
Thesis Proposal

Streamlining Reuse with Concern-Specific Modelling Languages

Student
Maximilian Schiedermeier

Supervisors
Prof. Bettina Kemme - Distributed Information Systems Lab

Prof. Jörg Kienzle - Software Engineering Lab

Committee
Prof. Martin Robillard - Software Technology Lab

Prof. Muthucumaru Maheswaran - Advanced Networking Research Lab

Presented for the
Thesis Proposal and Area Examination, Fall 2021

School of Computer Science
November 26, 2021

1 Introduction

In this report I provide detailed information about the current state of my ongoing doctoral
thesis in Computer Science. I propose a thesis topic, elaborate on the underlying problem
statement and argue how it formulates a relevant, yet unsolved challenge. Throughout this
report I present components that in combination address the problem statement and also
run a detailed assessment of their individual progress and peer validation. I also outline the
required tasks for a successful completion and the envisioned time-schedule.
The main components of my thesis are: A novel Model-Driven Engineering (MDE) frame-
work that targets advanced model reuse, and two case studies that demonstrate this frame-
work’s viability. One of the case studies is additionally strengthened through a user study.
The remainder of this document is structured as follows: In Section 1 I provide contextual
background for my topic proposal and gradually refine a precise formulation of the scientific
problem statement. Sections 2 to 4 deal with the main components of the proposed solu-
tion, including individual evaluations of their advancement and designated continuation. In
Section 5 I recapitulate the presented components and place them into context, in regard
to the original problem statement. The report concludes with an overall evaluation of the
program progress, including a critical risk assessment.

Proposal Context

Modern software needs to cope with the ever increasing complexity of systems [4], and hence
reducing complexity is a primary objective of software engineering. In Model-Driven Engi-
neering (MDE) system complexity is reduced with the help of modelling languages, which
each represent a given level of abstraction. Multiple modelling languages can also be com-
bined, to allow the developer to express the properties of a system from various points of
view, thus promoting Separation of Concerns (SoC). On top of SoC, MDE further counters
system complexity by model reuse. While opportunistic reuse of entire models is a common
practice, reuse of partial (and hence incomplete) models, is more challenging. Still, with
aspect-oriented modelling (AOM) techniques it is possible to compose partial models from
one context to another. In particular, this practice enables planned reuse, where models are
intentionally reduced to partial models, in favour of higher genericness and therefore also
higher potential for reuse.
Concern-Oriented Reuse (CORE) [1] is an approach based on AOM that streamlines model
reuse by encapsulating common solutions as partial models inside a reusable unit called
a concern. Concern users can then apply model transformations to connect partial mod-
els across levels of abstraction, effectively reusing architectural and design knowledge, or
platform-specific development expertise. From the perspective of a concern user, this reuse
process is experienced as three sequential stages [5]:

1. A variation interface (VI), which exposes the different variants of the concern with a
feature model, and the impact of each variant on high-level system qualities with an
impact model.

2. A customization interface (CI), where the concern designer exposes the generic entities
in the concern that have to be adapted to a specific reuse context.

1

3. A usage interface (UI), which defines how the functionality encapsulated by a concern
may be used, similar to a standard API.

CORE streamlines the reuse process by allowing a concern user to a) choose a desired variant
(from the VI), b) adapt the chosen models to the specific reuse context (with the CI), and
then c) use the structure and behaviour encapsulated by the concern (exposed in the UI).

In the above workflow, the concern user relies on General Purpose Modelling Languages
(GPMLs) throughout Customization and Usage stages. GPMLs such as UML mostly cover
the typical structural and behavioural modelling needs for software development, therefore
for most concerns this provides an adequate level of abstraction. However, the SoC power
of MDE is limited when it comes to development concerns that do not align with the levels
of abstraction of the MDE process and the GPMLs used. Some development concerns, e.g.,
Security, need to be considered not only during the requirements phase, but also during
architecture, design and implementation. Addressing security properly requires dealing with
security-related structure and behaviour at all phases of development, and hence, security-
related model elements end up scattered across multiple models. In this case, the use of
modelling languages that are not aligned with the development concern in question intro-
duces what is called accidental complexity. Accidental complexity arises out of mismatch of
modelling language and modelled matter. In the context of CORE this translates to concerns
that cannot be easily applied at CI and UI stage, due to their inherent mismatch on GPML
concepts.
In general, the semantic gap between a specific application domain and the concepts offerend
by GPMLs can be bridged with a Domain Specific Modelling Language (DSML) [12]. As
such the idea to integrate concern-tailored DSMLs into the CORE reuse process is promis-
ing. Specifically, such a DSML would be part of the concern unit of reuse. In the following
I therefore refer to this concept as a Concern Specific Modelling Language (CSML).
Unfortunately, while CSMLs bear the potential to ease the concern reuse process, they like-
wise add complexity to the concern integration task. Designing a purposeful concern is
already by nature challenging: A concern designer must express thorough domain knowl-
edge into versatile models, for maximized reusability and convenience. Adding the design
and placement of a CSML into the concern integration process renders this an even greater
challenge.
Therefore, the concern integration task itself should be assisted by a clear, modular plan of
action that incrementally guides toward an expressive CSML-enabled concern.
In my proposal I provide a preliminary answer to this challenge. I present FIDDLR, a
F ramework for the Integration of Domain-Specific MoDelling Languages with concern-
oriented Reuse. I discuss the framework in detail and present two case studies that allow for
an evaluation of FIDDLR’s potential. Afterwards I summarize the current state of research
and project how I intend to resolve remaining weaknesses of my approach in the near future.
The report concludes with a short evaluation on the general thesis program advancement.

