Pushing the Boundaries of Planned Reuse with
Concern Specific Modelling Languages

Maximilian Schiedermeier
DISL & SCORE Labs, McGill University
Montréal, Québec, Canada
max.schiedermeier@mecgill.ca

ABSTRACT

Model-Driven Engineering (MDE) reduces complexity, improves
Separation of Concerns and promotes reuse by structuring software
development as a process of model production and refinement. A
representative methodology is Concern-Oriented Reuse (CORE), an
Aspect-Oriented Modelling (AOM) derivative that sets on partial
models and model composition techniques to reach planned reuse.
In CORE, proven solutions are bundled into concerns, reuse of
which is then guided by a series of interfaces. CORE interfaces set
on General Purpose Modelling Languages (GPML), therefore con-
cern integration and reuse can be hindered by accidental complexity,
arising out of a semantic mismatch between a concern’s nature and
GPML concepts. The established MDE answer to counter accidental
complexity is Domain Specific Modelling Languages (DSML). How-
ever, it is unclear how DSMLs can be combined with partial model
and model composition methodologies, and if such a combination
could effectively redefine the boundaries of planned reuse. In this
extended abstract I present findings on the nature of DSMLs, eligible
for this combination and argue why they form a category on their
own: Concern Specific Modelling Languages (CSML). I present a reli-
able framework for systematic integration of CSMLs into reusable
concerns, and elaborate a representative novel concern. Finally, I
describe experiments that allow measuring the effects of this novel
concern on software design, implementation and planned reuse.

CCS CONCEPTS

« Software and its engineering — Domain specific languages;
Software design engineering; Reusability; Source code genera-
tion.

KEYWORDS

Model-Driven Engineering, Concern-Oriented Reuse, Concern-Specific

Modelling

ACM Reference Format:

Maximilian Schiedermeier. 2022. Pushing the Boundaries of Planned Reuse
with Concern Specific Modelling Languages. In ACM/IEEE 25th International
Conference on Model Driven Engineering Languages and Systems (MODELS
"22 Companion), October 23-28, 2022, Montreal, QC, Canada. ACM, New York,
NY, USA, 4 pages. https://doi.org/10.1145/3550356.3552375

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

MODELS 22 Companion, October 23-28, 2022, Montreal, QC, Canada

© 2022 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-9467-3/22/10.

https://doi.org/10.1145/3550356.3552375

1 RESEARCH PROBLEM AND MOTIVATION

Modern software needs to cope with the ever increasing complexity
of systems [4], and hence reducing complexity is a primary objec-
tive of software engineering. In Model-Driven Engineering (MDE)
system complexity is reduced with the help of modelling languages,
which each focus on a given level of abstraction. Multiple modelling
languages can also be combined, to allow the developer to express
the properties of a system from various points of view, thus pro-
moting Separation of Concerns. On top of Separation of Concerns,
MDE further counters system complexity by model reuse. While
opportunistic reuse of entire models is a common practice, reuse
of partial (and hence incomplete) models is more challenging. Still,
with aspect-oriented modelling (AOM) techniques it is possible to
compose partial models from one context to another. This practice
enables planned reuse, where models are intentionally reduced to
partial models, resulting in higher genericness and potential for
reuse.

Concern-Oriented Reuse (CORE) [1] is an approach based on
AOM that streamlines model reuse by encapsulating common so-
lutions as partial models inside a reusable unit called a concern.
Concern users can then apply model transformations to connect
partial models across levels of abstraction, effectively reusing ar-
chitectural and design knowledge, or platform-specific development
expertise. From the perspective of a concern user, this reuse process
is experienced as three sequential stages [6]:

(1) A variation interface (VI), which exposes the different vari-
ants offered by the concern, and their impacts on high-level
system qualities.

(2) A customization interface (CI), where the concern designer
exposes the generic entities in the concern that have to be
adapted to a specific reuse context.

(3) A usage interface (UI), which defines how the functionality
encapsulated by a concern may be used.

