalement, on montre la convergence de la méthode Laplacian Eigenmaps

d’une façon compacte en suivant l’approche de Mikhail Belkin et de Partha

Nyogi.
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CHAPTER 1

Introduction

In the last few decades we have witnessed remarkable developments in com-

puting power and data storage technology. With these developments came a

tremendous growth of available data which opened new horizons in all aspects

of our lives, including technology, government, business, and sciences. How-

ever today we are often faced with the challenges that come with big data. We

are constantly flooded with large amounts of data from which we are tasked to

extract meaningful information. These recent challenges led to the creation of

new disciplines such as data mining and machine learning, which are flourished

by researchers in applied mathematics, statistics and computer science.

Nowadays there are many different approaches to learning from data, and

the study of these learning algorithms is called machine learning. Real world

problems require deriving function estimates from a large number of data sets

with many variables. Although having access to abundance of examples with

many features is beneficial to an algorithm attempting to generalize from data,

handling large number of variables or dimensions often adds to the complexity

of the problem making it difficult to perform useful inference.

It is well known that high dimensionality presents obstacle to efficient process-

ing of data, which phenomenon is often referred as curse of dimensionality as

coined by Bellman in [5]. The heart of the challenge is that as dimensionality

D increases the volume of the space increase too fast so that the available data

becomes sparse. Here are some manifestations of curse of dimensionality:
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• When D is large not all norms are numerically equivalent in R
D. No-

tably the same function will have different degrees of smoothness under

different norms.

• In order to estimate multivariate functions with the same accuracy as

functions in low dimensions, we require that the sample size n grow

exponentially with D.

• Many algorithms that are fast in low dimensions become extremely slow

in high dimensions. In particular most nearest neighbour search algo-

rithms scale exponentially in complexity when vertex of a graph has on

average D edges.

Although there are some techniques to partially fix these problems in specific

tasks such as in [27], curse is still difficult to overcome in general situations

when only working in high dimensions. Thus there is a demand for techniques

that are designed to reduce dimensions of the data, hence effectively avoiding

the curse of dimensionality.

In many cases high dimensionality is an artefact of the choice of representation

of data which has nothing to do with underlying complexity of the mechanisms

that generated the data. Often the variables involved in the representation

are correlated through some functional dependence, hence the number of in-

dependent variables necessary to efficiently describe the data is small. In such

scenario it is possible to represent the data in much fewer dimensions than the

dimensions of the original data, and this is referred as dimensionality reduc-

tion.

For instance, consider 128×128 gray scale image of a rectangle. Now consider

data set of images where the same rectangle is translated around. Each image

is represented as a point in R
128×128, hence the data set is a subset of very high
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dimensional space but the underlying parameter governing the data is only

two dimensional namely translation in the two axis (A slightly sophisticated

example is given in Figure 1–1). As such under the assumption of low internal

degrees of freedom, it is reasonable to transform the representation of the data

to more efficient description by reducing the dimensionality. Developing such

methods of dimensionality reduction and studying their properties is the main

goal of the field Manifold Learning.

Figure 1–1: Example of dimension reduction from R
64×64 to R

2. Sequence

of pictures of opening and closing movements of the hand at different wrist

orientations, each picture (64 pixel by 64 pixel) is treated as point in R
64×64.

There there are 2000 pictures. When manifold learning method(Isomap[35]

) is applied to the data, the algorithm detects two main degrees of freedom

”finger extension” and ”wrist rotation”. Furthermore it correctly parametrizes

the data according to these parameters

Recently many manifold learning algorithms have been put forward and imple-

mented for real world problems successfully. These methods include Locally

Linear Embedding (LLE), Isomap, and Laplacian Eigenmaps. However many
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of the aforementioned techniques are still in their adolescence, waiting for the

theory to catch up. The purpose of this thesis is to give a self contained

overview of manifold learning and dimensionalilty reduction from a mathe-

matically rigorous viewpoint.

1.1 Outline of Thesis

In Chapter 2, we discuss classical methods for manifold learning such as

PCA and cMDS, as well as some modern techniques of manifold learning

namely Isomap, Locally Linear Embedding, and Laplacian Eigenmaps. For

each method, the algorithm is given in compact, concise fashion. In addi-

tion, an intuitive justification for the algorithm is provided. For Laplacian

Eigenmaps algorithm, we justify in detail the weights used for constructing

the corresponding graph Laplacian.

In Chapter 3, we explore the relationships between the manifold learning meth-

ods presented in Chapter 2. Advantages and disadvantages of local and global

approaches to manifold learning is discussed. We show that under certain

assumptions, Laplacian Eigenmaps and Locally Linear Embedding are equiva-

lent. Computational complexity of the manifold learning methods are studied.

We also introduce new algorithms such as c-Isomap, L-Isomap, and hLLE,

which are variants of the methods surveyed in Chapter 2. Finally, we explore

some important issues facing manifold learning.

Both Chapter 4 and Chapter 5 are devoted to understanding the Laplace

operator and the heat equation on manifolds so that we are equipped to un-

derstand the proof of convergence of Laplacian Eigenmaps algorithm in the

last chapter. Standard techniques in differential geometry such as exponential

mapping and computation of curvature and useful properties of heat operator
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are stated. We also give the short time asymptotic expansion of the heat kernel

on manifolds.

Finally, in Chapter 6, we give a proof of convergence of Laplacian Eigenmaps

method in a self contained and compact fashion, following the work of Mikhail

Belkin and Partha Niyogi.
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CHAPTER 2

Manifold Learning Algorithms

Manifold Learning is considered as subfield of machine learning. Hence we

start this chapter with basic ideas and goals of machine learning. Excellent

introduction to machine learning is given in [1].

Machine learning emerged out of a branch of computer science known as ar-

tificial intelligence(AI). As the name suggests the aim of the discipline is to

make machines intelligent, in the sense that making rational decisions and

solve problems autonomously. Since intelligence depends largely on the ability

to learn, one of the central focus of AI is to make machines learn from previous

experience or recognize patterns and structures in data.

In a broad sense machine is said to learn from experience with respect to

some task if its performance on specific task improves with experience. How-

ever problem of learning is very general and its difficult to pinpoint a general

definition, but almost any question in statistics has an anologue in machine

learning.

Machine learning algorithms are data-driven. In other words the data itself

reveals the proper answer. For instance if we are given a problem of distinguish-

ing if an email is a spam or not, machine learning algorithm will go through

examples of spam and non-spam messages and extract a patterns from these

examples. These patterns and information that is extracted through machine

learning is then used to predict whether or not an unseen email is spam. Also

what can be considered spam changes in time, culture and from person to per-

son, the coded definition has to be changed according to these circumstances,
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but machine learning algorithms can be applied regardless of circumstances as

long as there are training data.

The idea demonstrated above of learning from experience (data) is fundamen-

tal to many types of problems. There are many ways of learning from data,

so there are various categories of machine learning. Two of most common

categories is supervised learning and unsupervised learning. The particular ex-

ample discussed of spam filtering is an example of supervised learning. This

means that the examples are labelled. In our case we explicitly know which

messages are spam and which are not in the example data set.

In an unsupervised learning algorithm the example data are not labelled. The

goal of these types of algorithms is cluster the examples into different groups

or find structure in these examples.

supervised learning: Learning algorithm receives set of input variables and

their corresponding output variable. The problem is to find a function of the

input variables that approximates the known output variable.

unsupervised learning: Learning algorithm receives set of unlabelled data.

The problem is to find hidden structure in this data.

In an essence supervised learning is the study of the relationship between input

and output variables. On the other hand unsupervised learning is the study

the particular characteristics of the input variables only.

There are algorithms that are in-between the two types mentioned above such

as semi-supervised learning and active learning. In this thesis we will mainly

consider subclass of unsupervised learning which is dimension reduction or

manifold learning. The aim is to uncover low dimensional structures in a high

dimensional unlabelled data.
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In this chapter we will explore some existing manifold learning techniques and

their descriptions. One of the first and most common method of dimension

reduction is principle component analysis (PCA). PCA is a manifold learning

algorithm where the underlying structure of data is linear. Since manifolds

are locally linear it is important to be able to do linear dimensional reduction.

In fact many of manifold learning methods can be thought of as non-linear

versions of PCA. Detailed introduction to PCA and related methods are in-

troduced in [22]

2.1 Principle Component Analysis

Suppose that the data consist of points {x1, · · · , xn} ∈ R
D. Without loss of

generality assume the empirical mean of the data set is zero. We are looking for

d-dimensional subspace along which the data has the maximum variance. If the

data points lie exactly on some d-dimensional linear subspace then PCA will

recover exactly the subspace, otherwise there would be some error. We would

like to find a direction where the variance is maximized, first we construct

the so-called data matrix X = (x1, · · · , xn)T ∈ R
n×D. The rows of X are the

D-dimensional data points. Then for d = 1 maximizing variance is equivalent

the following:

max
‖w‖=1

V ar(Xw) = max
‖w‖=1

E[(Xw)2]− E[Xw]2

= max
‖w‖=1

E[(Xw)2]

= max
‖w‖=1

1

n

n
∑

i=1

(xT
i w)2

= max
‖w‖=1

1

n

n
∑

i=1

wT xix
T
i w

= max
‖w‖=1

1

n
wT XT Xw
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Hence the direction which maximizes the variance can be found by the opti-

mization formula.

v1 = argmax
‖w‖=1

{wT XT Xw}

Note that above quantity maximised is the Rayleigh quotient. The maximum

is the largest eigenvalue which occurs when w is the corresponding eigenvector.

Similar approach can be taken for the higher order eigenvectors.

PCA dimension reduction from R
D to R

d:

• Step 1: Given arbitrary data set S = {xi}ni=1 in R
D, construct data

matrix X̂ = (x1, · · · , xn)T ∈ R
n×D

• Step 2: Center the data to have empirical mean zero, in other words

transform X̂ so that columns add up to zero. This can be accomplished

by multiplying the data matrix by centralizing matrix H = In − 1
n
1n1

T
n .

The new data matrix is then X = HX̂

• Step 3: Compute eigenvalues and eigenvectors of sample covariance ma-

trix XT X. Order first d-eigenvectors vi so that corresponding eigenvalues

are in descending order λ1 ≥ λ2 ≥ · · · ≥ λd ≥ 0

• Step 4: Construct V = (v1, · · · , vd), and compute XV ∈ R
n×d. The

i-th row vector of XV corresponds to the d-dimensional representation

of xi ∈ R
D.

There is another way to interpret the d-dimensional representation of data

points in S through the algorithm is via the following map:

Φ: S ⊂ R
D −→ R

d

xi 7→ (xi · v1, · · · , xi · vd).
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PCA has been applied to variety of applied problems such as image process-

ing, statistics, text mining and facial recognition. However there are obvious

drawbacks to the method, clear one being that the centralized data is required

to lie on a linear subspace or something very close to it. This is very strong

assumption since it assumes that the variables of the data are correlated in

a linear fashion which is not true in many applications. We will introduce

other manifold learning algorithms that lifts this linearity assumption such as

Isomap, Locally Linear Embedding and Laplacian Eigenmaps. Next we will

examine another manifold learning method similar to PCA called Multidimen-

sional Scaling(MDS), this method is used later on for non-linear dimensional

reduction technique called Isomap.