2

Application Concern

Requirement
Models

GPML

Architecture /
Design Models

GPML

Code

GPPL

Concern
Requirements

Models

GPML

Concern
Architecture /

Design Models

GPML

Concern Code

GPPL

Concern-Specific
Modelling Language

(CSML)

Generated Customi-
zation and Usage

Requirements Models

GPML

Generated
Customization and

Usage Design Models

GPML

Generated
Concern Customization

and Usage Code

GPPL

Generated
Composition
Specification

Generated
Composition
Specification

Concernified Application

Requirement
Models

GPML

Architecture /
Design Models

GPML

Code

GPPL

Concern-
Specific Model

CSML Generated
Composition
Specification

= Specified by the Concern User

= Specified by the Concern Designer
= Automated Model Generation
= Weaving / Composition

= Consistency Constraints
 and Dependencies
= User-Defined Mappings

= Refinement

Step 1

Step 2 Step 3
Step 4

Figure 1: The FIDDLR Framework

2 FIDDLR

Motivated by the complementarity of MDE, DSMLs and CORE we elaborated FIDDLR,
a F ramework for the Integration of Domain-Specific MoDelling Languages with concern-
oriented Reuse, illustrated in Fig. 1. The FIDDLR framework was presented in [15].

FIDDLR puts forward the idea that DSML technology can be exploited effectively for
implementing and applying concerns that do not align well with standard GPML concepts.
In particular, FIDDLR defines an approach for packaging a DSML with a concern, and as a
framework provides clear tasks to integrate the concern implementation with MDE tooling,
existing GPML models and code. FIDDLR therefore is beneficial for both concern designers
and concern users.

2.1 Concern Design

In alignment with CORE, the unit of reuse in FIDDLR is the concern. Designing a concern
is by nature a complex task. If a DSML is used within, it becomes even more complex. Even
with FIDDLR, the design of a concern is still complicated, since the concern designer must
excel in multiple disciplines such as DSML design, model transformations, and of course
expertise on the concern’s domain. The contribution of FIDDLR is that it splits the task
of designing a concern into smaller, independent steps, namely concern realization, CSML
design, CSML→GPML transformation, and CSML→composition specification. Each step
reuses existing technologies whenever possible, thus simplifying concern design and reducing
the amount of work required significantly. The FIDDLR concern design steps can even be
distributed over a team of individuals that are experts in their field.

Step 1) Concern Realization In the spirit of MDE, a concern designer realizes a concern
using the most appropriate GPML models at the right levels of abstraction. Fig. 1 depicts the
artefacts created by the concern designer in red, i.e., concern-related requirements models,

3

architecture and design models, as well as code. Which models are needed depends on the
MDE process being used, and on the nature of the concern. Some concerns are relevant at
all levels of abstraction, e.g., Security, and therefore such concerns contain many realization
models. This step should be performed by a developer with expertise in implementation of
the concern, in collaboration with an expert of the GPML modelling languages used in the
MDE process.

Step 2) CSML Design Whenever the nature of a concern and its properties do not
align or can not easily be expressed with GPMLs, or when a concern covers several MDE
abstraction layers, the concern designer can provide a CSML together with the concern
realization models (also shown in red in Fig. 1) that exposes the main concepts of the concern
and streamlines the concern customization and usage. This step should be performed by a
DSML expert collaborating with the concern domain expert, who would define the language
metamodel and actions for manipulating models.

Step 3) CSML→GPML Transformation The concern designer must also create model
transformations that, given a CSML model as input, can generate the appropriate GPML
models/code that customize and make use of the developed GPML realization models/code
of the concern for each relevant level of abstraction. This step should involve a model
transformation expert, possibly again in collaboration with a concern implementation expert.

Step 4) CSML→Composition Specification Finally, the concern realization expert
and the MDE expert need to decide at which level of abstraction the concern-specific model
is best composed with the application’s realization models. For example, some of a concern’s
behaviour might best be composed at the code level, while other behaviour can better be
composed at the level of state charts or sequence diagrams. A model transformation expert
then designs a transformation that, given a CSML model and mappings provided by the user
as input, produces composition specifications for the customized GPML models produced in
step 3.

2.2 Concern Use

With FIDDLR, whenever an application reuses a concern that comes packaged with its own
CSML, the concern user has access to language elements tailored specifically for the concern
reuse. Thus the standard CORE reuse process [5] is significantly streamlined for the concern
user. In standard CORE, the concern user has to manually customize each GPML realization
model by mapping the generic model elements (and code) to application-specific elements
(and code). Furthermore, for each GPML model of the application, the concern user must
specify how the concern is used. Thanks to the CSML, the concern user can simply create
a model describing the concern-related properties in the context of the application in which
it is reused. This is shown in blue in Fig. 1. Customization and usage then only require
linking the appropriate model elements from the created CSML model to model elements in
the GPML models of the application as illustrated with the blue arrows.
An illustrative example for this practice is given in Section 3.

4

2.3 Concern Composition

To combine the application and concern models, FIDDLR reuses existing MDE, DSML and
CORE tooling as much as possible. From the perspective of a concern user this step therefore
runs fully autonomous.

From the concern-specific model provided by the concern user, the model transformations
provided by the concern designer automatically generate GPML models that contain the
application-specific customization mappings and usage of the concern API (step 3), as well
as composition specifications that connect the generated models with the application models
at each relevant level of abstraction (step 4). The automatically generated models and
composition specifications are highlighted in speckled blue/red in Fig. 1. The composition
specifications and models are then provided as input to the CORE model weavers, which
generate the concernified application, i.e., the GPML models in which the concern-specific
and application-specific structure and behaviour have been combined.

The model weavers then handle the actual fusion of partial concern models with the
application’s realization models. The outcome of this process is a completed application
model that effectively reuses concern provided solutions. This model can be used as is for
subsequent code-generation.

3 RESTify

In this section I extend the previously provided description of FIDDLR by a case study
that illustrates the concern integration process guided by the FIDDLR approach. Concern
integration is followed by an exemplary concern usage. The concern used for this case
study is a concern named RESTify . RESTify is a concern to assist the conversion of legacy
applications into RESTful services (see Section 3.1). This concern is a good case study
subject, because of it’s natural mismatch on GPML concepts. This justifies the integration
of a CSML to sidestep accidental complexity and allow for an elegant concern integration
and reuse.