CORE streamlines the reuse process by allowing a concern user
to a) choose a desired variant (from the VI), b) adapt the chosen
models to the reuse context (with the CI), and c) use the structure
and behaviour encapsulated by the concern (exposed in the UI).

In the above workflow, the concern user relies on General Purpose
Modelling Languages (GPML) throughout Customization and Usage
stages. GPMLs such as UML mostly cover the typical structural and
behavioural modelling needs for software development, therefore
for many concerns this provides an adequate level of abstraction.
However, the Separation of Concerns power of MDE is limited
when it comes to development concerns that do not align with the
levels of abstraction of the MDE process and the GPMLs used.

In this case the semantic mismatch introduces what is called
accidental complexity. In the context of CORE this translates to


https://doi.org/10.1145/3550356.3552375
https://doi.org/10.1145/3550356.3552375

MODELS ’22 Companion, October 23-28, 2022, Montreal, QC, Canada

concerns that cannot be easily reused at CI and Ul stage, due to their
inherent mismatch on GPML concepts. In general, the semantic gap
between a specific application domain and the concepts offered by
GPMLs can be bridged with a Domain Specific Modelling Language
(DSML) [3]. As such the idea to integrate tailored DSMLs into a
planned reuse process is promising. Such combination could resolve
the problem of accidental model complexity within concern reuse
interfaces, and hence simplify planned reuse significantly. Implicitly,
such a DSML would be part of the concern unit of reuse, and hence
also showcase partiality - the full potential of adherent models is by
design meant to unfold only when combined with a composition
specification, toward an application context. In the following I refer
to this kind of DSMLs as Concern Specific Modelling Languages
(CSML).

While CSMLs greatly simplify the reuse process for concern
users, CSMLs are unfortunately challenging to develop and inte-
grate with the standard MDE process for the concern user. Design-
ing a purposeful concern is already challenging by nature: A con-
cern designer must express thorough domain knowledge into ver-
satile models, for maximized reusability and convenience. Adding
the design and placement of a CSML into the concern integration
process renders this an even greater challenge. We generalized the
described trade-off into a first research question:

RQ1: Are DSMLs an adequate way to bridge the semantic gap that
retrains partial model reuse, when the nature of the unit of reuse
does not align well on GPML concepts?

We believe that a single anecdotal CSML-enabled concern is
insufficient to declare general feasibility. Ideally, the concern inte-
gration procedure itself is subject to a clear, modular plan of action
that guides toward expressive CSML-enabled concerns.

RQ2: To which extent can we formulate the generic stages of a suc-
cessful CSML-concern integration into an assistive methodology?

Finally, even if CSMLs are a technical possibility it remains un-
clear if adherent concerns bring a measurable benefit to the MDE
community, comparable to classic CORE concerns.

RQ3: Does the reuse of CSML concerns measurably stand up to the
benefits of classic CORE?

2 BACKGROUND AND RELATED WORK

The above research questions touch multiple well-studied fields. In
the following, I present fundamental concepts and contributions,
which serve as building blocks. Common to all related work is
a relevance for integrating DSMLs with existing planned reuse
methodologies.

2.1 MDE, Accidental Complexity and DSMLs

Model-Driven Engineering (MDE) [5, 12] is a unified conceptual
framework in which the whole software life cycle is seen as a
process of model production, refinement and integration. Models
are built representing different views of a software system using
different formalisms, i.e. modelling languages. Given an appropri-
ate language choice, a model can concisely express the properties
important at the current level of abstraction.

GPMLs such as UML mostly cover typical structural and be-
havioural modelling needs for software development. However, their

Maximilian Schiedermeier

general purpose nature causes a semantic gap between a specific
application domain and GPML concepts. This leads to accidental
complexity, effectively hindering the software life cycle. DSMLs
target a specific application domain and can therefore provide a
better match (see 1). However, the introduction of DSMLs has itself
an effect on the MDE life cycle. Existing model transformations e.g.
code generators, are in most cases incompatible to novel languages.
Hence countering accidental complexity with DSMLs introduces a
need for additional model transformations. This is a known DSML
related challenge and existing research, such as Melange [2] in-
tends to counter this overhead by a set of reusable engine related
tools, that enable reusing languages, their metamodels and even
associated transformations.