2.2 Multidimensional Scaling

Multidimensional Scaling aims to preserve pairwise distances between data

points while reducing dimension. For instance, given data set S = {xi}ni=1 in

R
D we would like find to similar data points {yi}ni=1 ∈ R

d such that the pairwise

distances are preserved. There are different kinds of multidimensional scaling

techniques in this section we will examine classical multidimensional scaling

which was first introduced by Torgesen in [36]. More modern treatment of the

subject and application are can be found in [7].

Classical Multidimensional Scaling(cMDS) from R
D to R

d:

• Step 1: Given data set {xi}ni=1 in R
D, construct matrix of dissimilarities

Dij = ‖xi − xj‖2

• Step 2: Set B = −1
2
HDH where H = I − 1

n
1n 1T

n , this step centralizes

D.
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• Step 3: Find spectral decomposition B = UΛUT . Which by spectral

theorem Λ = diag(λ1, · · · , λn) and U = (v1, · · · , vn), where vi is the

eigenvector corresponding to the i-th largest eigenvalue λi.

• Step 4: The d-dimensional spatial configuration of the data set is

Y = UdΛ
1
2
d = (

√
λ1v1, · · · ,

√
λdvd) = (y1, · · · , yn)T . The d-dimensional

representation of data xi is then given by yi.

The MDS algorithm described here is used in wide variety of applications such

as in surface matching [9], marketing theory [20], and in psychometrics [34].

Major draw back of cMDS is in its sensitivity to noise and it doesn’t work

well when the underlying structure of the data is nonlinear. However cMDS

has inspired nonlinear manifold learning technique Isomap which we will cover

next.

2.3 Isomap

A useful point of view towards manifold learning is to treat the observations

{xi}ni=1 ∈ R
D as image of a point yi randomly sampled from a domain M in

R
d under some map Ψ : M ⊂ R

d → R
D such that Ψ(yi) = xi. Objective

of manifold learning is then to recover M and Ψ. However as stated the

problem is ill posed since for any observed data and for any M we can find

Ψ that satisfies the condition, thus there needs to be restrictions for Ψ. Two

main possibilities for the restrictions are to require Ψ to be either isometric

embedding or conformal embedding.

Isometric Feature Mapping(Isomap) exploits Ψ to be isometric embedding.

The method was first introduced in [35], the algorithm uses cMDS as subrou-

tine. Unlike previously mentioned methods such as PCA and cMDS, Isomap

can discover nonlinear degrees of freedom of the underlying data.
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The effectiveness of Isomap is due to the fact that some important geometric

aspects of M are preserved under Ψ. For instance geodesic distance dg(a, b)

between two points a, b ∈M is same as geodesic distance between Ψ(a), Ψ(b)

on Ψ(M). Hence the geodesic distances are preserved, which means that

Ψ(M) and M are isometric when viewed as metric space under geodesic dis-

tance. Thus if we can approximate the geodesic metric for Ψ(M), then we

can use cMDS to get a lower dimensional point configuration with the same

metric structure. The dimension reduced point configuration can be thought

of as random samples from M. Hence Isomap approximates geodesic metric

for Ψ(M). The approximation is done through constructing k-nearest neigh-

bour graph on the data and utilize local linearity of the manifold Ψ(M). The

geodesic distance between neighbouring points are well approximated by the

observed euclidean distance, however for far away points euclidean distance is

no longer good approximation of geodesic. To overcome this we will add each

small geodesics in the k-neighbourhood graph until the final point is reached.

Such path with minimal distance on the k-nearest neighbourhood graph is an

approximation for the geodesic as shown in [6]. With such approximation we

can capture the intrinsic geometry of Ψ(M).

Isomap nonlinear dimension reduction from R
D to R

d:

• Step 1: Given data set {xi}ni=1 in R
D, form the weighted k-nearest

neighbour graph G. That is put edge between vertices xi and xj if xj

is one of the k nearest neighbours of xi or vice versa in the Euclidean

distance. Assign each edge (xi, xj) weight ‖xi − xj‖.

• Step 2: Compute the shortest path distances between all pair of vertices

xi and xj store it in Sij. This can be done using Floyd-Warshall’s or

12



Dijkstra’s algorithm. Store the square of the shortest path into distance

matrix Dij = S2
ij

• Step 3: Apply cMDS algorithm with dissimilarity matrix D from pre-

vious step.

The algorithm is shown experimentally to perform well under some assump-

tions on M. In the example shown in Figure 2–1 manifold M is flat two

dimensional and the set of observations has three dimensions where Ψ is non-

linear isometric embedding. In some special types of manifolds Isomap is

guaranteed to recoverM.

Figure 2–1: Illustration of Isomap for ”Swiss roll” data set where k = 7 and

n = 1000 as in [35]. Blue line is geodesic distance on Ψ(M) while red line is

approximation of the geodesic distance using shortest path on neighbourhood

graph

Note in Figure 2–1A,B how the geodesic is approximated by the shortest path

on graph G. In order to perform the geodesic length approximation we need

to apply either Floyd-Warshall’s or Dijkstra’s algorithm. In practice for mod-

erate amount of dataset Floyd-Warshall’s algorithm is used due to its simple

nature.

Floyd-Warshall algorithm shown above is known to be Θ(n3) details can be

found on [18]. The constant in Θ(n3) is small since there is only one operation

13



Algorithm 1 Floyd-Warshall’s

1: Let Sij be n× n matrix of minimal path distances initialized to ∞
2: for each vertex xi

3: Sii ← 0
4: for each edge (xi, xj)
5: Sij ← ‖xi − xj‖
6: for k from 1 to n
7: for i from 1 to n
8: for j from 1 to n
9: if Sij > Sik + Skj then

10: Sij ← Sik + Skj

11: return Sij

in the inner most loop and the algorithm is easy to implement thus it is com-

monly used. However for large data set the Floyd-Warshall is too slow due to

its cubic growth. For large data it is advised to use Dijkstra’s algorithm with

Fibonacci heap since it has lower asymptotic time complexity [12].

The main obstacle of Isomap is the estimation of geodesic as stated before. The

following theorem provides insight into when such difficulty can be overcame

through Isomap.

Theorem 2.1 ([13]). Let M be sampled from a bounded convex region in R
d,

with respect to some density function α. Let Ψ be C2 isometric embedding of

the region in R
D. Given ε, µ > 0, for a suitable choice of neighbourhood size

k, we have

1− ε ≤ recovered distance

original distance
≤ 1 + ε

with probability at least 1−µ, provided that the sample size is sufficiently large.

The theorem 2.1 provides a theoretical guarantee for Isomap when M is suf-

ficiently regular, convex and compact. Isomap has been applied for computer

vision in video analysis [30], and also in face recognition [38].
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2.4 Locally Linear Embedding

Locally Linear Embedding(LLE) was first introduced in [32] around the same

time as Isomap. The main idea of LLE is to treat the manifold as a collection

of overlapping coordinate patches each one being nearly linear. Intuition is

then to encode the local information using the k-nearest neighbour as samples

from linear patch, and characterize the geometry of these patches. In order to

do this we express the vertex as a weighted combination of its neighbours. We

find a matrix W which satisfies following optimality condition:

W = argmin
Ŵ

n
∑

i=1

‖xi −
∑

j∈N(i)

Ŵijxj‖2 (2.1)

subject to invariance constraint
∑

j Ŵij = 1 for each 1 ≤ i ≤ n, and sparseness

constraint Ŵij = 0 if xi 6∈ N(j). The first constraint
∑

j Ŵij = 1 makes

the weights invariant to global translations, global rotations and scaling. For

instance to see invariance under global translation observe the following:

‖(xi + c)−
∑

j∈N(i)

Ŵij(xj + c)‖ = ‖xi + c−
∑

j∈N(i)

Ŵijxj −
∑

j∈N(i)

Ŵijc‖

= ‖xi + c−
∑

j∈N(i)

Ŵijxj − c‖

= ‖xi −
∑

j∈N(i)

Ŵijxj‖

The weight matrix W reveals the local geometry of the embedded manifold.

In order to use this in practice, we would like to find an algorithmic way of

finding optimal solution to the optimization problem 2.1. For fixed xi and for

given Ŵ we may write

‖xi −
∑

j∈Nk(i)

Ŵijxj‖2 = ‖
∑

j∈N(i)

Ŵij(xi − xj)‖2 = Ŵ T
i Σ(i)Ŵi
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where Ŵi = (Ŵi1, · · · Ŵin)T and Σ
(i)
µν = (xi − xµ)T (xi − xν) which is called

local covariance matrix. Note that Σ(i) is symmetric non-negative definite for

each data point xi. We can solve the optimization problem using Lagrange

multiplier method which gives

f(Ŵ ) = Ŵ T
i Σ(i)Ŵi − λ(1T

nŴi − 1)

Differentiating above respect to Ŵ and setting it equal to zero solves the

optimization problem 2.1 with optimal weight

Wi =
(Σ(i))−11n

1T
n (Σ(i))−11n

.

The local geometry at each data point xi is captured by Wi. We saw that Wi

was invariant under rotations, scaling and translations. The combination of

the two facts imply that any linear mapping of the neighbourhood of xi is also

characterized by Wi. To reduce dimensions we need to find point configuration

{yi}ni=1 ∈ R
d with the same local geometry as observations {xi}ni=1, meaning

that configuration that is best characterized by W . Hence d-dimensional con-

figuration {yi}ni=1 is obtained by minimizing

n
∑

i=1

‖yi −
n
∑

j=1

Wijyj‖

Thus we need to solve for Y = (y1, · · · , yn) from the following optimization

problem

Y = argmin
Ŷ

n
∑

i=1

‖ŷi −
n
∑

j=1

Wij ŷj‖ (2.2)

since W is invariant under translations we may add constraint that the mean

is zero
∑n

i=1 yi = 0 and has unit covariance i.e 1
n
Y Y T = Id. It is shown

in [33] that the optimization problem 2.2 is solved when Y = (v1, · · · , vd)
T
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where vi is the eigenvector corresponding to the (i + 1)-st smallest eigenvalue

of (I −W )T (I −W ). Summarizing the steps mentioned above the algorithm

is presented below.

Locally Linear Embedding(LLE) dimensional reduction from R
D to R

d:

• Step 1: Given data set {xi}ni=1 in R
D, form the weighted k-nearest

neighbour graph. Compute local covariance matrix for each data xi

denoted Σ
(i)
µν = (xi − xµ)T (xi − xν) for xµ, xν ∈ Nk(xi).

• Step 2: Find optimal reconstruction weights are each xi.

Wi =
(Σ(i))−11n

1T
n (Σ(i))−11n

further set Wij = 0 if xj 6∈ Nk(xi)

• Step 3: Compute eigenvalues and the eigenvectors of (I−W )T (I−W ),

denote vt as the eigenvector corresponding to the (t + 1)-st smallest

eigenvalue. The d-dimensional spatial configuration of the data set is

obtained by Y = (y1, · · · , yn) = (v1, · · · , vd)
T . Dimension reduced form

of data point xi is given by yi

Note that LLE solves sparse eigenvalue problem. LLE is similar to another

method called Laplacian Eigenmaps which we will introduce in next section.