The below case-study was likewise part of the general proposal of FIDDLR [15], with
focus on two primary research questions:

• Can the FIDDLR framework be applied with reasonable effort, to design and implement
a CSML-enabled concern?

• Does the provision of a CSML facilitated by FIDDLR streamline concern reuse?

To answer the second question, we needed two components: A functional version of the
RESTify concern, integrated in accordance to the FIDDLR approach, as well as a sample
reuse context, to which the concern can be applied to. For the latter we coded a minimal
yet representative desktop application that provides access to a fictitious bookstore database
[13].

5

3.1 Concern Description

RESTify is a concern closely related to the Representational State Transfer (REST) archi-
tectural style. REST allows the invocation of remote services through a resource-oriented
interface. A manual refactoring process toward re-exposure of existing functionality through
REST commonly requires thorough domain and technical expertise. The purpose of RESTify
is the provision of assistance for the conversion of legacy applications into RESTful services.
The concern simplifies the process by focusing the user’s attention on design questions, while
concealing implementation details as much as possible.

As mentioned initially, the essence of RESTify can not be easily grasped with standard
GPML concepts. RESTful service interfaces consist of hierarchically structured resources
with selected CRUD operations [2] (Create, Read, Update, Delete) enabled. Those oper-
ations are commonly invoked over HTTP as Put, Get, Post and Delete requests. Having
a RESTful service therefore constitutes a layer of abstraction, as it strictly abstracts from
service implementation details1.

State-of the art libraries implementing REST provide means to define a resource tree
definition by placing annotations that encode CRUD operations on individual URL-branches,
each marking a location in the overall resource tree. The exact syntax of these annotations
varies with the technology chosen. Listing 1 contains annotations specific to the Spring-
Framework [16]. By decorating a Java method, these annotations map existing functionality
to an HTTP method and URL location.

Listing 1: Spring Annotated Bookstore Method. Accessible by HTTP GET Request at e.g.
”/bookstore/stocklocations/minastirith.”

1 @GetMapping(value = ”/bookstore/stocklocations/{stocklocation}”, produces =
”application/json; charset=utf-8”)

2 public Map<Long , Integer> ge tEnt i r eSto r eStock (@PathVariable(”stocklocation”)
↪→ St r ing c i t y) {

3 return s tocksPerCity . get (c i t y) . ge tEnt i r eStock () ; }

In most cases these annotations are scattered over the code base. The entirety of placed
annotations then implicitly defines a REST interface. However, at no point in time is the
developer confronted with a visualisation or even textual summary of the overall designed
interface. This conceptual mismatch imposes a high mental load on the developer. A side
effect of this complexity is that real-world services often showcase misuse or even anti-
patterns to the REST style [3]. A meaningful concern should draw the user’s attention to
explicit design choices, standing in contrast to implicit modelling via implementation details.
This is why a guided process should conceal code-level annotations and their placement.
Instead it should assist the explicit design of a REST interface, including mapping of CRUD
operations on target or legacy functionality.

We argue that existing GPMLs cannot accurately capture the essence of these design
choices, i.e., the selection of a REST framework, and the design of a resource layout and
mapping of CRUD methods and parameters on existing functionality. Using a CSML how-
ever bridges the aforementioned semantic gap, by turning implicit into explicit modelling

1This notably distinguishes REST from simple Remote Procedure Calls.

6

Spring
Framework

Annotated
Bookstore

Code

Bookstore RESTify Concern

Bookstore
Design Models

CD

Bookstore
Code

Java+Mvn

Spring
Launcher

Design Models

CD

Resource Tree
Language

Generated
REST-Annotated
Design Models

CD+SD
Generated

Composition
Specification

Restified Bookstore

Composed
Design Models

CD+SD

Glue Code /
Launcher Code

Java+Mvn

Bookstore
REST Tree

ResTL

= Specified by the Concern User

= Specified by the Concern Designer
= Automated Model Generation
= Weaving / Composition

= Consistency Constraints
 and Dependencies
= User-Defined Mappings

= Refinement

Spring
Launcher Code

Spring
Framework

Java

Figure 2: FIDDLR applied to the RESTify Concern

decisions.
We therefore elaborated a novel language for the specification of hierarchically arranged

resources and basic CRUD operations. Note that in contrast to existing REST interface
description languages, e.g. the Web Resource Modeling Language (WRML) [8] or REST-
ful API Modeling Language (RAML) [9], our language purposely omits the description of a
complete REST interface specification. It is meant to integrate into a concern, therefore it
is reasonable for language models to remain incomplete unless their partiality is combined
with a mapping on application-specific realization models. In [12] we originally presented
this idea of partial languages in the context of an integration into a refactoring workflow.
This idea was presented even before we had elaborated a formal specification of FIDDLR.
Next I summarize the steps performed by a concern designer, who integrates the aforemen-
tioned novel language as CSML into a RESTify concern. This is followed by a description
of how the concern reuse is experienced from the perspective of a concern user, with special
emphasis on the streamlined nature of a concern-assisted refactoring process.

3.2 Concern Integration

Fig. 2 illustrates the design process of the RESTify concern, if based on FIDDLR. As be-
fore, components and transformations provided by the concern designer are red, artefacts
created by the concern user are blue, and speckled blue/red components depict generated
components.

In a first step, the concern designer has to decide on the REST technologies the concern
will support and express them in a feature model. At the time of writing the concern
reference implementation only covers Spring. Support for alternative REST frameworks is
in the making.

As we have seen before, the manual conversion required an implicit definition of REST
resources via annotations. A more direct approach is an explicit design of the desired resource
layout. However, existing GPMLs are not made for modelling resource trees, hence the
concern designer should define a CSML for this specific purpose (step 2). We therefore
elaborated the Resource Tree Language (ResTL), a CSML designed for the specification of
hierarchically arranged resources and basic CRUD operations. Fig. 4 shows a possible model

7

that a concern user could design using ResTL to define a resource layout for the Bookstore.
Note that the concern designer does not need to define a language for establishing the

mappings between the ResTL model and the legacy Bookstore application. CORE already
provides a generic artefact for model element mappings, which allows the concern user to map
CRUD operations to elements of the base application, i.e., the methods that the Bookstore
offers.