2.2 DSMLs in the context of planned reuse

Reuse is central to DSMLs and MDE in general, the main unit of
reuse being the modelling language. A modeller using a modelling
language is reusing knowledge of the language engineer. Modelling
languages typically come with a tool that ensures consistency be-
tween views of the system at the same level of abstraction. Addi-
tionally, reusable model transformations automate the refinement
of models when moving between levels of abstraction, thus reusing
architectural and design knowledge or platform-specific development
expertise.

In the light of my research questions, I am particularly inter-
ested in existing planned reuse techniques that could benefit from
integrated DSMLs. A fitting study context is AOM approaches that
showcase practical limitations due the described effects of acciden-
tal complexity.

In AOM, a modelling language is augmented with advanced
language features that enable the modularization and composition
of model fragments. These are models that are not necessarily viable
in isolation. A model weaver is a special model transformation that
takes as an input two models and a composition specification, to
produce a new composed output model in which the two input
models have been merged.

As foreshadowed in 1, CORE is a fitting representative. CORE
used to set uniquely on GPMLs, which in return meant that any non
alignment of a concern on the available GPML concepts resulted in
unmanageable accidental complexity, ultimately restricting concern
integration and reuse.

3 APPROACH AND UNIQUENESS

In this section I present how our previous and scheduled contri-
butions align on the primary research questions (see 1). I then
delineate the general uniqueness of our advancement.

3.1 Approach

Ultimately all realized and ongoing experiments were designed to
provide insight on the presented research questions. We therefore
study feasibility and effects of CSML integrations into existing
partial model reuse methodologies, on the example of CORE (see
2).

We ran a thorough analysis of CORE’s established workflow and
extracted a methodology, to outline how concerns with integrated
CSML could best make use of the existing CORE toolchain. In [10],



Pushing the Boundaries of Planned Reuse with
Concern Specific Modelling Languages

we presented FIDDLR, a methodology that defines clear separable
tasks for this goal. FIDDLR’s contribution is twofold: It demonstrates
the general feasibility of crafting CSML-enabled concerns, and
provides hands-on instructions for all associated steps. The latter
are perfectly in the spirit of Separation of Concerns: The three
main tasks, namely Design of a fitting DSML, Definition of model
transformations to translate to GPML models, and Provision of concern
design models are separated tasks that can be easily fulfilled by
individual experts.

Yet we did not stop at a methodology definition. We applied
FIDDLR to elicit a novel concern, that due to semantic mismatch on
GPML concepts would have been impossible to integrate otherwise.
We followed the plan of action suggested by FIDDLR. Although
this process induced several framework refinements, the outcome
was an operational novel concern named RESTify [10]. RESTify is a
refactoring concern that allows the assisted refactoring of legacy
functionality into a RESTful service. For this purpose we designed
a novel "partial" DSML: ResTL [8]. ResTL is a pertinent example of
a CSML, since unlike existing related languages it is intentionally
designed to be insufficient for the purpose of a standalone REST
interface description (see Fig. 1). However, when ResTL models are
joined with a composition specification on existing legacy mod-
els, that combination provides the semantic equivalent to existing
wholesome REST interface DSMLs.

<<impl>>
+ Zoo
Iz00 / + OpeningHours getOpeningHours ()
{_—1+ Collection<String> getAllAnimalNames ()
\/ |+ Animal W&ﬁng name)
- - P + void addAnis String name, Animal animal )
/animals__] —{Topeningtiours - szoogetinstance()
Coe ce 1T
[
s <<impl interface>> <<impl>>
/(ammﬁ”‘)e}/ ~ Collection < String> ~ Animal

Figure 1: ResTL model (left) and composition specification
(lines) with a class diagram (right). ResTL defines resources
and enabled HTTP operations, but in isolation is no semantic
equivalent to a REST API specification language.

