
FIDDLR: Streamlining Reuse with Concern-Specific
Modelling Languages

Maximilian Schiedermeier
McGill University, Canada

max.schiedermeier@mcgill.ca

Jörg Kienzle
McGill University, Canada
joerg.kienzle@mcgill.ca

Bettina Kemme
McGill University, Canada

kemme@cs.mcgill.ca

Abstract
Model-Driven Engineering (MDE) reduces complexity, im-
proves Separation of Concerns and promotes reuse by struc-
turing software development as a process of model produc-
tion and refinement. Domain-Specific Modelling Languages
and Aspect-Oriented Modelling techniques can reduce com-
plexity and improve modularization of crosscutting concerns
in situations where the features of general purposemodelling
languages are not well aligned with the subject of study.
In this article we present FIDDLR, a novel framework

that integrates the ideas of Domain-Specific Modelling Lan-
guages, Concern-Oriented Reuse and MDE to modularize
concerns that cross-cut multiple levels of abstraction of the
software development process and streamline the reuse pro-
cess. It also prescribes the integration of the different tooling
along this process. We demonstrate the effectiveness of our
framework and the potential for reduced complexity and
leveraged reuse by building a reusable concern that exposes
the services a system offers through a REST interface.

CCS Concepts: • Software and its engineering → Do-
main specific languages; Software design engineering;
Reusability; Source code generation.

Keywords: Model-Driven Engineering, Concern-Oriented
Reuse, Concern-Specific Languages

ACM Reference Format:
Maximilian Schiedermeier, Jörg Kienzle, and Bettina Kemme. 2021.
FIDDLR: Streamlining Reuse with Concern-Specific Modelling Lan-
guages. In Proceedings of the 14th ACM SIGPLAN International Con-
ference on Software Language Engineering (SLE ’21), October 17–
18, 2021, Chicago, IL, USA. ACM, New York, NY, USA, 13 pages.
https://doi.org/10.1145/3486608.3486913

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
SLE ’21, October 17–18, 2021, Chicago, IL, USA
© 2021 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 978-1-4503-9111-5/21/10. . . $15.00
https://doi.org/10.1145/3486608.3486913

1 Introduction
Modern software needs to cope with the ever increasing
complexity of systems [14], and hence reducing complexity is
a primary objective of software engineering. InModel-Driven
Engineering (MDE), the combined use of multiple modelling
languages allows the developer to express properties of the
system under development at different levels of abstraction
and from different points of view, thus promoting Separation
of Concerns (SoC) and reducing complexity. Model transfor-
mations connect models across levels of abstraction, effec-
tively reusing architectural and design knowledge, or platform-
specific development expertise when generating code.
Still, model complexity can be a challenge. For one, a

conceptual mismatch of context and language introduces
accidental complexity. Furthermore, targeted reuse of par-
tial models is not easily possible in conventional modelling
languages. Domain Specific Modelling Languages (DSMLs)
address the former challenge, whereas the latter can be dealt
with by compositional approaches, e.g.,Aspect-Oriented Mod-
elling (AOM) techniques or Concern-Oriented Reuse (CORE).
In this article we present FIDDLR, a 𝐹 ramework for the

𝐼ntegration of 𝐷omain-Specific Mo𝐷elling 𝐿anguages with
concern-oriented 𝑅euse. The contributions of FIDDLR are:

• FIDDLR provides clear steps on how to integrate and
reuse existingMDE, AOM/CORE andDSML toolingwhen
creating reusable software artefacts – called concerns –
that address a specific development issue.

• With FIDDLR, a concern can define its own Concern-
Specific Language, a DSML designed to express the
concepts of the concern as well as streamline its reuse.

In Section 2 we present MDE, DSMLs and CORE, and then
discusse the motivation for combining the building blocks in
Section 3. Section 4 presents the main features of FIDDLR. In
Section 5 we evaluate FIDDLR by means of a case study. In
Section 6 we compare existing work to our approach and ex-
amine commonalities and differences. Section 7 summarizes
the advantages of our proposal and how current limitations
to our approach could be addressed in the future.