One goal of FIDDLR is a maximized reuse of existing MDE and CORE concepts and
tooling. The concern designer therefore has to decide at which levels of abstraction the
REST concern is best integrated with the GPML models and code of the base application.
For RESTify we decided to perform the integration at the design level only, e.g., using class
diagrams and sequence diagrams, and rely on standard MDE code generation to produce
the running application.

First, the concern designer creates design models (step 1). In case of Spring, this would
be behavioural models to invoke REST launcher code required by Spring.

Also the concern designer would provide a CSML to bridge the semantic gap between
the concern’s level of abstraction and GPML expressiveness (step 2). In case of RESTify
this corresponds to the provision of ResTL.

The next step is to provide a model transformation (step 3) that transforms the CSML
model into GPML design models, i.e., that converts the mapped ResTL models into class
diagrams and sequence diagrams that include the required annotations and trigger the Spring
launcher behaviour during startup of the application.

Finally, in order to integrate the generated models with the functionality of the original
application using CORE technology, the concern designer must provide a second transfor-
mation that, given the mappings between CSML and GPML models, produces composition
specifications (step 4). These composition specifications, when given to the CORE weaver,
compose the GPMLs of the base application with the generated GPML models containing
the REST-specific information.

No further work is necessary. Notably for program code, it is not required to implement
an adapted weaver or code generator, as the standard CORE weaver is used to compose the
design models, and the standard MDE code generator is used to generate the executable.2 In
our case, this tooling is provided by the CORE reference implementation, TouchCORE [7].

In summary, from the perspective of a concern designer, FIDDLR requires only the def-
inition of the ResTL CSML, the design models for launching Spring, and the two model
transformations generating the GPML models and the composition specification. The tech-
nologies that are reused are the mapping-concept and the weaver provided by CORE, the
code generator provided by MDE, and the Spring framework itself.

3.3 Concern Usage

This subsection illustrates how easy it is for a concern user to add a REST interface to
an application following FIDDLR’s structured reuse process. By means of the Bookstore
example we showcase how RESTify maximally focuses the concern user on REST-specific

2One insight of implementing RESTify was that an additional weaver for build-system configurations
could be beneficial for the support of various REST technologies. This option is further discussed in Section 5.

8

RESTify

Spring Boot JAX-RS

Apache CXFEclipse Jersey JBoss
RESTEasy

Figure 3: Variation Interface of the RESTify Concern

decision making and efficiently automates all technology-specific integration tasks.
From a concern user point of view RESTify is perceived as a sequence of three graphical

model editors. Each editor allows explicit, but assisted decision making for an essential
design question.

Equivalent to the manual approach, the process starts with selecting the desired REST
technology. Where in the classic conversion a developer needs expert knowledge on vi-
able alternatives and actions needed for their integration, RESTify offers this choice with a
CORE-based variation interface (VI) that captures the technologies considered by the con-
cern designer as shown in Fig. 3. The VI can also contain information on the impact of user
made choices on resulting software qualities of the outcome, such as performance, security,
etc. This information stems from an optional goal model provided by the concern developer.

Once the desired technology selected, the user is brought to the ResTL model editor. For
illustration purposes we assume the concern user here decided for the Spring Boot variant.
The concern user then models a possible resource layout as previously shown in Fig. 4,
assisted by the editor that enforces a coherent layout. Thanks to the ResTL CSML provided
by the concern designer, the concern user is maximally focused on this REST-specific design
task. In case of RESTify the spotlight is on the definition and organization of resources and
exposing of CRUD operations. Detailed REST interface information, e.g., input- and return
parameters, is purposely omitted at this stage. As mentioned in 3.1 the ResTL as a CSML
intentionally limits expressiveness to the requirements at a given reuse stage. More REST
interface details are not needed here, as they can be semantically derived from subsequent
mappings to the application realization models, in our case mappings to the design models of
the Bookstore. This illustrates the key differences between a standard DSML and a CSML.

To connect the newly created resource layout with the Bookstore application logic, the
concern user must now establish mappings between the CRUD operations of the resource tree
and the methods of the Bookstore application. State of the art MDE tooling can perform
an automatic signature extraction from existing artefacts, e.g. JAR files into design models.
Depending on target signatures the user may also have to define additional mappings for
method parameters.

The mappings are defined in a third editor that uses a split view: one side of the screen
displays the class diagram, showing the Bookstore’s classes and methods and the other side
the ResTL model of the Bookstore’s resource layout. The concern user then proceeds to
establish links between individual CRUD operations and existing Bookstore methods. If
needed, the user also provides mappings between signature parameters and intermediate
dynamic resources. The latter are represented as dynamic path fragments (denoted as a
placeholder enclosed by curly brackets). Afterwards, remaining un-mapped parameters are

9

Figure 4: Bookstore Resource Layout Designed with the ResTL Editor. Circled Letters
Below a Resource Represent Enabled CRUD (Get, Put, Post, Delete) Operations.

assumed to be either HTTP query parameters or encoded as body payloads. Consequently it
is not necessary that the concern user covers all legacy signature parameters with mappings.
Fig. 5 depicts this split view and illustrates user-defined mappings between ResTL and legacy
application Design Models.

This is all the concern user needs to do to add a REST interface to the Bookstore.
From there, as described in the previous subsection, RESTify is able to internally perform
the required model transformations, model weaving and code generation. The latter also
produces a build system configuration that ensures automatic integration of Spring at compile
time.

Figure 5: TouchCORE Screenshot showing Split View in Action. Mappings are here high-
lighted selectively to improve visibility.

