
There Is Only One Time 
In Soft. & Sys. Engineering!
Towards a Continuous (model-based) Engineering

Prof. Benoit Combemale
University of Rennes

IRISA & Inria, DiverSE team

benoit.combemale@irisa.fr
http://combemale.fr

@bcombemale

Thanks to my students and all the colleagues from DiverSE, the Bellairs and WMM workshop 
series, the Inria/CWI Associate Team ALE, and the MDEnet International group (esp., AE group)



One Time
Wait! What?

Design time
Development time
Training time
Compile time
Just-in-time
Run-time
Operation time
…

To what refer these “times” in SE? 

A tool? an activity? a moment in the life cycle?



Focus on Software Systems Development

Development Time Operations Time

D
om

ai
n 

En
g.

A
pp

lic
at

io
n 

En
g.

Design Time

Run Time



Focus on Software Systems Development

Development Time Operations Time

D
om

ai
n 

En
g.

A
pp

lic
at

io
n 

En
g.

Design Time

Run Time

PLMLOpsGP, SLE
SPL, 
CBSE

DevOps
SDLC, Agile 

Methods

Configuration 
management and 
version control

RE, Sw Arch., 
Modeling, V&V

Digital 
Twins



“Organizations which design systems (in the broad sense used here) are constrained to produce designs 
which are copies of the communication structures of these organizations.” — Melvin E. Conway, How Do 
Committees Invent?

⇒ Conway’s law applied!

“The wealth of methods and tools that are used at development-time to forge software have no more use 
when the software enters the run-time stage” — Luciano Baresi and Carlo Ghezzi. The disappearing 
boundary between development-time and run-time. In Future of software engineering research (FoSER '10).

S,D ⊨ R, where D might continuously change, due to mobility, 
but also more recently to socio interactions, wicked phenomena to consider, etc. 

In the context of S&S Eng. this prevents both
● a seamless and continuous cross-fertilization over the engineering processes, and
● to explore new scenarios beyond the ones captured in the established engineering processes

Dogma of (Traditional) Software Engineering



Taming Software Hyper Agility
● Software systems development belongs to a multi-dimensional space: 

nb function points, nb concerns, configuration space, release 
frequency, nb execution platforms, correctness space & guarantee...

● Software systems must adapt not only to a fixed space of variable 
requirements, but also to an emerging chain of changing requirements, 
often driven by incoming input data

➤ Software Engineering must embrace this new temporal adaptability 
over a multi-dimensional space!

⇒ Design-space exploration, trade-off analysis & decision making all along 
the life cycle

6



Towards a Continuous 
(model-driven) 
Software Engineering



Deep Variability
Variability occurs on all concerns

Variability showcases interdependencies

Variability impacts soft/sys properties

=> combinatorial explosion of the epistemic and 
ontological variability

Deep Variability refer to the interaction of all 
concerns modifying the behavior (including both 
functional and nonfunctional properties) of a 
software system

8

Evidences of deep variability: 
● Climate model
● Machine learning
● Neuroimaging
● Bluff-body aerodynamics
● Performance modeling of software
● Reproducible builds
● etc.



Embrace deep variability! 

Explicit modeling of the variability points 
and their relationships, such as: 

1. Get insights into the variability concerns 
and their possible interactions

2. Capture and document configurations for 
the sake of reproducibility 

3. Explore diverse configurations to replicate, 
and hence optimize, validate, increase the 
robustness, or provide better resilience

Our Vision

ACM REP 2024

⇒ We aim to address the complexities associated 
with reproducibility and replicability in modern 
software systems and environments, facilitating a 
more comprehensive and nuanced perspective on 
these critical concerns.

9



Reproducibility in Software Engineering
● Reproducibility (a.k.a., determinism in some cases) constitutes a fundamental 

aspect in various fields of computer science 
e.g., floating-point computations in numerical analysis and simulation, concurrency 
models in parallelism, reproducible builds for third parties integration and packaging, 
and containerization for execution environments.

● These concepts, while pervasive across diverse concerns, often exhibit 
intricate inter-dependencies, making it challenging to achieve a 
comprehensive understanding

● Ongoing initiatives try to fix (part of) the configuration, e.g., datasets, sbom, 
builds, runtime environments, IaC, etc.