The LLE method is known to have applications to facial recognition [39], hand

gesture recognition [19], speech and music analysis [23]. The method is used

often due to its speed and simplicity.

2.5 Laplacian Eigenmaps

Laplacian Eigenmaps introduced in [2], relies on ideas from spectral geometry

and spectral graph theory. In spirit Laplacian Eigenmaps is close to LLE,

it also tries to capture information about the local geometry and reconstruct
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global geometry from the local information. We first introduce the algorithm

and give justification later on.

Laplacian Eigenmaps dimensionality reduction from R
D to R

d:

• Step 1: Given data set {xi}ni=1 in R
D put edge between data xi and xj

if they are near in the sense of one of the following two choices:

1. k-nearest neighbour: Vertices xi and xj are connected by an edge

if either xj is among the k closest neighbours of xi or xi is among

the k closest neighbours of xj.

2. ε-neighbourhoods: Vertices xi and xj are connected by and edge

if ‖xi− xj‖ < ε where the norm is the usual euclidean norm in R
D.

• Step 2: We have two options for choosing the edge weights

1. Heat Kernel: If xi and xj are connected by an edge then set the

edge weight as

Wij = e−
‖xi−xj‖2

t

otherwise, set Wij = 0.

2. Combinatorial: Wij = 1 if the vertex i and j are connected by an

edge and Wij = 0 otherwise. This choice of weights avoids the need

to choose a parameter t, making it more convenient to apply.

• Step 3: Let G be the graph constructed according to previous two

steps. Furthermore assume G is connected graph otherwise apply the

current step to each connected component of G. Compute eigenvalues

and eigenvectors of the generalized eigenvalue problem

Lf = λDf
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where D is diagonal weight matrix called degree matrix, and its entries

are Dii =
∑

j∈N(xi)
Wji. We call L = D−W graph Laplacian matrix. By

the spectral theorem we know that the eigenvalues are real. We order

the eigenvalues in an increasing order λ0 ≤ λ1 ≤ · · · ≤ λd let φi be

corresponding eigenvectors such that Lφi = λiDφi. We leave out the

zeroth eigenvector (since it is constant) and proceed with the embedding

using the following map

Φ: M−→ R
D

xi 7→ (φ1
i , · · · , φd

i ).

where φj
i stands for i-th component of j-th eigenvector.

The idea behind the method is to map close together points to close together

points in the new dimension reduced space. For instance if we construct the

graph G according to the algorithm description and looking to reduce dimen-

sion to d, then reasonable approach is to find points {yi}ni=1 ∈ R
d such that

the following functional is minimized

∑

ij

‖yi − yj‖2Wij

with some restrictions on {yi}ni=1 to avoid trivial solutions. Let Y = (y1, · · · , yn),

then the functional can be written as the following:

∑

ij

‖yi − yj‖2Wij = tr(Y LY T )

As a result the problem reduces to constrained optimization problem where the

constraint is Y DY T = I, this prevents a collapse onto subspace of dimension

smaller than d. The standard methods show that the optimal solution

Y = argmin
Ŷ DŶ T =I

tr(Ŷ LŶ T )
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can be found through and eigenvalue problem Lφi = λiDφi and the solution

is Y = (φ1, · · · , φd)
T where φi is the eigenvector corresponding to (i + 1)-st

smallest eigenvalue. The procedure explained here gives justification to the

algorithm except the choice of the weight Wij, we will explain the reasoning

behind the choice of weight Wij.

Weight matrix W and Laplace Beltrami Operator

The weights are chosen so that the operator L approximates the Laplace Bel-

trami operator on manifold.The operator D− 1
2 LD− 1

2 is also called the normal-

ized discrete Laplace operator and it has been extensively studied in [10].

Heat equation is closely related to the Laplace Beltrami operator. Let f :

M → R be the initial heat distribution and u(x, t) be the heat distribution

at time t. The heat equation is written (∂t + ∆M)u = 0. The solution to the

heat equation is obtained by the following

u(x, t) =

∫

M
Ht(x, y)f(y)dVy

Where Ht is the heat kernel on the manifold M. When x and y are close

enough , and for small time the manifold heat kernel is approximated by the

Euclidean heat kernel

Ht(x, y) ≈ 1

(4πt)
d
2

e−
‖x−y‖2

4t

For small time heat kernel becomes increasingly localized tends to Dirac δ-

function, in other words

lim
t→0

∫

M
Ht(x, y)f(y) = δ ∗ f(x) = f(x)
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Using the definition of heat kernel and heat equation we may write Laplace

Beltrami operator as

∆Mf = −
[

∂t

∫

M

Ht(x, y)f(y)

]

t=0

We may approximate derivative above as the difference

∆Mf(x) ≈ 1

t

[

f(x)
1

(4πt)
d
2

∫

M
e−

‖x−y‖2
4t dVy −

1

(4πt)
d
2

∫

M
e−

‖x−y‖2
4t f(y)dVy

]

If we assume that the points {xi} are distributed dense enough, then we may

replace the integral as the empirical estimate hence

∆Mf(xi) ≈
1

t

1

(4πt)
d
2

1

|V |



f(xi)
∑

xj∈Nε(xi)

e−
‖xi−xj‖2

4t −
∑

xj∈Nε(xi)

e−
‖xi−xj‖2

4t f(xj)





Note that above in the bracket can be identified as the i’th component Lf

with

Wij =















e−
‖xi−xj‖2

4t if ‖xi − xj‖ < ε

0 otherwise

This is exactly the weight formula for Laplacian Eigenmaps which justifies

the choice of W . Hence we have the following approximation involving graph

Laplacian

∆Mf(xi) ≈
1

t

1

(4πt)
d
2

1

|V | [Lf ]i

note that the constant in front of the discrete Laplacian only scales the eigen-

vectors but the important information about the embedding resides in the rela-

tionship between the eigenvectors. In 6 we will discuss convergence of discrete

Laplacian to Laplace-Beltrami operator in providing theoretical justification

to the Laplacian Eigenmaps algorithm.
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CHAPTER 3

Relationships Between Learning Algorithms

3.1 Global versus Local methods

The manifold learning methods we studied so far can be divided into two big

categories global and local methods. Usually the local method is equivalent to

solving sparse eigenvalue problem while global method is to solve dense eigen-

value problem. The local methods include Laplacian Eigenmaps, LLE where

the method uses the local information to construct embedding. On the other

hand global method uses information between all pairs of data to construct

embedding. The Isomap algorithm is an example of global method [13]. There

are methods that belong to both of these categories such as Semidefinite em-

bedding [37] . Semidefinite embedding is considered local in the sense that

neighbourhood distances are equated with a geodesic distances but also con-

sidered global method since the objective function considers distances between

all pair of data points. There are advantages and disadvantages to both types

of methods, choosing which method to use depends heavily on the underlying

geometry of the problem.

Local methods work well for characterizing the local geometry of manifolds

accurately, however the method is not very effective at the global scale giving

inaccurate description of geometry at far away points. The reason is simple,

the constraints from the local method do not apply to far away points. On

the other hand global methods such as Isomap gives correct description of

distances of far away data points but provides inaccurate intra-neighbourhood
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distances. However local methods in general tend to handle sharp curvatures

better than global methods.

Methods in each category share some common characteristics. For instance lo-

cal methods LLE and Laplacian Eigenmaps are considered same under certain

circumstances which we will explore next section.

3.2 Connection Between LLE and Laplacian Eigenmaps

In [2] the authors showed that under certain assumptions LLE reduces to

Laplacian Eigenmaps. Recall from 2.4 that performing LLE is equivalent to

finding eigenvalues and eigenvectors of matrix E = (I −W )T (I −W ) where

W satisfies

W = argmin
Ŵ

n
∑

i=1

‖xi −
∑

j∈N(i)

Ŵijxj‖2

subject to invariance constraint
∑

j Wij = 1 for each 1 ≤ i ≤ n and sparseness

constraint Wij = 0 if xi 6∈ N(j). We will show that under some conditions the

following hold

Ef ≈ 1

2
L2f (3.1)

where L is the Laplacian matrix mentioned in Laplacian Eigenmaps method.

To demonstrate 3.1 we fix a data point xi, we show that

[(I −W )f ]i ≈
∑

j

Wij(xi − xj)
T H(xi − xj) (3.2)

where H is the Hessian matrix of f at xi. To demonstrate 3.2 we change

coordinate system to one one tangent plane at xi. Hence we set xi = 0 and

vj = xj − xi, where xj’s are assumed to be xj ∈ N(xi). In this sense we see

that vj are vectors in tangent plane at xi. Noting that xi belongs to affine
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span of its neighbours and by the property of W we have

0 = xi −
∑

j

Wijxj

= xi

∑

j

Wij −
∑

j

Wijxj

=
∑

j

Wij(xi − xj) =
∑

j

Wijvj

Assuming f is smooth we may use Taylor expansion to get the desired identity

as follows:

[(I −W )f ]i = f(0)−
∑

j

Wijf(vj)

= f(0)−
∑

j

Wij

(

f(0) + vT
j ∇f +

1

2
vT

j Hvj + o(‖vj‖2)
)

≈
(

f(0)−
∑

j

Wijf(0)

)

−
∑

j

Wijv
T
j ∇f − 1

2

∑

j

Wijv
T
j Hvj

=
1

2

∑

j

Wijv
T
j Hvj

=
∑

j

Wij(xi − xj)
T H(xi − xj)

Observe that if
√

Wijvj form an orthonormal basis then

[(I −W )f ]i ≈
∑

j

Wijv
T
j Hvj = tr(H) = [Lf ]i (3.3)

Of course the assumption
√

Wijvj form an orthonormal basis is not always

true, but when it is true we have equivalence between LLE and Laplacian

Eigenmaps by applying 3.3.

(I −W )T (I −W )f ≈ 1

2
L2f

the eigenvectors of L2 is same as that of L hence the LLE reduces to finding

eigenvectors of graph Laplacian when the assumption is satisfied. Although
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equivalence is shown in this specific setting, the two methods differ in gen-

eral.

3.3 Complexity of Dimensional Reduction Methods

Computational complexity plays important role in the discussion of manifold

learning since if the method scales poorly with amount of data then the method

is difficult to be used for large data making it less useful for real life applica-

tions.

Among the manifold learning methods introduced the spectral decomposition

is the primary computational bottleneck. For local methods the eigenvalue

problem is sparse and for global methods the eigenvalue problem to be solved

is dense. Spectral decomposition for dense matrix is O(n3), this makes it

difficult to apply the algorithm to large data sets.Hence global methods such

as Isomap is only suited for small to medium amount of data which in practice

means less than roughly 2000 data points on regular desktop computer. On

the other hand local methods only require solving sparse eigenvalue problems

where there are some algorithms that perform much better than O(n3). When

the algorithm involves k-nearest neighbours, the sparse eigenvalue problems

using standard method have complexity O((d + k)n2) where d is dimension

which the data is being reduced.