10

3.4 Concern Contribution

We see the described concern usage workflow as convincing evidence for a maximally simple
procedure, performed at the right level of abstraction and supported by the right modelling
notations. Using RESTify no expert REST knowledge is required by the concern user.
Likewise, compared to a maniual conversion there is no longer a need to deal with any
technical details, e.g., framework-specific boilerplate code, annotation syntax or intricate
configuration file modifications.

Another advantage of RESTify is the elimination of unnecessary redundancy. In [15]
we run a quantitative comparison of both approaches. The manual Bookstore conversion
showcased severe replication of resource strings, since URL paths closer to the resource
tree root are replicated over scattered annotations. For instance the string of the root
resource ”/bookstore” was replicated 12 times. In RESTify models define every resource
name exactly once, hence eliminating a source of potential errors. Furthermore we ran
a quantitative comparison of atomic user operations required to accomplish the refactoring
task. Although it is not simple to apply a fair metric to compare a textual with a tool-guided
refactoring approach, we were able to demonstrate the streamlined nature of RESTify over
the traditional refactoring process.

Finally, RESTify also facilitates evolution, as changes can be made efficiently at the
right level of abstraction. This is an indirect consequence of FIDDLR’s strict separation of
concerns, which enforces the concern user to diligently deal with one task at a time using the
right modelling notation. For example, restructuring the REST interface’s URL tree can be
done easily by rearranging the resource tree layout in the ResTL editor. A second example
is a bleated switching of the selected REST technology, which in a manual approach is an
tedious process as it potentially touches vast parts of the code base.

Integration Status

Our current reference implementation of RESTify , which was entirely integrated following
the FIDDLR approach is mainly functional and subsequent code-generation produces de-
ployable REST service code that behaves as expected. Over the past years our main efforts
were spent on a refinement of the existing TouchCORE code generator, notably to support
the generation of build system configurations and software dependency management. Since
REST technologies are JDK external artefacts, this was an inevitable requirement. Also
we had to enrich the existing design models by a notion of annotations and annotation
parameters, and likewise enable their support on the existing Java code generator. While
the conceptual design of the ResTL CSML was relatively straightforward, the development
of CSML→GPML and CSML mapping→GPML mapping transformations was a complex
technical task that required more time and effort than expected.

The RESTify case study has already exceeded the initially envisioned proof of concept,
and in terms of a thesis component can be considered mostly completed. Along its imple-
mentation the concern provided us with valuable information on FIDDLR’s general viability
and continuously contributed to a gradual framework refinement. The remainder of this re-
port shift the spotlight from what has already been done to open tasks. Open limitations of
theRESTify concern, and how to solve them in the near future are mentioned in Section 5.

11

4 Case Study: Concern 2

The previously presented case study on RESTify provides evidence on FIDDLR’s viability
and demonstrated the practical benefit of CSMLs in action. RESTify constitutes an essential
component of my contribution, to underline the versatility of the suggested framework.

I intend to elaborate a second CSML-enabled concern case study as important component
of my thesis. However, at the time of writing I can not present a fully developed second
example. In parallel to the development of RESTify we did however consider two potential
candidates, one of which will very likely be subject to further elaboration and implementation
over the next year.
In the remainder of this section I provide the conceptual backgrounds of these two concern
candidates and argue why they would be appropriate choices. For both concerns I summarize
their potential for reuse on the example of recurring solution patterns. I briefly discuss the
benefits of a CSML enabled concern integration and discuss the principal compatibility to
main stages on the path of a concern integration with FIDDLR. Finally I summarize to
which extent existing technologies can be reused.

4.1 Resource Access Delegation

Deployed services often involve some form of access protection. Especially in a Micro-Service
context, where applications consist of fine grained RESTful services, resource-oriented access
control is inevitable. Since a single service may contribute to various applications, access
protocols often define sets of privileges that are associated with scoped resource access. The
OAuth2 protocol is the de-facto standard for inter-service access delegation. It assumes
resource ownership by Resource Owners who can grant access to foreign services, based on
predefined privileges. Access is realized using revocable tokens, which sidesteps any need for
credential sharing. A common analogy is the idea of a Valet car key, that grants access to
a resource (a car), but places access conditions, e.g. a speed limit, or restricted access like
blocked trunk, fuel tank [11]. Note that in OAuth2 the association between privileges and
resources is static, whereas association of foreign services and privileges happens at runtime.
Defining the desired privilege model is not straightforward with existing GPMLs concepts.
Privileges may inherently form a hierarchy and are associated to selected fractions of a given
resource access structure. In its simplest form a CSML designed for specifying resource access
would allow the definition of descriptive permissions, which can subsequently be mapped on
an API. A preliminary visualization of such a CSML is depicted in Figure 6.

With the required privileges and scopes defined, it would be possible to customize concern
provided realization models, to effectively transform CSML and mapping information into
GPML models. Alike RESTify , a direct definition of these models by a concern user would
not be per-se impossible, but would result in severe accidental complexity due to the semantic
gap between GPML expressiveness and desired concepts.
Technologies like Spring Boot allow the encoding of OAuth2 configurations, the subsequent
generation of project code based on transformed input models is a viable procedure option.
So far we have explored the desired target code of manually configured OAuth2-enabled
services. This is a first step to allow for a manual inspection of the custom code which we
ultimately hope to produce through an integrated concern.

12

Figure 6: Preliminary concept for an OAuth2 privilege definition and mapping on REST
resources. The dashed mapping line indicates an account specific privilege whereas absence
of a mapping indicates a service wide permission scope.

4.2 Service Load Balancing

In the context of distributed systems, a recurring interest of modular application design is the
option to replicate bottleneck components, which allows a distribution of load over service
replicas for improved system performance. This strategy is referred to as Load Balancing.
However there are different load balancing variants. Service replication could be concealed
behind a proxy service, routing the traffic. This form is called Server-Sided Load Balancing.
Alternatively the list of available service instances can be communicated to the clients, which
then in turn directly contact a specific service entity. The choice may then occur based on
different criteria, e.g. opportunistic selection of the service with fastest response time or
altruistic distribution of load through a round robin communication. Depending on the
service nature, there can be further constraints. For instance if the target service is stateful
load balancing requires either service synchronization strategies, such as delegation to a
shared database or static association between clients and service instances.