10



Reproducibility in Empirical Studies: 
The Case of Datasets

ACM REP 2023, cf. https://hal.science/hal-04132604
11



What about Replicability? 
Exploring various configurations:

● Make more robust scientific findings
● Define and assess the validity enveloppe
● Enable exploration and optimization
● Ensure a better resilience

⇒ We propose to embrace deep variability to face software hyper agility, for the 
sake of replicability modulo heuristics (i.e., kpi, mco, quality attributes…)

12



Feedback-Driven Software Development
Deep Software Variability needs decision-making support

● variability all along the technological stack
● various stakeholders
● inter-dependencies between concerns
● decision making is de facto iterative

The MultiPlane MODA Framework (Bellairs’22)
● encapsulate the variability and impact intra-/inter- plane
● "Decision Space" that derives from the dependencies 

in individual variability models and impact models
● global feedback loop

ASE 2022, cf. https://hal.inria.fr/hal-03770004
13



Feedback-Driven Software Development

14
ASE 2022, cf. https://hal.inria.fr/hal-03770004



RE for Cyber-Physical Systems Development
1. There is a clear need for advanced global 

decision support that is cross-discipline 
and reduces information overload while 
prioritizing uncertain or hard areas

2. It is a challenge to reduce information 
overload while making balanced decisions 
that address uncertainty and maintain 
ecosystem equilibrium to achieve 
continuous decision making

15RE 2024



RE for Complex System Development

16

continuous decision 
making support?

uncertainty management?

RE 2024



Digital Twin: Seamless Continuum over 
Engineering Processes 



Digital Twin: The Role of Models and Data 

Conceptualizing Digital Twins. Romina Eramo, Francis Bordeleau, 
Benoit Combemale, et al.. IEEE Software, March-April 2022, pp. 39-46, vol. 39.



Digital Twin: The Role of MDE

Towards Model-Driven Digital Twin Engineering: Current Opportunities and 
Future Challenges.  Francis Bordeleau, Benoit Combemale, Romina Eramo, et al.. ICSMM 2020.

Model-Driven Engineering of Digital Twins.  
Dagstuhl Seminar #22362, 2022.
https://www.dagstuhl.de/22362



TwiinIT



Engineering Digital Twins (EDT): An 
International Community

Scaled up to the new 
EDT conference series

=> EDT conf 2024 



Challenge: Model Hybridization
Man-made and inferred abstraction engineering

Towards a unifying theory for inductive and 
deductive reasoning 

● Hybrid modeling
○ coordinated use of heterogeneous predictive 

models

● Adaptive modeling 
○ model adaptation 

(inference/refinement/configuration)

Model-Based 
Systems Engineering

Modeling & 
Simulation

Model-Driven 
Engineering

Data/Process Mining 
& Machine Learning



Challenge: Tool Support

➤ Towards a continuous (model-based) software engineering!



Take Away Messages

▸ Open challenges
▸ Foundations: abstraction engineering (e.g. model hybridization, language 

engineering) ; DT modularization, interoperability and composition ; uncertainty 
management… 

▸ Technologies: context-aware dev tool, DT engineering…
▸ Businesses: IP management, standards, patents…

▸ There is only one time to tame Software Hyper-Agility
▸ Innovation = Exploration & Optimization

■ Breakthrough over incremental innovation
▸ New temporal adaptability

■ Dynamic environment 

▸ Towards a Continuous (model-driven) Software Engineering
▸ Deep Variability
▸ Feedback-driven Software Development
▸ Digital twins



There Is Only One Time In Soft. & Sys. Engineering!
Towards a Continuous (Model-Based) Software Engineering

Software and systems engineering is a complex endeavor that encompass various socio-technical activities. 
These activities are traditionally orchestrated over a development life cycle from development time to 
operation time, and applying engineering processes both at design and run times, and at the application and 
domain levels. This organization of the activities led to well defined life cycles (V-model, Scrum, DevOps, 
language-oriented programming, etc.) to cope with the complexity of the engineering of software-intensive 
systems. This organization also structures the available tools and methods we use, and even the various 
communities among the software and systems engineering one (i.e., The Conway’s law applied to our own 
discipline!).   While such an organization was important at the inception of the discipline (divide and conquer!), 
I argue during this talk this is now hurting the high degree of adaptability we need in software and systems 
engineering to face what I call the software hyper agility. In particular, modern systems are evolving at an 
accelerating pace, operating in increasingly dynamic environments and contending with ever-increasing 
uncertainty. This requires a continuous (model-based) engineering of such complex cyber-physical, 
socio-technical, ecosystems. In this context, I will discuss challenges related to variability management and 
abstraction engineering to better support a feedback-driven software development process, and explore the 
concepts of engineering forge and digital twins as key enablers.

25