However the integration of RESTify was not only motivated by a
practical validation of FIDDLR. The concern itself can be considered
a representative for a new category of reusable units: Concerns that
bundle integrated CSMLs and the required model transformations
to maximise reuse of the existing CORE methodology, and that
without FIDDLR could not have been easily integrated. Next we
investigated whether this novel concern category is easily reused,
as well as the measurable effects of such reuse on MDE. To test
RESTify’s potential on representative software artifacts, we ad-
vanced CORE’s reference implementation TouchCORE: we added
multi-languages support [11] and a convenient generic split view
to specify compositions specifications between CSML and GPML
concepts.

We then tested whether we could conveniently turn sample soft-
ware [9], archetypal for a venue, an e-commerce and a gaming
context, into operational RESTful services. Next we systematically
tested the outcome with unit tests, to validate the behaviour of the

MODELS *22 Companion, October 23-28, 2022, Montreal, QC, Canada

generated and deployed code. Although this practical validation
once more led to subsequent refinements and minor bugfixes, ulti-
mately all applications were successfully converted into operational
RESTful services. We likewise tested whether this reference con-
cern would readily support fundamental CORE advantages, such
as fast reconfiguration of the concerns feature selection (see 1). In
the context of RESTify this translates to the concern user being
able to switch between different REST technologies, e.g. Spring Boot
and Apache CXF, and regenerate deployable service code within
a matter of seconds. Since the integrated CSML and composition
specification capture the semantics of the RESTifcation process, re-
duced of any technological selection, we were able to ensure direct
support for four alternative target REST technologies.

Yet we acknowledge that in our role as concern designers we are
too biased to estimate the practical value of RESTify ourselves. We
therefore currently conduct a controlled experiment with indepen-
dent developers of various backgrounds. Goal is to fairly test reuse
of the RESTify concern, by asking external developers to refactor
our sample applications. To eliminate learning effects and provide
insight on the practical contribution of RESTify, we designed the
study to have four control groups, which allows fair cross validation.
We captured primary metrics such as "time required per refactoring
task" and measured the "quality of the outcome" with automated
tests to get an understanding of the concern’s immediate impact on
SE. However, we expect deeper insight from a parallel analysis of
the participant’s task activities, documented by screen recordings.
The latter will provide us with a better understanding on how the
concern impacts developer habits and task oriented advancement.
Since the experiment is still running we can not yet draw final con-
clusions, however the data gathered so far suggests a substantial
positive effect on both, the refactoring process and the quality of
the outcome, is to say the produced RESTful service code.

3.2 Uniqueness

Although our approach is heavily based on existing work, to the
best of our knowledge there is no related approach that combines
the building blocks in a comparable way. We believe the idea of
packaging CSMLs within a unit of reuse, alongside all required
model required transformations, is genuine and new. Although it
is not uncommon to pair DSMLs with tailored tooling, (c.f. IDEs
with integrated DSMLs such as XCode’s Storyboard [7]), existing
tools rarely apply CSMLs to forward planned reuse in form of an
encapsulated unit.

Also, we are not aware of another methodology than FIDDLR,
that delineates clear and separable tasks for the streamlined inte-
gration of CSML-enabled concerns.

Finally, we believe that RESTify is by itself unique. Not only in
terms of its composition, that comprises amongst others ResTL, a
novel CSML that perfectly reflects the minimal concepts required
for the associated refactoring task - RESTify is also unique in its
capacities: Although there is a variety of tools that support stub
code generation based on a provided REST interface description,
we are not aware of any industrial or academic tool that supports
generating of readily deployable service code. Contrary to other
tools, RESTify omits the need for a manual merging of generated
REST stubs with legacy code. On top there seems to be no other



MODELS ’22 Companion, October 23-28, 2022, Montreal, QC, Canada

approach that also supports the dynamic selection of the target
REST technologies. RESTify covers the latter by means of an inte-
grated feature tree. We believe these characteristics to be exciting
and unique features that further underline the potential of CSMLs.