The local methods LLE, Laplacian eigenmaps and their variants can scalable

to large data sets. Global methods such as cMDS and Isomap on the other

hand needs modification in order for it to scale up to large data due to its

complexity. The algorithm Landmark Isomap introduced in [14] is designed to

make Isomap scalable. Landmark Isomap (L-Isomap) designates r < n data

points called landmark points. Instead of finding shortest distance between

each pair of points L-Isomap finds shortest distances from each data point
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to the landmark point. We can use Dijkstra’s algorithm, the resulting time

complexity is O(krn log(n)). Given the shortest distances from all data points

to landmark data point, we find Euclidean with the provided distances. Hence

overall complexity of L-Isomap to O(r2n). Although L-Isomap is fast compared

to Isomap, the solution obtained through L-Isomap is only and approximate

one compared to Isomap.

3.4 Supplementary Algorithms

There are many other manifold learning algorithms that are variants of the

manifold learning methods discussed. We have already introduced L-Isomap

which is a variant of Isomap. There is another version of Isomap called Confor-

mal Isomap(c-Isomap) discovered in [13], this method replaces the assumption

that the embedding is isometric embedding to conformal embedding. The

method c-Isomap tries to capture the conformal geometry through the graph.

Related work has been done in [24].

Conformal Isomap nonlinear dimension reduction from R
D to R

d:

• Step 1: Given data set {xi}ni=1 in R
D, form the weighted k-nearest

neighbour graph G. Assign each edge (xi, xj) weight
‖xi−xj‖√

M(xi)M(xj)
. Where

M(xi) = 1
k

∑

xj∈N(xi)
‖xi − xj‖ which is the mean distance between the

neighbours.

• Step 2: Compute the shortest path distances between all pair of vertices

with the edge weights described above and store it in Sij. Use Dijkstra’s

algorithm with Fibonacci Heap. Store the square of the shortest path

into distance matrix Dij = S2
ij

• Step 3: Apply cMDS algorithm with dissimilarity matrix D.
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Due to application of cMDS i.e dense eigenvalue problem, the complexity of

c-Isomap is same as that of Isomap which is O(n3). However we may approx-

imate the exact solution using the landmark idea introduced for L-Isomap.

There are other methods such as Hessian Locally Linear Embedding(HLLE)

[17] and Local Tangent Space Alignment(LTSA) introduced in [40] . Similar

to LLE the HLLE looks at locally linear patches and map them to lower di-

mensional space. The HLLE maps the tangent spaces estimates obtained by

PCA on the neighbourhood of xi to linear patches. The mapping is obtained

by solving a sparse eigenvalue problem. The HLLE algorithm has an opti-

mality guarantee as shown in [17]. Unlike Isomap the HLLE algorithm does

not require the underlying parameter space to be convex, and embedding to

be globally isometric. The method HLLE requires the parameter space to be

connected and locally isometric to the manifold which is a weaker assump-

tion than what Isomap requires. It has been shown in [17] that HLLE can

outperform Isomap on some non-convex manifolds. Even though HLLE has

some properties which shows its superiority to Isomap, due to its difficulty to

implement the method is not as popular as Isomap.

There are other algorithms that came more recently such as Local Tangent

Space Alignment(LTSA) introduced in [40] and Manifold Charting first ap-

peared in [8]. These methods are variants of the methods we have already

introduced but with different cost functions and parametrizations.

A close relative to Laplacian Eigenmaps is Diffusion Maps a detailed introduc-

tion given in [11][29]. The diffusion maps originates from ideas of dynamical

systems by defining Markov chain on the graph of the data [28]. There are

plethora of algorithms developed recently but their relations to other methods

and usefulness to real life data remains elusive.
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3.5 Common Issues Facing Manifold Learning

Although manifold learning methods have been used with some success to

selected real life data sets, there are challenges to applying these methods

to general data. One of the clear challenges is to identify the underlying

dimensionality of the data living in the ambient space. The problem of intrinsic

dimensionality can be resolved in PCA and Isomap through analysis of variance

of dimension reduced data. However finding intrinsic dimensionality of the

manifold when using methods such as LLE and Laplacian Eigenanmaps is

difficult.

Recently there have been explosion of techniques in manifold learning , how-

ever most of them are experimented only on synthetic data sets which are

carefully chosen. It is difficult to gauge their performances, since the idea of

useful low dimensional representation varies from problem to problem. The

correct performance measure for these algorithms are hard to define. The

main evaluation method for most of these manifold learning algorithm is to

run the algorithm on some artificial data set and observe whether the result is

intuitively pleasing. This evaluation method is neither precise nor objective.

Such lack of precise evaluation method could be one of the reasons why there

are many similar algorithms present. Many of these new algorithms do not

have theoretical guarantee, hence it is not clear that they are correct even in

principle.

For methods with theoretical guarantee, not much is known for the convergence

rates of manifold learning methods. We expect that the convergence rate to

depend on the geometry of the underlying manifold.

In some problems one could choose distribution which to sample the data on

the manifold. It is clear that for efficient representation of the manifold, we
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need to sample considering curvature into account. Such method of sampling

on manifold leads to the idea of adaptive manifold learning methods. Although

some preliminary work has been done in [41], there are still lots of room for

improvement.

Many real life data suffer from having to deal with high noise but manifold

learning methods such as Isomap and cMDS are extremely sensitive to noise

making it difficult to use for realistic data. Even though Laplacian Eigenmaps

and LLE are less sensitive to noise they are extremely parameter sensitive,

hence choosing the right parameter is often challenging. Also given data points

checking when the manifold assumption is reasonable is a difficult question yet

to be fully answered.

In summary, for manifold learning methods to perform well and to be more

useful for real life data the issues of performance measure, noise sensitivity

and parameter selections must be addressed.
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CHAPTER 4

Laplacian on Manifolds

To understand manifold learning methods well, one needs to understand basic

ideas of geometric analysis. In this chapter we will discuss essential differential

geometry to be used later on the for the proof of convergence of Laplacian

Eigenmaps algorithm in chapter 6.

4.1 Riemannian Metric

We would like to generalize Laplacian on R
n to one on smooth compact Rie-

mannian manifolds without boundary. Detailed introduction is given in [31].

Recall that the Euclidean Laplacian is

∆Rn =
n
∑

i=1

(

∂

∂xi

)2

In order to generalize Euclidean Laplace operator to Riemannian manifolds, we

need to define Riemannian metric. Riemannian metric gives notion of distance

on the manifold. By giving distance we should we able to measure lengths of

curves on the manifoldM. For instance given a surfaceM⊂ R
3, we measure

the length of the curve γ : [0, 1]→M as

lγ =

∫ 1

0

|γ′(t)|dt

Observe that the key ingredient here used to measure the length is the mod-

ulus of the tangent vector γ′(t) ∈ Tγ(t)M. In the same way we need to in-

troduce structure on the tangent space in order to measure length, area and

volume.
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Definition 4.1 (Riemannian Manifold). A Riemannian Manifold is a smooth

manifoldM with a family of smoothly varying positive definite inner products

gp on TpM for each p ∈ M. The family g is called Riemannian metric. Two

Riemannian manifolds (M, g) and (N , h) are called isometric if there exists a

smooth diffeomorphism f :M→N such that

gp(X, Y ) = hf(x)(f∗X, f∗Y )

for all X, Y ∈ TpM, for all p ∈M.

By above definition we may identify gp as bilinear form on TpM i.e an element

of T ∗
pM⊗ T ∗

pM hence g is a smooth section of T ∗M⊗ T ∗M. So similar to

what we have demonstrated before, the length of a curve inside a manifold

is

l(γ) =

∫ 1

0

√

gγ(t)(γ′(t), γ′(t))dt

It is useful to be able to compute the metric in local coordinates. Let X, Y ∈

TpM and (x1, · · · , xn) are be local coordinate near p ∈ M. From linearity

there exists αi, βi ∈ R such that

X =
n
∑

i=1

αi ∂

∂xi
Y =

n
∑

i=1

βi ∂

∂xi

By bi-linearity of gp we have

gp(X, Y ) = gp

(

n
∑

i=1

αi ∂

∂xi
,

n
∑

j=1

βj ∂

∂xi

)

=
∑

i,j

αiβigp

(

∂

∂xi
,

∂

∂xj

)

Hence gp can be identified with symmetric, positive definite matrix gij(p) =

gp

(

∂
∂xi ,

∂
∂xj

)

. Thus we may write the metric as

g =
∑

i,j

gijdxi ⊗ dxj
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note that this form makes it much more convenient to perform explicit com-

putations in Riemannian Geometry.

As we can see being embedded in R
n is not necessary to define Riemannian

manifolds. The question is then can any compact Riemannian manifold be

isometrically embedded in R
n . The answer has been given by Nash embedding

theorem, which says it is always possible to isometrically embed Riemannian

manifolds into Euclidean spaces as long as the dimension of the Euclidean

space is high enough.

Theorem 4.2 (Nash). Any compact Riemannian Ck manifold with 3 ≤ k ≤ ∞

of dimension d, has a Ck isometric embedding in R
D where D = n(3n+11)

2

Manifold learning methods such as Isomap assumes that the underlying Rie-

mannian manifold is isometrically embedded in space of observations which is

Euclidean space. The theorem 4.2 gives validity to this assumption.

4.2 Sobelev Spaces on Manifold

Having the right notion for the space of functions is essential to analysis of

differential equations. We will first define L2 space on manifolds. This notion of

L2 space should be compatible with the usual notion of L2 space on Euclidean

space. We define volume form in the following way

Definition 4.3. Volume form of a Riemannian manifold is the top dimen-

sional form dV with local coordinates

dV =
√

det g dx1 ∧ · · · ∧ dxn

where ( ∂
∂x1 , · · · , ∂

∂xn ) is a positively oriented basis of TpM. We set the volume

of (M, g) to be

V ol(M) =

∫

M
dV
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Above allows us to integrate any function f ∈ C∞(M), hence we can now

define the Hilbert space L2 as follows:

Definition 4.4. Given Riemannian manifold (M, g), we define Hilbert space

L2(M) as completion of C∞
c (M) with respect to the inner product

〈f(x), g(x)〉 =

∫

M
f(x)g(x)dV

One can verify the above definition is indeed a Hilbert space. It is also possible

to define L2 space of k-forms, however that is not useful in our discussion since

it will not come up in further discussions. We may in a similar way define

Lp(M) as completion of C∞
c (M) with respect to norm ‖f‖p =

∫

M |f |pdV . We

now extend the definition of Sobolev space to Riemannian manifolds.

Definition 4.5. Let {xi}Ni=1 ⊂ A such that M =
⋃N

i=1 Ui and let {φi}Ni=1 be

partition of unity subordinate to cover {Ui}Ni=1. We now define f ∈ W k,p(M)

‖f‖W k,p(M) =
N
∑

i=1

‖(φif) ◦ x−1
i ‖W k,p

Indeed this definition is well posed in the sense that it only depends on the

metric itself. Similar to Euclidean space we denote Hk(M) := W k,2(M). Note

that Hk(M) is a Hilbert space. Most results that are true about Sobolev space

on R
n are also true for compact Riemannian manifolds.

