

Hybrid Cloudification of Legacy Software for Efficient Simulation of Gas Turbine Designs

Fozail Ahmad

Maruthi Rangappa

Neeraj Katiyar

Martin Staniszewski

Dániel Varró

SIEMENS COCIGY

lı.u

McGill University Industrial Research Project with Siemens Energy

Aeroderivative Gas Turbines (AGTs)

AGT: power generation gas turbines built using *aircraft engines*➢ They can ramp up and down very rapidly (within seconds)
➢ Help manage grid demand variations and peaks

A complex aircraft engine with multiples shafts and blades₁

1. Federal Aviation Administration, *Airplane Flying Handbook (FAA-H-8083-3A)*

Hybrid Cloudification of Legacy Software for Efficient Simulation of Gas Turbine Design

AGT Design Process

Concept:

An iterative process where AGT models are incrementally improved

Continuous testing:

Validates new designs against performance requirements and objectives

Concern:

Building physical prototypes is very costly

Solution:

AGT digital twins are developed which can be tested by a simulation software

Critical Design Step

Simulations are performed by large-scale *simulation campaigns* on thermomechanical AGT models for multiple operating conditions.

Legacy Simulation Software

Legacy simulation software *must be* used for finite element analysis (FEA) in AGT design

Rationale:

Institutional understanding of the capabilities and limitations of software

Result:

Allows for reliable estimates of the real physical engine performance through their simulations

Discretization Error₂

2. Polyzos, Konstantinos D.. (2019). Detection and recognition of aerial targets via RADAR data processing, machine learning techniques and neural networks.

Hybrid Cloudification of Legacy Software for Efficient Simulation of Gas Turbine Design

Existing Simulation Pipeline

Research Motivation

The legacy simulation software has the following bottlenecks:

1. Manual installation on each engineers' computer

2. Single computer execution with limited automation

3. External code base with minor updates only

Research Objectives

Our research is a software modernization project that aims to turn a legacy simulation software into a scalable and easily accessible SaaS.

O1. Design and develop a simulation software as a service

O2. Provide automated execution of simulation campaigns

O3. Enable parallel computation of jobs within a campaign

O4. Distributed service execution over hybrid cloud platform

O5. Geographically restrict data for export control compliance

Proposed Service Architecture

Architecture for Simulation SaaS over a hybrid cloud platform

O1. Design and develop a simulation software as a service

Proposed Service Architecture

Architecture for Simulation SaaS over a hybrid cloud platform

The *Manager* exposes a web-based RESTful Service API

O2. Provide automated execution of simulation campaigns

Proposed Service Architecture

Architecture for Simulation SaaS over a hybrid cloud platform

Worker agents are installed on nodes (computers/servers for the service)

Hybri

O3. Enable parallel computation of jobs within a campaign

Proposed Service Architecture

Architecture for Simulation SaaS over a hybrid cloud platform

O5. Geographically restrict data for export control compliance

Proposed Service Architecture

Architecture for Simulation SaaS over a hybrid cloud platform

Evaluation: Research Questions

RQ1: What is the runtime overhead of executing a simulation job?

RQ2: What is the wait time of jobs in a campaign on public v. hybrid cloud?

RQ3: What is the performance of a hybrid configured simulation service for a campaign compared to the legacy setup?

Node Types: Hybrid (HYB) → Mix of AWS & OP
Job Capacity: 6 concurrent simulation jobs
Job Config: 8GB RAM Allocation

RQ3: Hybrid Simulation SaaS vs Legacy

Total Execution Time: time it takes to run entire simulation campaign

Legacy Time: the minimum amount of time it would take to run an entire simulation campaign with the legacy simulation pipeline

Theoretical Time: the theoretical minimum amount of time required to run an entire simulation campaign with the new simulation SaaS

Our new service offers 3-4 times speedup for a simulation campaign compared to the legacy pipeline with a negligible service overhead.

Benefits for Siemens Energy

- 1. Significantly makes the engineers job easier
- 2. Reduces time spent on repetitive tasks
- 3. Provides more time to explore innovative designs
- **4.** Increases product quality by more thorough analysis and better data quality for ML pipelines

Follow-Up Work

- 1. Integration into engineers' workflow
- 2. Expanded features for campaigns
- 3. New tool integrations
- 4. Software usage monitoring

Summary

ICSE 2023 SEIP

Research Objectives

Our research is a software modernization project that aims to turn a legacy simulation software into a scalable and easily accessible SaaS.

O1. Design and develop a simulation software as a service

O2. Provide automated execution of simulation campaigns

O3. Enable parallel computation of jobs within a campaign

O4. Distributed service execution over hybrid cloud platform

O5. Geographically restrict data for export control compliance

Hybrid Cloudification of Legacy Software for Efficient Simulation of Gas Turbine Design

Proposed Service Architecture ■ License Spawns Management Worker 1 Manager 1 Service Executor 1.1 Executor 1.2 E Contraction of the second se 멸 Spawns Manager 2 Worker 2 Executor 2.1 Executor 2.2 Executor 2 m Job Repository (DynamoDB) Spawns Worker k Manager n Executor k 1 Executor k 2 Executor k m Container Communication - - Computer - Service Endpoint (5) File Storage Service (S3) Architecture for Simulation SaaS over a hybrid cloud platform

ybrid Cloudification of Legacy Software for Efficient Simulation of Gas Turbine Design

RQ3: Hybrid Simulation SaaS vs Legacy

Hybrid Cloudification of Legacy Software for Efficient Simulation of Gas Turbine Design