Figure 7: Preliminary variation interface for a Load Balancing concern

These variants could be captured with a concern variation interface, as shown in Figure 7.
However with flexible amount of desired replicas and available resources, it is inevitable for
the concern user to create a deployment model to specify the desired resource allocation.

13

Once more this association is not easily described with GPMLs. A promising language for
expressing architectures, components and deployment is Palladio’s [10] Palladio Component
Model (PCM). PCM models not only support allocation scenarios, they can in principle
also be used as input for performance predictions, as Palladio offers simulations based on
queuing models. The option for preliminary performance estimations throughout concern
reuse can be seen as a beneficial feature for a future Load-Balancing concern. We explored
the integration of PCM concepts into TouchCORE and validated the general feasibility
for such deployment models within FIDDLR’s default development suite. However, since
the integration of PCM with support for performance predictions introduces a complex
technological stack, we also considered the option of developing our own, minimal CSML
that reduces PCM to a minimal subset of required concepts.

Both of the considered concerns are found in the context of micro-service architectures, which
use RESTful services as components. Partially this is motivated by my personal background
- the design of meaningful concerns requires sophisticated domain knowledge, therefore my
practical experience with RESTful services and Spring Boot is beneficial. However, it is
also interesting to select a second concern that inherently reuses RESTify . This provides an
implicit validation of RESTify and, thanks to detailed knowledge on implementation details,
also eases reuse of existing functionality. Since the CSMLs still showcase a highly concern-
specific nature, I do not see an issue in the concerns’ shared application domain.
With the initial explorations achieved I have a slight preference towards selecting OAuth2
as second case study, the main reason being a technical restriction of TouchCORE. So far
TouchCORE projects are considered strictly monolithic applications. The introduction of
deployment configurations breaks with this tradition and most likely also requires the de-
velopment of an additional code generator for orchestration-software configurations, e.g.
Kubernetes [6]. While OAuth2 is seemingly the more complex concern, it can therefore be
assumed easier to integrate. Especially if we set on code-generation toward Spring Boot, a
significant part of the RESTify ’s toolchain can be considered reusable. More considerations
on the expected challenges and anticipated solution strategies are listed in the next section.

5 Planned Research

In this section I recapitulate the state of all designated thesis components. Where applicable I
summarize the missing evidence and provide a strategy for completion. The section concludes
with a summary of upcoming tasks, arranged as a preliminary schedule that provides an
estimated time to thesis completion.

5.1 FIDDLR

FIDDLR is the key component of my contribution and has already reached a coherent and
mostly stable layout. The general design has been peer reviewed and validated by means of a
detailed case study that demonstrated the feasibility of a real-world concern integration [15].
While the successful concern integration and application provides convincing evidence for the
viability of FIDDLR, the conducted case study can by nature not quantify the advantages

14

compared to an unassisted concern integration. For this we would have to re-integrate the
same concern without the help of FIDDLR, and compare the required efforts. This empiric
comparison would unfortunately exceed the available resources. However, we already ran a
detailed theoretical analysis of integration tasks for general CSML-enabled concern integra-
tion and argued how FIDDLR’s frame is beneficial throughout the entire process [15].

We still expect minor adjustments on FIDDLR’s exact layout. The RESTify case study
already provided feedback that could lead to further refinement. An example is an apparent
need for advanced weaving. Notably the integration of a concept for build-configuration
weaving seems to constitute an extension that increases genericity of our approach.3

5.2 RESTify

The RESTify concern is far enough integrated and usable to provide proof of concept. Al-
though not free of minor bugs it allows convenient refactoring of sample legacy application
to RESTful services. However, it is not yet advanced enough to cover all envisioned claims.
Specific return parameters are incorrectly handled by the implemented CSML transformers
and the variation interface currently only supports Spring Boot. Over the next months we
want to gradually apply it to more complex input models, until all situations expected in
a user study are reliably handled by the integrated concern. In parallel we want to finalize
the support for at least one JAX-RS variant. The latter will most likely not require a lot
of effort since huge parts of the implemented transformers were coded with genericness in
mind and provide well modularized functionality that can be conveniently reused for further
transformer implementations.

5.2.1 RESTify User Study

From a concern integration point of view we have fulfilled most prerequisites that make
it possible to conduct a user study. In the intended layout, the participants are divided
into two groups that each convert a provided sample application into a RESTful service,
based on a provided target interface description. Half of the participants will attempt this
conversion using TouchCORE, FIDDLR’s reference implementation, which includes the in-
tegrated RESTify concern. The control group aims for the same outcome, but must achieve
the conversion with traditional code refactoring techniques. Participants are provided with
supportive material that provides clear instructions and offsets a possible participant skills
level. For further fairness, main and control group are swapped for a second experiment,
where the task is the conversion of a second sample application of equal complexity.
At the time of writing, the study layout and intended recruitment have already been ap-
proved by the university’s Research Ethics Board, leaving us sufficient time to conduct the
study. A remaining challenge is the compilation of supportive material and task formulation.
It is for instance important to provide the target REST interface in a form that provides
equal conditions for either workflow. Also, since participants might not know how to perform

3In the current reference implementation, the build configuration generator has domain knowledge about
specific REST technologies. This constitutes an undesired technological coupling, which could be avoided
by concern provided build configuration fragments that are dynamically woven throughout concern reuse.

15

each workflow, we must provide educative material to offset missing skills. A key aspect of
the study is a reliable measurement of required time for task completion and quality of out-
come. We received approval to capture participant activity with screen-recordings. Software
quality will partially be measured through unit tests. Since the target is pre-defined, we
can run systematic curl-scripts to determine the functional correctness ratio. Generic tools
for this kind of unit testing have already been developed and tested throughout the past
months [14]. We hope to observe a significant speed-up of required time for task completion,
and a higher success rate of unit tests. This would support our claim that RESTify simplifies
service conversion.