4.3 Levi-Civita Connection and Curvature

In order to compare tangent spaces at different points we need to define a

notion of affine connection.

Definition 4.6. Let (M, g) be a smooth manifold and let Γ∞(TM) be space

of smooth section on the tangent bundle TM . Then an affine connection is a
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bilinear map

∇ : Γ∞(TM)× Γ∞(TM) −→ Γ∞(TM)

(X, Y ) 7→ ∇XY

such that for all f in C∞(M) and X, Y ∈ Γ∞(TM)

• ∇fXY = f∇XY

• ∇X(fY ) = df(X)Y + f∇XY

As defined there are infinitely many affine connections on a manifold. However

on every Riemannian manifold (M, g) there is a unique affine connection ∇

called Levi-Civita connection such that:

• ∇XY −∇Y X = [X, Y ] for all X, Y ∈ Γ∞(M)

• Parallel transport is an isometry, meaning that the inner products defined

using g between tangent vectors are preserved.

From now on if otherwise stated all connections will be Levi-Civita connec-

tions. We will now define Riemann curvature tensor which is the most common

method for describing curvature of Riemannian manifold.

Definition 4.7. The curvature R of a Riemannian manifold (M, g) is a cor-

respondence that associates to every pair X, Y ∈ Γ∞(M) a mapping R(X, Y ) :

Γ∞(TM)→ Γ∞(TM) given by

R(X, Y )Z = ∇Y∇XZ −∇X∇Y Z +∇[X,Y ]Z Z ∈ Γ∞(TM) (4.1)

One can write the curvature tensor as

Rs
ijk = dxsR(∂i, ∂j)∂k = dxs(∇∂j

∇∂i
−∇∂i

∇∂j
)∂k
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Note that R is a measure of noncommutativity of covariant derivative. Often

people write it in the form Rijks = giρR
ρ
jks.

We have the following identities, the first of which is known as Bianchi iden-

tity :

Rijks + Rjkis + Rkijs = 0

Rijks = −Rjiks

Rijks = −Rijsk

Rijks = Rksij

Explicit calculation of Riemann curvature tensor is often difficult, hence it is

common to use Christoffel symbol. Which is defined as ∇∂i
∂j := Γk

ij∂k in local

coordinates

Γk
ij =

1

2
gkµ

(

∂gµi

∂xj
+

∂gµj

∂xi
− ∂gij

∂xµ

)

Hence we may write the Riemann curvature tensor in terms of the Christoffel

symbol

Ri
jµν = ∂µΓi

νj − ∂νΓ
i
µj + Γi

µλΓ
λ
νj − Γi

νλΓ
λ
µj

It is useful to consider traces of the Riemann curvature tensor. Ricci curvature

tensor is defined as trace Rij := Rρ
iρj. Another useful geometric quantity is

scalar curvature which is defined as trace of Ricci curvature tensor with respect

to the metric R := gijRij.

4.4 Laplacian on Functions

Much of the thesis uses properties of Laplace operator. One might wonder

why there is a big emphasize on Laplacian and not some other differential

operator. This is because Laplacian commutes with isometries of the manifold.
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For instance on R
n the isometries are translation and rotation, so given an

isometry T the operator satisfies ∆(φ ◦ T ) = (∆φ) ◦ T . In fact much more is

true if L is any operator that commutes with translations and rotations then

there exists ai ∈ R such that L =
∑N

j=1 aj∆
j. Hence Laplacian is the building

block of operators that are invariant under isometries.

Given a Riemannian manifold (M, g) we can define analogues of divergence

and gradient.

Let M be a Riemannian manifold(with or without boundary) of dimension

greater than two with metric g. The metric induces the analogue of div and

grad on manifold.

Definition 4.8. Let f ∈ C1(M), then gradf is the vector field satisfying

〈gradf, X〉g = Xf ∀X ∈ Γ∞(TM)

In a similar way we can define divergence on manifold.

Definition 4.9. Let X be differentiable vector field on M, define the real

valued function divX by

divX(p) = Tr(ξ → ∇ξX)

where ξ ranges over TpM

Just as in on Euclidean space divergence on manifold satisfies following prop-

erties.

div(X + Y ) = divX + divY

div(fX) = fdivX + Xf

Now we can define Laplacian such that it coincide with our intuition on Eu-

clidean space.
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Definition 4.10. Let f ∈ C2(M), we define Laplacian of f,∆f by

∆f = div(gradf)

In local coordinates we may write the Laplacian as

∆f =
1√

det g

∂

∂xj
(gij
√

det g
∂

∂xi
f)

Where gij = (gij)
−1. Observe that in Euclidean case where gij = δij then

one retains the usual Laplacian from the coordinate definition of Laplacian on

functions since det(gij) = 1 in this case.

∆Rn =
n
∑

i=1

(
∂

∂xi
)2

The following are important properties of the Laplace-Beltrami operators.

Theorem 4.11. Let M be a closed compact manifold, and consider Laplace

eigenvalue problem. Then:

• The set of eigenvalue consists of infinite sequence 0 < λ1 ≤ λ2 ≤ ...→∞

• Each eigenvalue has finite multiplicity and the eigenspaces corresponding

to distinct eigenvalues are L2(M) orthogonal

• Each eigenfunction is smooth analytic.

Theorem 4.12. The Laplace operator depends only on the given Riemannian

metric. If

F : (M, g)→ (N , h)

is an isometry, then (M, g) and (N , h) have the same spectrum. Also if φ is

an eigenfunction on (N , h), then φ ◦ F is eigenfunction on (M, g)

As we have seen in chapter 2 finding geodesics play an important role in

manifold learning.

37



The geodesics on Riemannian manifold are given by the following Euler-Lagrange

equation

d2γi

dt2
+ Γi

jk

dγj

dt

dγk

dt
= 0 i = 1, · · · , n

where γi = xi ◦ γ. By the local flatness there is a neighbourhood of x that is

diffeomorphic to R
n , the existence and uniqueness theory of ODEs guarantees

that for any x ∈M and v ∈ TxM, there exists an ε > 0 and a unique geodesic

γv(t), t ∈ (−ε, ε), with γ(0) = x, γ′(0) = v.

Definition 4.13. Let M be compact. For x ∈ M the exponential map expx :

TxM→M is defined by

expx(v) = γv(1)

Many objects in Riemannian geometry are expressed much more conveniently

in geodesic normal coordinate.

Theorem 4.14. For ε > 0 small enough, expx restricted to Bε(0) ⊂ TxM is

a diffeomorphism onto its image.

Corollary 4.15. For any p ∈ M, then there exists an ε > 0 so that any

q ∈M with dg(p, q) < ε such that there is a unique geodesic connecting p to q

whose length is less than ε.

The exponential map takes a given tangent vector on the manifold, runs along

the geodesic starting at that point and going in that direction. In order to

construct the coordinate chart we use the natural isomorphism

E : R
n → TpM

Where the natural isomorphism to R
n is given by the mapping between the

basis vectors. Finally the geodesic normal coordinates are constructed as fol-

lows

φ := E−1 ◦ exp−1
p : U → R

n
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The coordinates have the following properties:

• The coordinates of p are (0, · · · , 0).

• In this coordinate the Riemannian metric g is equal to δij

• The Christoffel symbols vanish at p, also ∂kgij = 0 for all k.

These properties allow simpler formulation of many differential operators on

manifold making it easier to use. The normal coordinate chart can be used to

give information about the metric. For instance knowing the normal coordinate

chart and the curvature tensor in a neighbourhood of a point allows one to

find the metric tensor in that neighbourhood.
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CHAPTER 5

Heat Operator on Manifold

We have seen that in chapter 2 that heat equation was used to derive weights

for Laplacian Eigenmaps.

Given compact Riemannian manifold without boundary the operator ∂t + ∆g

is called the heat operator. Heat operator contains crucial informations about

the geometry of manifold. For instance one could deduce information about

curvature and topology from the solutions of the heat equation [31]. In this

chapter we will investigate important properties of the heat operator which we

will use later on for the proof of convergence of Laplacian Eigenmaps.

The heat operator acts on C(M×R+) which are C2 in space and C1 on time.

The homogeneous heat equation is written as















∂tu(x, t) + ∆gu(x, t) = 0 (x, t) ∈M× R+

u(x, 0) = f(x) x ∈M
(5.1)

where f(x) ∈ L2(M) which should be thought of as the initial heat distribution

on the manifold. The solution u(x, t) has non-increasing L2 norm in time. This

can easily be verified observing that the time derivative of ∂
∂t
‖u(x, t)‖2 ≤ 0.

This information can be used to prove the uniqueness of solutions to heat

operator.

In order to analyze the solutions in more generality one uses the notion of

fundamental solution to the heat equation which is also called the heat kernel.
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Heat kernel is p(t, x, y) ∈ C∞(R+ ×M×M) such that















(∂t + ∆x)p(t, x, y) = 0

limt→0

∫

M p(t, x, y)f(y)dVy = f(x)

(5.2)

where ∆x denotes the Laplacian acting in the x variable. The existence of such

function p(t, x, y) needs proof, the details are provided in [31]. The reason why

p(t, x, y) is called the fundamental solution is perhaps given any initial heat

distribution f(x) ∈ L2(M) one could construct the solution to Equation 5.1

by setting u(x, t) =
∫

M p(t, x, y)f(y)dVy. Indeed one can check

∂tu(x, t) =

∫

M
∂tp(t, x, y)f(y)dVy

= −
∫

M
∆xp(t, x, y)f(y)dVy

= −∆x

∫

M

p(t, x, y)f(y)dVy

= −∆xu(x, t)

Furthermore limt→0 u(x, t) = limt→0

∫

M p(t, x, y)f(y)dVy = f(x) thus u(x, t)

also satisfies the initial condition.

Theorem 5.1 (Sturm-Liouville decomposition). For M compact Rieman-

nian manifold without boundary, there exists orthonormal basis {φ0, φ1, · · · }

of L2(M) consisting of eigenfunctions of ∆g where φj having eigenvalue λi

satisfying

λ0 ≤ λ1 ≤ · · · → ∞

the heat kernel is given by

p(x, y, t) =
∞
∑

j=0

e−λjtφj(x)φj(y)

Note that the decomposition holds in the sense of point-wise convergence. To

illustrate an example of how the heat kernel contains information about the
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geometry of the manifold, one can study the trace of heat kernel Tr(e−∆t) =
∫

M p(t, x, x)dV =
∑∞

j=0 e−λjt‖φj‖2 =
∑∞

j=0 e−λjt. There is an asymptotic for-

mula for the trace given in [26]

∞
∑

j=0

e−λjt =
1

(4πt)
n
2

(

V ol(M) +
t

6

∫

M
RgdV + O(t2)

)

this shows that the heat kernel contains information about the volume and

curvature of the manifold.