4 RESULTS AND CONTRIBUTION

In this last section I recapitulate acquired results and match them
on the initial research questions. The paper then concludes with
an interpretation of our contributions, followed by a short outlook
on upcoming future work.

4.1 Results

Our research is motivated by a present MDE challenge, namely
planned reuse being hindered and restricted by accidental complex-
ity. We compiled arguments why the use of DSMLs - the standard
MDE way to bridge semantic mismatch - is not easily applied in
this context. We identify as main reason the disrupting nature of
supplementary languages, regarding existing model transformation
workflows. The assumed trade-off between common DSML advan-
tages and the challenges anticipated in this context then served
as motivation for RQ1. Subsequently we argued how CORE is a
fitting study object, as it exemplifies this challenge.

Since concern integration is a challenging task we further argued
how a successful integration of DSML-enabled concerns almost
inevitably requires a reliable methodology. Yet for a start it was not
clear whether such a methodology exists, and to which extent the
concern integration process can be generalized, leading to RQ2.
Careful analysis of the existing workflow and model composition
techniques inspired the design of FIDDLR, a modular framework
that guides the integration of DSML-enabled concerns.

Further evaluation of FIDDLR suggested that the framework is a
viable methodology and provides the necessary guiding. We were
able to validate FIDDLR’s plan of action, by integration of a novel
concern: RESTify. Throughout the concern integration we advanced
CORE’s reference implementation, TouchCORE, and extended it to
practically support reuse of DSML-enabled concerns (see 3).

This work contributes to our understanding of the language
nature that renders a DSML candidate for concern integration. We
observed how integrated languages would substantially differ from
existing DSMLs - namely them being partial by design, as exempli-
fied by ResTL. This observation is coherent to fundamental AOM
principles, where crafted models are intentionally partial and only
gain full expressiveness through composition specifications, com-
bined with additional artifacts. We hence coined the term Concern
Specific Modelling Languages (CSMLs) for this category of DSMLs.

From our practical experiments we also retained a strong cou-
pling between CSMLs and the associated transformations. Although
implicitly suggested by FIDDLR, we noted this coupling justifies a
combined packaging. We believe this is a fundamental consequence
of the CSMLs’ partial nature.

Finally, in pursue of RQ3 we investigated the effects of CSML
concern reuse in the light of classic core. We designed and con-
ducted a controlled experiment around RESTify, to test reuse of
a representative novel concern. Although not yet fully obtained
and evaluated, the collected data suggest beneficial MDE effects,
notably on behalf of code correctness and development times.

Maximilian Schiedermeier

4.2 Contribution

Although the initial research questions are not yet entirely an-
swered to our satisfaction, the presented observations do serve as
ground for a preliminary evaluation.

First of all we deem that the general feasibility of combining
DSMLs with the power of planned reuse proven. FIDDLR provides
a plan of action, and also demonstrates its effectiveness by means
of a sample concern, RESTify. We also believe the merits of CSML-
enabled concerns are at this point free of doubt. Our observations
around RESTify include SE features that in understanding are un-
precedented. We see this as evidence for the potential of CSML-
enabled concerns. We believe the data gathered around our ongoing
controlled experiment underlines this impression. Based on the
above evaluation, we believe that this suggests a positive answer
for the primary research question (RQ1). The envisioned techno-
logical combination is feasible (RQ2) and beneficial (RQ3), thus we
also consider it viable. We want to orient future research on two
goals: Firstly, to collect evidence of CSML-concern merits, using
a second CSML-enabled reference concern, integrated with FID-
DLR. Secondly, to examine the compatibility of CSMLs in other
planned reuse contexts than CORE. Ultimately we expect that this
will strengthen a general understanding of CSML characteristics
and how partial languages are best packaged with complementing
model transformations, to redefine the boundaries of planned reuse.