5.2.2 Tool Paper

We are also planning to submit a paper on RESTify (without a FIDDLR context) to a
distributed system conference. Specifically we want to provide a more technical, in depth
description of RESTify , and forward our claims regarding model-driven REST-service de-
sign.4 In this article we also want to better highlight the reuse taking place within the
integrated concern, with respect to reused technologies. A contribution uniquely on RES-
Tify would also allow the selection of a more complex base application than in [15].

5.3 Concern II

Before we can integrate a further concern to obtain a second case study, we first need to
identify a good candidate. Concern design requires sophisticated domain knowledge and fa-
miliarity with standard solution patterns. Therefore the path to a second case study begins
with a thorough analysis of concern candidates for CSML eligibility and feasible recurring
solutions.
Currently we investigate two promising concern candidates, preliminarily named AUTHify
and Load Balance. Both concerns seem to bear the inherent justification of a CSML. AU-
THify envisions the API securing of a RESTful service with the OAuth2 protocol, whereas
Load Balancing targets increased performance through service replication. So far our inves-
tigations suggest the existence of recurring solution patterns, and non-alignment on standard
GPML concepts for both concerns. In the following I elaborate further on the individual
opportunities and challenges associated with each concern.

5.3.1 AUTHify

The OAuth2 protocol is used to delegate access on resources, between services. That is to
say the API of a Service A is mapped on fine grained privileges that filter access. Foreign
services can then request a specific set of privileges to fulfil a useful task. The required
segregation of Service A’s resource tree to privileges is a concept that can be well visualized
with a tailored CSML. Privileges can also be scoped to individual user accounts, represented
by dynamic resources.
The CSML concepts, proposed in Figure 6 are an exciting draft, that could be used to

4A first submission of FIDDLR to the MODELS21 converence was rejected, partially because the reviewers
deemed the RESTify component provided too many technical details.

16

build a first authorization-specific language. Also, AUTHify seems to bear room for vari-
ants. Granted access is for instance realized using various forms of cryptographic tokens.
Depending on the token format used, the protocol’s characteristics change. If e.g. the JSON
Web Token (JWT) format is used, tokens themselves contain the information required for
a cryptographic verification of access, which renders granted privileges irrevocable. Alter-
natively tokens can be random strings without any information encoded - this would then
support dynamic association of privileges over a database, and therefore optional privilege
revocation.
The next step toward a case study based on OAuth2 is the implementation of a minimal
target code sample: A simple access protected service that exemplifies a possible outcome of
successful service reuse. This sample code would allow us to validate the semantic expres-
siveness of our preliminary CSML, formulate the required concern realization models and
also identify required CSML transformations. The previsioned time estimated for this case
study is listed in 5.4.

5.3.2 Load Balancing

An alternative second concern serves the assisted integration of load balancing solutions for
deployable services. Distribution models that specify the allocation of existing hardware for
service replicas can be considered a legit candidate for an integrated CSML, and PCM seems
to offer the required concepts. Yet it is not clear how these concepts can be transformed
into a GPML equivalent. Also, modern service deployment is often subject to container-
system configurations, such as Docker-compose. It would therefore make sense to explore
the generation of deployment configurations. TouchCOREs existing code-generator is not
able to produce these configurations. Again a first step would be the manual formulation
of desired outcomes, validating if the reusable concepts can be accurately expressed with
a CSML. A promising candidate for the underlying deployment models seems to be PCM.
However the integration of PCM into TouchCORE has already been attempted and can be
considered technically challenging. It is unclear how much time the integration of PCM
would comsume. Similarly the possibility for Palladio based performance prediction imposes
a complex technological stack. Likewise, tests with simple test cases have shown Palladio a
poorly documented and hard to use tool - it is unclear how much time an effective integration
would require. Therefore it might be faster to disregard the existing tool and write a new,
simple CSML for deployment models from scratch. Similar to AUTHify, the subsequent
steps would be the extraction of required CSML transformations and concern realization
models, based on a minimal sample concern outcome. Unlike AUTHify, Palladio’s nature
makes it harder to reliably estimate the time required (see 5.4).

The above arguments speak in favour of my initially stated preference toward AUTHify as
second case study. Whatever the candidate chosen, the second case study will be reduced
to concern integration, without an additional user study. While verification of the practical
benefit for concern users is desirable, the main motivation for a second concern integration
remains to demonstrate the usefulness of FIDDLR for the integration task.

17

5.4 Preliminary Schedule

Based on the envisioned research presented in the section, a provision of the remaining
components within a duration of one year can be assumed feasible. Below schedule lists a
detailed breakdown of the main required tasks and their individual assumed duration:

Time Estimation
Component Current State Actions Required Monotask

Time
FIDDLR Peer reviewed (See Below) —
Pom Weaving Concept Dis-

cussed
Demo Implementation 1 Month

RESTify Proof of Concept (See Below) —
Support JAX-RS Target Code Im-

plemented
Implement Transformers 2 Months

RESTify Peer-Review Dis-
tri.Sys.