We define heat propagator as follows

Definition 5.2 (Heat Propagator). Given t > 0, the heat propagator e−t∆g :

L2(M)→ L2(M) is defined as

e−t∆gf(x) =

∫

M
p(t, x, y)f(y)dVy

The heat propagator has the following properties:

Proposition 5.3. The heat operator satisfies the following properties

• e−t∆g ◦ e−s∆g = e−(t+s)∆g

• e−t∆g is self-adjoint and positive

• e−t∆g is compact operator

Heat kernel gives rich information about the geometry of the manifold. As we

have seen the heat kernel also satisfies some nice properties.

In R
n the heat kernel is given by p(t, x, y) = 1

(4πt)
n
2
e‖x−y‖2/4t however on general

Riemannian manifolds such explicit formula does not exist. Hence one relies

on asymptotic expansions of heat kernel.
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Theorem 5.4 ([31]). There exists ε > 0 such that for all x, y ∈ M with

dg(x, y) < ε

p(x, y, t) =
e−d2

g(x,y)/4t

(4πt)
n
2

(

N
∑

i=0

tiui(x, y) + O(tN+1)

)

Where

ui(x, y) = −d−i
g (x, y) det(y)−

1
2

∫ r

0

det(x(s))
1
2 ∆yui−1(x(s), y)si−1ds

denote x(s) as the geodesic from x to y = x(d(x, y)). Note

u0(x, y) =
1

√

det(gy)

Above theorem implies that for small enough time and small enough neigh-

bourhood the heat kernel on manifold is approximated by the heat kernel on

Euclidean space. In next chapter we will use techniques mentioned from this

chapter for the proof of convergence Laplacian Eigenmaps.
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CHAPTER 6

Convergence of Laplacian EigenMaps

In this chapter we aim to establish convergence of eigenvectors of graph Lapla-

cian as mentioned in chapter 2 associated to point cloud data set to eigen-

functions of Laplace-Beltrami operator when the data set is sampled from a

uniform probability distribution on the embedded manifold. The result pre-

sented in this chapter are due to [3]. Generalization of this result to arbitrary

probability distribution is given by Lafon in [25]. Similar attempts of showing

convergence of discrete Laplace spectrum to continuous one is given in [4][15].

In what followsM is a d dimensional submanifold of R
D with the correspond-

ing induced volume form dV . The data points denoted {xi}ni=1 ∈M ⊂ R
D, the

Laplacian Eigenmaps algorithm is to uncover eigenfunctions and eigenvalues

of Laplace-Beltrami operator onM from the data set.

Recall from chapter 2 for small time t > 0 the discrete Laplacian approximates

the Laplace-Beltrami operator

∆Mf(xi) ≈
1

t

1

(4πt)
d
2

1

|V |



f(xi)
∑

xj∈Nε(xi)

e−
‖xi−xj‖2

4t −
∑

xj∈Nε(xi)

e−
‖xi−xj‖2

4t f(xj)





We may rewrite above using discrete Laplace operator L = D − W from

Laplacian Eigenmaps algorithm

∆Mf(xi) ≈
1

t

1

(4πt)
d
2

1

|V | [Lf ]i
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Note that the we derived the above approximation through heat equation

∆Mu(x, t) = − ∂
∂t

u(x, t) with initial condition u(x, 0) = f . Hence the Laplace-

Beltrami operator satisfies

∆Mf = − lim
t→0

1

t
(u(x, t)− f(x)) (6.1)

= lim
t→0

1

t

(

f(x)−
∫

M
Ht(x, y)f(y)dVy

)

(6.2)

= lim
t→0

(

1− e−∆M

t

)

f (6.3)

We know that from asymptotic expansion of heat kernel

(

1− e−∆M

t

)

f ≈ 1

t

1

(4πt)
d
2

[

f(x)

∫

M
e−

‖x−y‖2
4t dVy −

∫

M
e−

‖x−y‖2
4t f(y)dVy

]

Observe the empirical version of the right hand side is the discrete Laplace op-

erator as we have seen in chapter 2. We will extend the definition of Laplace

operator to include points outside the sample points. We first define the op-

erator Lt : L2(M)→ L2(M) as shown below

Lt(f)(p) =
1

t(4πt)d/2

(
∫

M
e−

‖p−y‖2
4t f(p)dVy −

∫

M
e−

‖p−y‖2
4t f(y)dVy

)

the empirical version of above operator is

Lt,n(f)(p) =
1

t(4πt)d/2

1

|V |

(

n
∑

i=1

e−
‖p−xi‖2

4t f(p)−
n
∑

i=1

e−
‖p−xi‖2

4t f(xi)

)

The empirical operator Lt,n is a discrete Laplace operator on a point cloud.

To see this consider the graph whose vertices V = {x1, ...xn} and edge weight

matrix Wij = 1
n

1
t(4π4)d/2 e

− ‖xi−xj‖2

4t . Note that for any f : M → R if one

considers the restriction of f to the vertex set V which we denote fV , then

Lt,n(f)|V = Lt,n(fV ). One can see that Lt,nf |V = (D − W )fV , where D is

a diagonal matrix with entries Dii =
∑n

j=1 Wij which is a sum of all entries

45



in the i-th row of W . Hence the eigenvectors of graph Laplacian is same as

eigenfunctions Lt,n when restricted to the point cloud.

The main result of this chapter is due to [3].

Theorem 6.1. Let λt
n,i be the i-th eigenvalue of Lt,n and φt

n,i(x) be the corre-

sponding eigenfunction. Let λi and φi(x) be the corresponding eigenvalue and

eigenfunction of ∆M respectively. Then there exists a sequence tn → 0 such

that

lim
n→∞

λtn
n,i = λi

lim
n→∞

‖φtn
n,i(x)− φi(x)‖2 = 0

where the limits are taken in probability.

The proof requires two steps first showing convergence of eigenfunctions and

eigenvalues of Lt,n to that of Lt and then convergence of Lt to ∆M. Hence 6.1

can be divided into two separate theorems.

Theorem 6.2. Let λi, λ
t
i, φi, φ

t
i be the i-th smallest eigenvalues and the corre-

sponding eigenfunctions of ∆ and Lt respectively. Then

lim
t→0
|λi − λt

i| = 0

lim
t→0
‖φi − φt

i‖ = 0

Theorem 6.3. Let λt
n,i and λt

i be the i-th eigenvalue of Lt,n and Lt respectfully.

Let φt
n,i and φt

i be the corresponding eigenfunctions. Then there exist t > 0

small enough such that

lim
n→∞

λt
n,i = λt

i

lim
n→∞

‖φt
n,i − φt

i‖ = 0

whenever λt
i < 1

2t
where the convergence is almost sure.
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Between the two theorems, theorem 6.2 is more difficult. To demonstrate

the convergence we use different functional approximation 1−e−t∆M
t

. Although

1−e−t∆M
t

does not converge uniformly to ∆M they share eigenfunctions and

eigenvalues in the limit of small time. To show operators 1−e−t∆M
t

and Lt have

approximately the same spectrum we use the following proposition.

Proposition 6.4. Let A, B be positive, self-adjoint operators in L2(M). Let

R = A − B, and λ1(A) ≤ λ2(A) ≤ · · · and λ1(B) ≤ λ2(B) ≤ · · · denote the

eigenvalues of A and B respectively. Assume there exist ε > 0 such that for

all f ∈ L2(M) following holds

|〈Rf, f〉|
|〈Af, f〉| ≤ ε (6.4)

Then for all k, we have 1− ε ≤ λk(B)
λk(A)

≤ 1 + ε

Proof. For any f ∈ L2 using 6.4 we have

|〈Af, f〉| = |〈(A−B + B)f, f〉|

≤ |〈Rf, f〉+ 〈Bf, f〉|

≤ |〈Bf, f〉|+ |〈Rf, f〉| ≤ |〈Bf, f〉|+ ε|〈Af, f〉|

Similarly,

|〈Af, f〉| ≥ |〈Bf, f〉| − |〈Rf, f〉| ≥ |〈Bf, f〉| − ε|〈Af, f〉|

Together they imply

(1− ε)|〈Af, f〉| ≤ |〈Bf, f〉| ≤ (1 + ε)|〈Af, f〉|

Now let H be arbitrary k-dimensional subspace of L2(M) . Then we have

(1− ε) max
H

min
f∈H⊥

|〈Af, f〉| ≤ max
H

min
f∈H⊥

|〈Bf, f〉| ≤ (1 + ε) max
H

min
f∈H⊥

|〈Af, f〉|
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where H⊥ is the orthogonal complement of H . Using the Courant-Fischer

min-max theorem we get

(1− ε)λk(A) ≤ λk(B) ≤ (1 + ε)λk(A)

the desired result follows.

Hence if we can show that Rt = 1−e−t∆M
t

− Lt satisfies

|〈Rtf, f〉|
|〈1−e−t∆M

t
f, f〉|

≤ ε for any f ∈ L2(M) (6.5)

for some small enough t then by proposition 6.4 we would be able to deduce

that

1− ε ≤ λk(Lt)

λk(
1−e−t∆M

t
)
≤ 1 + ε

note that eigenvalue

λk

(

1− e−t∆M

t

)

=
1− e−tλk

t
= λk + O(t)

where λk is the eigenvalue of the Laplace-Beltrami operator. This shows

that

lim
t→0

∣

∣

∣

∣

λk

(

1− e−t∆M

t

)

− λk(Lt)

∣

∣

∣

∣

= lim
t→0
|λk − λt

k| = 0

where the k-th eigenvalue λk(Lt) is denoted as λt
k. Also from proposition 6.4

we have convergence of eigenfunctions. Hence it is enough to show equation

(6.5) in order to prove theorem 6.2, showing the result requires two estimates

on Rt which we call remainder estimates.

Proposition 6.5. Let f ∈ L2(M), there exists C ∈ R such that for all suffi-

ciently small values of t > 0 the following holds:

‖Rtf‖ ≤ C‖f‖
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Proposition 6.6. Let f ∈ H
d
2
+1(M), there exists C ∈ R such for small

enough values of t > 0 following holds:

‖Rtf‖ ≤ C
√

t‖f‖
H

d
2 +1

Theorem 6.7. For t > 0 sufficiently small, there exists a constant C > 0 that

is independent of t such that the following is satisfied

sup
f∈L2

|〈Rtf, f〉|
|〈1−e−t∆

t
f, f〉|

≤ Ct
2

k+6

furthermore,

lim
t→0

sup
f∈L2

|〈Rtf, f〉|
|〈1−e−t∆

t
f, f〉|

= 0

and hence Rt is dominated by 1−e−t∆M
t

.

Proof. Recall from previous discussions

1− e−t∆M

t
φi =

1− e−λit

t
φi

We would like to have a lower bound on the eigenvalue of above operator in

terms of t and λk. Hence consider a function ϕ(x) = 1−e−xt

t
for x ≥ 0 where

t is fixed. Note that ϕ is concave monotone increasing positive function of x.