REFERENCES

[1] Omar Alam, J6rg Kienzle, and Gunter Mussbacher. 2013. Concern-Oriented
Software Design. In Proceedings of the 16th International Conference on Model-
Driven Engineering Languages and Systems - MODELS 2013 (Lecture Notes in
Computer Science, Vol. 8107). Springer, Berlin, Heidelberg, 604-621.

Thomas Degueule, Benoit Combemale, Arnaud Blouin, Olivier Barais, and Jean-

Marc Jézéquel. 2015. Melange: A Meta-Language for Modular and Reusable

Development of DSLs. In Proceedings of the 2015 ACM SIGPLAN International

Conference on Software Language Engineering (Pittsburgh, PA, USA) (SLE 2015).

Association for Computing Machinery, New York, NY, USA, 25-36. https://

doi.org/10.1145/2814251.2814252

[3] Jeff Gray, Juha-Pekka Tolvanen, Steven Kelly, Aniruddha Gokhale, Sandeep
Neema, and Jonathan Sprinkle. 2007. Domain-Specific Modeling. In Handbook of
Dynamic System Modeling. CRC Press, Boca Raton.

[4] M. Jamshidi. 2008. System of systems engineering? New challenges for the 21st
century. Wiley, Hoboken, NJ. 616 pages.

[5] Stuart Kent. 2002. Model Driven Engineering. In International Conference on
Integrated Formal Methods — IFM. Springer-Verlag, London, UK, 286-298.

[6] Jorg Kienzle, Gunter Mussbacher, Omar Alam, Matthias Schéttle, Nicolas Belloir,
Philippe Collet, Benoit Combemale, Julien Deantoni, Jacques Klein, and Bernhard
Rumpe. 2016. VCU: the three dimensions of reuse. In International Conference on
Software Reuse. Springer, Berlin, Heidelberg, 122-137.

[7] Rory Lewis, Yulia McCarthy, and Stephen M Moraco. 2012. Beginning IOS Story-
boarding: Using Xcode. Apress.

[8] Maximilian Schiedermeier. 2020. A concern-oriented software engineering

methodology for micro-service architectures. In Proceedings of the 23rd ACM/IEEE

International Conference on Model Driven Engineering Languages and Systems:

Companion Proceedings. 1-5.

Maximilian Schiedermeier. 2022. RESTify context software bundle.

https://github.com/kartoffelquadrat/RestifySoftwareBundle.

Maximilian Schiedermeier, Jorg Kienzle, and Bettina Kemme. 2021. Internation

Conference on Software Language Engineering. In FIDDLR: Streamlining Reuse

with Concern-Specific Modelling Languages. ACM, New York, NY, USA, 81-88.

[11] Maximilian Schiedermeier, Bowen Li, Ryan Languay, Greta Freitag, Qiutan Wu,

Jorg Kienzle, Hyacinth Ali, lan Gauthier, and Gunter Mussbacher. 2021. Multi-
Language Support in TouchCORE. In 2021 ACM/IEEE International Conference on
Model Driven Engineering Languages and Systems Companion (MODELS-C). IEEE,
625-629.

[12] Douglas C. Schmidt. 2006. Model-Driven Engineering. IEEE Computer 39 (2006),

41-47.

—
s

=

[10


https://doi.org/10.1145/2814251.2814252
https://doi.org/10.1145/2814251.2814252

	Abstract
	1 Research Problem and Motivation
	2 Background and Related Work
	2.1 MDE, Accidental Complexity and DSMLs
	2.2 DSMLs in the context of planned reuse

	3 Approach and Uniqueness
	3.1 Approach
	3.2 Uniqueness

	4 Results and Contribution
	4.1 Results
	4.2 Contribution

	References