Planned Elicit Conference, Write
Tooling paper

2 Months

User Study REB Approved Fix minor bugs in RESTify
transformers, Test Material,
Run Study

3 Months

Concern 2 (Option A) Exploration (See Below) —
OAuth2 Sample Applica-
tion

Planned Implementation 1 Month

OAuth2 Token Variant Ex-
ploration

Planned Reading the Docs 1 Month

OAuth2 CSML Metamodel Planned EMF implementation 1 Month
OAuth2 Realization Model
Extraction

Planned TouchCORE integration 1 Month

OAuth2 Transformer Imple-
mentation

Planned TouchCORE integration 1 Month

Concern 2 (Option B) Exploration (See Below) —
PCM Integration / Reduc-
tion to CSML

Planned Integration into Touch-
CORE

Unclear

PCM to GPML transforma-
tions

Planned Implementation Unclear

Kubernetes configuration
generator

Planned Implementation 1 Month

PCM to GPML transforma-
tions

Planned Implementation Unclear

Palladio perf. prediction in-
tegration

Planned Find a way to use Palladio
in UI-less mode

Unclear

18

6 Conclusions

The results obtained during these first three years are encouraging and allow me to identify
the main components of the envisioned contribution. Still I acknowledge the existence of
multiple challenges along the way toward a successful program conclusion, some of which
being of scientific nature, some bureaucratic and finally some personal, too.
The greatest scientific challenge I currently see is making a meaningful choice for a second
CSML /concern case study. Whatever the outcome, the selection should be taken carefully, as
the feasibility of a subsequent implementation rises and falls with a fitting choice. Yet, setting
grounds for this choice itself requires a severe time investment, as I need to become as much of
a domain-expert as required to foreshadow a potential concern integration and CSML design
tasks. This investment is unfortunately required for every concern candidate, regardless of
whether it will eventually become a thesis component or not. Also challenging is the goal
to attend maximized coverage of thesis components through peer-reviewed conferences. I
see the validation of FIDDLR as a key component, residing at the heart of my envisioned
contribution. Now the next step is to reach peer-validation for RESTify , ideally taking into
account the perspective of a distributed system’s audience.
On behalf of bureaucratic challenges, I see the greatest threat in a straightforward conduction
of the RESTify user study. As much as I personally endorse high ethical standards for study
conduction, participant selection and confidentiality of collected data, the so-far path toward
a study design approved by the universities Research Ethics Board was a time consuming and
tedious process that greatly exceeded my considerations. Due to the many external factors
and dependencies I see this component as the most risky remaining part of my dissertation,
which is why I strive for its timely advancement and conclusion.
Finally, without surprise the ongoing COVID-19 pandemic introduced a massive change in
all of our lifestyles. A change that set new challenges for daily life, none of which I had
anticipated in my pre-departure considerations for a thesis program outside of Europe. The
last months have reminded me of the importance of a sustainable work-life balance. Still
with the progress made so far, with the massive feedback I receive from my supervisors,
and with the extremely supportive atmosphere among co-workers and friends I envision the
remaining thesis time as an exciting phase that I am greatly looking forward to.

19

References

[1] Omar Alam, Jörg Kienzle, and Gunter Mussbacher. 2013. Concern-Oriented Software Design. In Pro-
ceedings of the 16th International Conference on Model-Driven Engineering Languages and Systems -
MODELS 2013 (Lecture Notes in Computer Science, Vol. 8107). Springer, Berlin, Heidelberg, 604–621.

[2] Roy T Fielding. 2000. Architectural styles and the design of network-based software architectures. Vol. 7.
University of California, Irvine.

[3] Roy T Fielding, Richard N Taylor, Justin R Erenkrantz, Michael M Gorlick, Jim Whitehead, Rohit
Khare, and Peyman Oreizy. 2017. Reflections on the REST architectural style and principled design of
the modern web architecture (impact paper award). In Proceedings of the 2017 11th Joint Meeting on
Foundations of Software Engineering. ACM, New York, NY, USA, 4–14.

[4] M. Jamshidi. 2008. System of systems engineering? New challenges for the 21st century. Wiley,
Hoboken, NJ. 616 pages.

[5] Jörg Kienzle, Gunter Mussbacher, Omar Alam, Matthias Schöttle, Nicolas Belloir, Philippe Collet,
Benoit Combemale, Julien Deantoni, Jacques Klein, and Bernhard Rumpe. 2016. VCU: the three
dimensions of reuse. In International Conference on Software Reuse. Springer, Berlin, Heidelberg, 122–
137.

[6] Kubernetes. 2021. Kubernetes Documentation. https://kubernetes.io/docs/home/

[7] SCORE Labs. 2021. TouchCORE User Guide. http://touchcore.cs.mcgill.ca/. Accessed: 2021-09-24.

[8] Mark Masse. 2021. Web Resource Modeling Language Definition. https://github.com/wrml/wrml.
Accessed: 2021-04-28.

[9] MuleSoft. 2021. RESTful API Modeling Language Definition. https://github.com/raml-org/

raml-spec/blob/master/versions/raml-10/raml-10.md/. Accessed: 2021-04-28.

[10] Ralf Reussner, Steffen Becker, Jens Happe, Anne Koziolek, Heiko Koziolek, Klaus Krogmann, Max
Kramer, and Robert Heinrich. 2016. Modeling and Simulating Software Architectures: The Palladio
Approach. The MIT Press.

[11] Justin Richer and Antonio Sanso. 2017. OAuth2 in Action. Manning.

[12] Maximilian Schiedermeier. 2020. A concern-oriented software engineering methodology for micro-service
architectures. In Proceedings of the 23rd ACM/IEEE International Conference on Model Driven Engi-
neering Languages and Systems: Companion Proceedings. 1–5.

[13] Maximilian Schiedermeier. 2021. Book-Store Internals Sources. https://github.com/

kartoffelquadrat/BookStoreInternals/.

[14] Maximilian Schiedermeier. 2021. Unit Test Tools for REST APIs. https://github.com/

kartoffelquadrat/LobbyService/blob/master/unit-tests/rest-tools.sh.

[15] Maximilian Schiedermeier, Jörg Kienzle, and Bettina Kemme. 2021. Internation Conference on Software
Language Engineering. In FIDDLR: Streamlining Reuse with Concern-Specific Modelling Languages.
ACM, New York, NY, USA, 81–88.

[16] Phillip Webb, Dave Syer, Josh Long, Stéphane Nicoll, Rob Winch, Andy Wilkinson, Marcel Overdijk,
Christian Dupuis, Sébastien Deleuze, Michael Simons, Vedran Pavić, Jay Bryant, Madhura Bhave, Eddú
Meléndez, and Scott Frederick. 2021. Spring Boot reference documentation. https://docs.spring.

io/spring-boot/docs/current/reference/htmlsingle/