Let x0 = 1√
t
. Then ϕ(x0) = 1−e−

√
t

t
which implies ϕ(x0)

x0
= 1−e−

√
t√

t
. We can then

split the real line in two intervals R = [0, x0]∪ [x0,∞) and using concavity and

monotonicity of ϕ we obtain

ϕ(x) ≥ min(
1− e−

√
t

√
t

x,
1− e−

√
t

t
)

Hence for sufficiently small 0 < t < 1/10

ϕ(x) ≥ 1

2
min

(

x,
1√
t

)

(6.6)
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Let φi(x) be the i-th eigenfunction of ∆M and let λi be the corresponding

eigenvalue. By spectral theorem that the eigenfunctions form orthonormal

basis of L2(M). Hence any f ∈ L2(M) can be written in terms of the eigen-

functions as

f(x) =
∞
∑

k=1

akφk(x)

where ak ∈ R are such that
∑∞

k=1 a2
k <∞. We may assume wlog ‖f‖ = 1 and

f is orthogonal to the constant functions. Thus we get the following

〈

1− e−t∆M

t
φi, φi

〉

=
1− e−λit

t
= ϕ(λi) ≥

1

2
min

(

λi,
1√
t

)

(6.7)

For α > 0, we can split f as a sum of f1 and f2 as follows

f1 =
∑

λk≤α

akφk f2 =
∑

λk>α

akφk

We have then ‖f‖2 = ‖f1‖2 + ‖f2‖2. Observe the following

〈

1− e−t∆

t
f, f

〉

=

〈 ∞
∑

k=1

1− e−tλk

t
akφk,

∞
∑

k=1

akφk

〉

=
∞
∑

k=1

a2
k

(

1− e−tλk

t

)

By the inequality 6.7 we see

∞
∑

k=1

a2
k

(

1− e−tλk

t

)

≥ 1

2

∞
∑

k=1

a2
k min

(

λk,
1√
t

)

≥ 1

2

∞
∑

k=1

a2
k min

(

λ1,
1√
t

)

Hence if we choose 0 < t < min( 1
λ2
1
, 1

10
) and noting by assumption ‖f‖ = 1 i.e

∑∞
k=1 a2

k = 1 we get

〈

1− e−t∆

t
f, f

〉

≥ 1

2
λ1

∞
∑

k=1

a2
k =

λ1

2
(6.8)
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Since we have obtained a lower bound on the denominator, we need upper

bound on the numerator of the quotient. Using self adjointness of Rt we

analyse Rtf1 and Rtf2 separately

|〈Rtf, f〉| = |〈Rtf1, f1〉+ 2〈Rtf1, f2〉+ 〈Rtf2, f2〉| (6.9)

≤ ‖Rtf1‖‖f1‖+ 2‖Rtf1‖‖f2‖+ ‖Rtf2‖‖f2‖ (6.10)

≤ ‖Rtf1‖(‖f1‖+ 2‖f2‖) + ‖Rtf2‖‖f2‖ (6.11)

≤ 3‖Rtf1‖+ ‖Rtf2‖‖f2‖ (6.12)

Where we used Cauchy-Schwarz and triangle inequalities for above. By propo-

sition 6.5 we have a following bound

‖Rtf1‖ < C
√

t‖f1‖
H

d
2 +1

Recall from basic property of eigenfunctions of Laplacian ‖φi‖
H

d
2 +1 ≤ Ωλ

k+2
4

i

where Ω is some universal constant. Since f1 is a band limited by α , we get

| Rtf1‖ ≤ C
√

t

∥

∥

∥

∥

∥

∑

λk≤α

akφk

∥

∥

∥

∥

∥

H
d
2 +1

< C1

√
tα

k+2
4

Thus combining above and inequality 6.8 we get

‖Rtf1‖
〈1−e−t∆

t
f, f〉

<
2C1

λ1

√
tα

k+2
4 (6.13)

We will now bound ‖Rtf2‖‖f2‖
〈 1−e−t∆

t
f,f〉

. By applying proposition 6.7 we deduce that

‖Rtf2‖‖f2‖ ≤ C‖f2‖2

The denominator on the other hand satisfy

〈

1− e−t∆

t
f, f

〉

≥
〈

1− e−t∆

t
f2, f2

〉

(6.14)

≥ 1

2

∑

λk>α

a2
k min

(

α,
1√
t

)

(6.15)
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≥ 1

2
min

(

α,
1√
t

)

‖f2‖2 (6.16)

Which means we have

‖Rtf2‖‖f2‖
〈1−e−t∆

t
f, f〉

≤ C

min(α, 1√
t
)
≤ C max(

1

α
,
√

t) (6.17)

Finally we use both inequalities 6.13 and 6.17 to obtain the following

|〈Rtf, f〉|
|〈1−e−t∆

t
f, f〉|

≤ 3‖Rtf1‖+ ‖Rtf2‖‖f2‖
|〈1−e−t∆

t
f, f〉|

(6.18)

≤ C

(√
tα

k+2
4 + max

(

1

α
,
√

t

))

(6.19)

Thus setting α = t−
2

k+6 , we reach the desired result.

Note that this the theorem 6.7 is enough to prove theorem 6.2. The proof of

the theorem depended heavily on propositions 6.5 and 6.6 which we called the

remainder estimates. Next section we will give proofs of remainder estimates

6.5 and 6.6.

6.1 Remainder Estimates

The goal of this section is to give qualitative proof for both propositions 6.5 and

6.6. First note the following two different kernels for setting up the notations.

We call ambient Gaussian kernel as

Gt(p, q) =
1

(4πt)
d
2

e−
‖p−q‖2

4t

and we denote geodesic Guassian kernel as

Et(p, q) =
1

(4πt)
d
2

e−
dg(p,q)2

4t
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furthermore we denote their associated integral operators as Gt and Et respec-

tively i.e

Gtf(p) =

∫

M
f(q)Gt(p, q)dVq Etf(p) =

∫

M
f(p)Et(p, q)dVq

First we prove the remainder estimate with the Sobolev norm which is propo-

sition 6.6.

Proposition (H
d
2
+1 estimate). Let f ∈ H

d
2
+1(M), there exists C ∈ R such

for small enough values of t > 0 following holds:

‖Rtf‖ ≤ C
√

t‖f‖
H

d
2 +1

Proof. Observe that

Rtf(p) =

(

1− e−t∆M

t

)

f(p)− Ltf(p)

=
1

t

(

f(p)−
∫

M
Ht(p, q)f(q)dVq

)

− 1

t

(

f(p)

∫

M
G(p, q)dVq −

∫

M
G(p, q)f(q)dVq

)

=
1

t

∫

M
(Ht(p, q)−Gt(p, q))(f(p)− f(q))dVq

Where the last step was obtained by noting constant function is an eigenfunc-

tion of e−t∆M , which means
∫

M Ht(p, q)dVq = 1. In order to bound Rtf we

consider geodesic ball Bε(p) = {q ∈M | dg(p, q) < ε} for some ε > 0 and split

the integral according as follows

Rtf(p) =
1

t
(I + II)

I =

∫

Bε(p)

(Ht(p, q)−Gt(p, q))(f(p)− f(q))dVq

II =

∫

M\Bε(p)

(Ht(p, q)−Gt(p, q))(f(p)− f(q))dVq

53



Use the exponential map exp : TpM → M as studied in chapter 4, write

q = exp(x). In this coordinate we have

I =

∫

Bε

(Ht −Gt)(f(0)− f(x))
√

det(g)dx

Recall that from theorem 5.4 for small ‖x‖ and small t, we have

Ht =
1

(4πt)
d
2

e−
‖x‖
4t (u0 + tu1 + t2u2) + O(t2)

also that u0 = det−
1
2 (g). The Taylor expansion of the determinant of metric

in geodesic coordinates is given det(g) = 1 − 1
6
Rijx

ixj − 1
12

(∇ρRij)x
ρxixj +

O(‖x‖4). Hence we see that for small ‖x‖ and sufficiently small t, we have

Ht = Et + O(Et(‖x‖2 + t) + t2)

Using lemma 6.8, we know that Gt = Et + O(tE2t) Thus we have bound on

the integrand

|Ht −Gt| ≤ C(Et(‖x‖2 + t) + t2 + tE2t) (6.20)

We need to have control on |f(0)−f(x)|, since f ∈ H
d
2
+1 by Sobolev inequality

we know that the Lipshitz constant is bounded by γ‖f‖
H

d
2 +1 where γ is some

universal constant depending on geometry ofM. Hence we get

|f(0)− f(x)| ≤ γ‖f‖
H

d
2 +1‖x‖ (6.21)

combining both inequalities 6.20 and 6.21 we see that

|I| ≤ C‖f‖
H

d
2 +1

∫

Bε

(

Et(‖x‖2 + t) + t2 + tE2t

)

‖x‖
√

det(g)dx ≤ Ct
3
2‖f‖

H
d
2 +1

In order to bound II we use Theorem 1.1 of A.Grigoryan’s paper [21]. The

theorem says for smooth compact manifoldM and for ε > 0 small enough

Ht(p, q) ≤ Ct
3
2 ∀p, q ∈M such that dg(p, q) ≥ ε (6.22)
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where the constant depends on ε and geometry of the manifold, the same is

true for Gt(p, q). Hence we see that

|H(p, q)−G(p, q)| ≤ O(t
3
2 ) ∀q ∈M \Bε(p) (6.23)

and also by the previous argument with Sobolev inequality we have |f(p) −

f(q)| = O(‖f‖
H

d
2 +1). Combination with 6.23 give us

|II| ≤ Ct
3
2‖f‖

H
d
2 +1

Putting these together, we obtain the result as desired

|Rtf(p)| = 1

t
(|I|+ |II|) ≤ 1

t
(Ct

3
2‖f‖

H
d
2 +1) ≤ Ct

1
2‖f‖

H
d
2 +1

hence indeed we get the desired result

‖Rtf‖2 =

(
∫

M
|Rtf(p)|2dVp

)

≤ CVol(M)t‖f‖2
H

d
2 +1

take square root on both sides to get ‖Rtf‖ ≤ Ct
1
2‖f‖

H
d
2 +1 as needed to

show.

Above proof of the proposition 6.6 uses the following lemma.

Lemma 6.8. For any point p ∈ M and q ∈ Bε(p) and small enough t, we

have

|Et(p, q)−Gt(p, q)| ≤ CE2t(p, q)

Proof. We use the exponential map as studied in chapter 4, recall exp : Bε(0) ⊂

TpM →M we set q = exp(x) . Thus from the property of exponential map

we get dg(p, q) = ‖x‖. Observe that

Et(p, q) =
1

(4πt)
d
2

e
−‖x‖2

4t

55



and by Lemma 7 of [4], we have ‖p− q‖2 ≥ ‖x‖2 − a‖x‖4 where a > 0. Hence

we obtain

Gt(p, q) =
1

(4πt)
d
2

e−
‖p−q‖2

4t ≥ 1

(4πt)
d
2

e
‖x‖2−a‖x‖4

4t

We then observe

|Et(p, q)−Gt(p, q)| ≤
1

(4πt)
d
2

(

e−
‖x‖2−a‖x‖4

4t − e
−‖x‖2

4t

)

Thus it is enough to show the following

1

(4πt)
d
2

(

e−
‖x‖2−a‖x‖4

4t − e
−‖x‖2

4t

)

≤ Ct
1

(4πt)
d
2

(

e
−‖x‖2

8t

)

= CtE2t(p, q)

Re-arrenging terms above shows that the lemma is equivalent to showing

e
−‖x‖2

8t

(

e
a‖x‖4

4t − 1

)

≤ Ct (6.24)

the inequality 6.24 follows from Taylor series expansion for small t.

We have left to show the L2 estimate of the remainder. However in order to

prove proposition 6.5 we need following results. The proof of lemma 6.9 is

presented in [3].

Lemma 6.9. There is a constant C independent of t with

‖Et − Gt‖ ≤ Ct

where the norm is the usual L2 operator norm i.e ‖Et‖ = sup‖f‖=1 ‖Etf‖.

Another useful lemma relating heat kernel and geodesic Gaussian kernel is

given below.

Lemma 6.10. For any p, q close enough and t > 0 sufficiently small, then the

following holds

|Ht(p, q)− Et(p, q)| ≤ Ct(H2t(p, q) + Ht(p, q) + 1)
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Proof. Through expansion of heat kernel [31], it is known that for p, q close

enough there exists continuous functions u0, u1 such that

|Ht(p, q)− Et(p, q)(u0(p, q) + tu1(p, q))| < Ct (6.25)

hence it follows that

|Ht(p, q)− Et(p, q)| ≤ Et|u0(p, q)− 1|+ tEt(p, q)|u1(p, q)|+ Ct

SinceM is compact, we have K = supp,q∈M |u1(p, q)| <∞. Thus, we have

|Ht(p, q)− Et(p, q)| ≤ Et(p, q)|u0(p, q)− 1|+ KtEt(p, q) + Ct (6.26)

As noted in theorem 5.4, u0(p, q) = 1√
det gij(q)

. The asymptotic expansion in

normal coordinates with q = exp(x) shows

det(gq) = 1− 1

6
Rijx

ixj − 1

12
(∇ρRij)x

ρxixj + O(‖x‖5)

Thus we get u0 = 1 + O(‖x‖2). Hence we have

Et|u0 − 1| ≤ K ′ 1

(4πt)
d
2

e−
‖x‖2
4t ‖x‖2

Note that if we set z = ‖x‖√
t

1

(4πt)
d
2

e−
‖x‖2
4t ‖x‖2 = t

1

(4πt)
d
2

e
−z2

4 z2

≤ Ct
1

(4πt)
d
2

e
−z2

8

= C ′tE2t

Thus we get

|Ht(p, q)− Et(p, q)| ≤ Ct(E2t + Et + 1) (6.27)

57



since Et ≤ CHt as seen in [31] we have the desired result

|Ht(p, q)− Et(p, q)| ≤ Ct(H2t + Ht + 1) (6.28)

Following proposition is essential ingredient for the L2 remainder estimate

(proposition 6.5).

Proposition 6.11. For t > 0 small enough

‖e−t∆M − Et‖ ≤ Ct

where C is constant depends only on the manifold

Proof. We write operator explicitly

(e−t∆M − Et)(f)(p) =

∫

M
(Ht(p, q)− Et(p, q))f(q)dVq = I + II

I =

∫

Bε(p)

(Ht(p, q)− Et(p, q))f(q)dVq

II =

∫

M\Bε(p)

(Ht(p, q)− Et(p, q))f(q)dVq

By lemma 6.10, we know that on Bε(p) there exists a constant C > 0 such

that

|Ht(p, q)− Et(p, q)| ≤ Ct(H2t + Ht + 1)

Therefore we have

|I| ≤
∫

Bε(p)

|Ht(p, q)− Et(p, q)||f(q)|dV (q) (6.29)

≤ Ct

∫

Bε(p)

(H2t + Ht + 1)|f(q)|dV (q) (6.30)

≤ Ct(e−2t∆M(|f |) + e−t∆M(|f |) + ‖f‖) (6.31)

≤ Ct‖f‖ (6.32)
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We also have

|II| ≤
∫

M\Bε(p)

Ht|f(q)|dVq +

∫

M\Bε(p)

Et|f(q)|dVq

when dg(p, q) ≥ ε then |Et(p, q)| and |Ht(p, q)| can be bounded by O(t) shown

in [21]. Hence we have

|II| ≤ C

∫

M\Bε(p)

t|f(q)|dVq + C ′
∫

M\Bε(p)

t|f(q)|dVq (6.33)

≤ Ct

∫

M
|f(q)|dVq (6.34)

≤ Ct‖f‖ (6.35)

Finally combining both 6.29 and 6.33, we obtain

‖(e−t∆M − Et)f‖ ≤
∫

M
|I|dVp +

∫

M
|II|dVp

≤ Ct‖f‖

the desired result follows immediately.

Finally we are in a position to prove the L2 remainder estimate (proposition

6.5).

Proposition. Let f ∈ L2(M), there exists C ∈ R such that for all sufficiently

small values of t > 0 the following holds:

‖Rtf‖ ≤ C‖f‖

Proof. Recall that

Ltf(x) =
1

t

(

f(x)

∫

M

Gt(x, y)dVy −
∫

M
f(y)Gt(x, y)dVy

)
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Thus we have

Rtf =
1

t

(

1−
∫

M
Gt(x, y)dVy

)

f − 1

t
(e−t∆M − Gt)f

Note the following

‖e−t∆M − Gt‖ ≤ ‖e−t∆M − Et‖+ ‖Et − Gt‖ ≤ Ct (6.36)

Where the bound on the first term came from proposition 6.11 and bound on

the second one was obtained from lemma 6.9.

As for the term with Gaussian kernel we have the following bound

(

1−
∫

M
Gt(x, y)dVy

)

≤ Ct (6.37)

as shown in [3]. Combining the inequalities 6.37 and 6.36 we indeed have

‖Rtf‖ ≤ C‖f‖

as desired.

6.2 Proofs of Main Convergence Theorems

We have proven the remainder estimates which were used to show theorem

6.7. As we have discussed earlier that theorem 6.7 is enough to prove theorem

6.2.

Theorem. 6.2 Let λi, λ
t
i, φi, φ

t
i be the i-th smallest eigenvalues and the corre-

sponding eigenfunctions of ∆ and Lt respectively. Then

lim
t→0
|λi − λt

i| = 0

lim
t→0
‖φi − φt

i‖ = 0
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Proof. Note that i-th eigenvalue of 1−e−t∆

t
is equal to 1−e−λi

t
where λi is an

eigenvalue of Laplace- Beltrami operator. Combining both 6.7 and 6.4 we

know that

lim
t→0

λt
i

λi

= 1

We also get convergence of eigenfunctions since eigenfunctions of ∆M coincide

with those of e−t∆M and thus by proposition 6.7 eigenfunctions of Lt converge

to eigenfunctions of ∆M.

Important ingredient for the final main convergence theorem is the convergence

of eigenvalues and eigenfunctions of Lt,n to that of Lt. The proof of theorem

6.3 is provided in [3].

Theorem. 6.3 Let λt
n,i and λt

i be the i-th eigenvalue of Lt,n and Lt respectfully.

Let φt
n,i and φt

i be the corresponding eigenfunctions. Then there exist t > 0

small enough such that

lim
n→∞

λt
n,i = λt

i

lim
n→∞

‖φt
n,i − φt

i‖ = 0

whenever λt
i < 1

2t
. The convergence is almost surely.

Finally we prove theorem 6.1 using both theorems 6.2 and 6.3. This establishes

the convergence of eigenvalues and eigenfunctions of Laplacian Eigenmaps al-

gorithm.

Theorem (Main Convergence). Let λt
n,i be the i-th eigenvalue of Lt,n and

φt
n,i(x) be the corresponding eigenfunction. Let λi and φi(x) be the corre-

sponding eigenvalue and eigenfunction of ∆M respectively. Then there exists

a sequence tn → 0 such that

lim
n→∞

λtn
n,i = λi

61



lim
n→∞

‖φtn
n,i(x)− φi(x)‖2 = 0

where the limits are taken in probability.

Proof. We know from 6.2 and 6.3 the following convergence properties

EigLt,n
n→∞−−−→ EigLt

t→0−−→ Eig∆M

We immediately see from 6.2 and 6.3 that for any sequence tn → 0 as n→∞

lim
n→∞

λtn
n,i = λi

As for eigenfunctions note that for any i ∈ N and any ε > 0 by theorem 6.2

we may choose any t̄ small enough such that ∀t < t̄ following holds

‖φi − φt
i‖ <

ε

2
∀t < t̄ (6.38)

similarly by theorem 6.3, given any i ∈ N and ε > 0 we can choose t̄ < 2
λi

such

that

lim
n→∞

P

{

‖φt
n,i − φt

i‖ ≥
ε

2

}

= 0 ∀t ≤ t̄ (6.39)

and hence from identities 6.38 and 6.39 we observe that for any 0 < t < t̄ and

any probability p > 0 there exist N ∈ N such that ∀n > N following holds

P{‖φt
n,i − φi‖ > ε} ≤ P{‖φt

n,i − φt
i‖+ ‖φt

i − φi‖ > ε}

≤ P

{

‖φt
n,i − φt

i‖ ≥
ε

2

}

≤ p
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Hence inverting this relationship gives that for any N and for any probability

pN there exists corresponding tN > 0 with

P{‖φtN
n,i − φi‖ > ε} < pN ∀n > N

We obtain the convergence in probability by taking a sequence pN tending to

zero.

The basic convergence theorem presented in this chapter shows that at least

in principle the Laplacian Eigenmaps algorithm is correct. The proof sug-

gests ways of performing computational harmonic analysis and probabilistic

approach to solving some classes of PDEs using random point samples. Natu-

ral extension of this work is to extend the current result to include convergence

of differential forms in the spirit of [16]. Also if possible obtain a version of

Hodge theory from the random samples, but difficulty lies in that discrete dif-

ferential geometry is still undergoing development and its not clear how one

should define differential forms on point clouds in a consistent way.
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CHAPTER 7

Conclusion

We have investigated the problem of obtaining meaningful low dimensional

representation of high dimensional data. We examined different methods of

manifold learning from classical methods such as PCA and cMDS to more

modern methods such as Isomap, Locally Linear Embedding and Laplacian

Eigenmaps. The algorithms for these methods were presented in mathemati-

cally consistent, concise and easy to understand fashion so that it may serve

as a reference for future researchers. For each algorithm we have presented

motivations and justifications behind the algorithm as well as their drawbacks

and advantages in terms of their complexity and theoretical guarantee.

We have also explored the relationships and similarities between the manifold

learning algorithms. The methods Isomap and Laplacian Eigenmaps have

not been used extensively to real life applications. We have investigated the

reasoning behind this issue, one possible reason being the lack of performance

measure.

Furthermore we have given short necessary background behind Laplacian on

Riemannian manifold as well as heat operator on manifolds in order to prove

the convergence of Laplacian Eigenmaps algorithm. Finally we present con-

vergence of Laplacian Eigenmaps method [3] in a self contained and compact

fashion following the work of Mikhail Belkin and Partha Niyogi.
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