2 Building Blocks
SoC has been identified early on as one of the main mech-
anisms for tackling complexity during software develop-
ment [4]. SoC refers to the ability to temporarily focus one’s
attention solely on one development concern or issue.

https://doi.org/10.1145/3486608.3486913
https://doi.org/10.1145/3486608.3486913

SLE ’21, October 17–18, 2021, Chicago, IL, USA Maximilian Schiedermeier, Jörg Kienzle, and Bettina Kemme

Reuse is simply the process of creating software systems
from existing software artifacts rather than creating them
from scratch [21]. In this paper we are mostly interested in
planned reuse as opposed to opportunistic reuse.

2.1 MDE, Modelling Languages and Processes
Model-Driven Engineering (MDE) [17, 28] is a unified con-
ceptual framework in which the whole software life cycle
is seen as a process of model production, refinement and in-
tegration. Models are built representing different views of a
software system using different formalisms, i.e. modelling
languages. The language is chosen in such a way that the
model concisely expresses the properties of the system that
are important at the current level of abstraction.
A typical MDE process uses one or several General Pur-

pose Modelling Languages (GPML). The left side of Fig. 1
depicts typical software development phases found in object-
oriented, model-driven development methods. At a given
level of abstraction, consistency constraints ensure that the
different models form coherent views of the system. In Fig. 1
these constraints are depicted with black double ended ar-
rows. Ultimately, code generation is used to generate a sig-
nificant part of the object-oriented implementation from
the design models. Guidelines for refinement, and model
transformations that implement partial refinement and code
generation are depicted with thick grey arrows in Fig. 1.
SoC is at the heart of MDE. Every model that is created

is an abstraction of the system under development – unnec-
essary details are omitted. When establishing a model, the
most appropriate modelling language is used, focusing the
attention of the modeller on the current properties of inter-
est. Each model describes the system under development
from a different point of view, and can therefore focus on a
different development concern.

2.2 Domain-Specific Modelling
Accidental complexity arises out of mismatch of modelling
language and modelled matter. GPMLs such as UML mostly
cover the typical structural and behavioural modelling needs
for software development. Because of their general purpose
nature there is a (sometimes significant) semantic gap be-
tween a specific application domain and the concepts offer-
end by GPMLs. This gap can be bridged with DSMLs [12].

DSMLs target a specific application domain. They are typ-
ically developed in house, i.e., within an organization, by
experts of the domain, and usually cover a range of abstrac-
tion levels. Model transformations or code generators are
then used to derive other models or code from the domain-
specific models. This is illustrated in the center of Fig. 1.
The model transformations that generate partial GPML mod-
els at different levels of abstraction are depicted with thick
white arrows. Other approaches, reviewed in Section 6, do
not generate code for DSMLs, but provide run-time DSML

integration, i.e., the domain-specific models are executed /
interpreted alongside the other development models.
Reuse is central to DSMLs and MDE in general, the main

unit of reuse being the modelling language. A modeller using
a modelling language is reusing knowledge of the language
engineer when building models by instantiating language
concepts. Modelling languages typically come with a tool
that ensures consistency between views of the system at the
same level of abstraction. Reusable model transformations,
partially or completely automate the refinement of models
when moving between levels of abstraction, thus reusing
architectural and design knowledge or platform-specific devel-
opment expertise.

2.3 Aspect-Oriented and Concern-Oriented Reuse
In Aspect-Oriented Modelling (AOM), a modelling language
is augmented with advanced language features that enable
the modularization and composition of model fragments.
Model fragments are models that are not necessarily viable
in isolation. A model weaver is a special model transforma-
tion that takes as an input two models and a composition
specification, and produces a new composed output model
in which the two input models have been merged (see right
illustration in Fig. 1).

Concern-Oriented Reuse (CORE) [1] is an approach based
on AOM that streamlines model reuse by encapsulating
model fragments inside a reusable unit called a concern. A
concern designer must provide three interfaces for a con-
cern [18]: The variation interface (VI) exposes the different
variants of the reusable entity with a feature model, and the
impact of each variant on high-level system qualities with
an impact model. With the customization interface (CI) the
concern designer exposes the generic entities in the concern
that have to be adapted to a specific reuse context, while
the usage interface (UI) defines how the functionality en-
capsulated by a concern may be used. CORE streamlines
the reuse process by allowing a concern user to a) choose a
desired variant (from the VI), b) adapt the chosen models
to the specific reuse context (with the CI), and then c) use
the structure and behaviour encapsulated by the concern
(exposed in the UI).

Behind the scenes, based on the information provided by
the concern user (i.e., the selected features, the customization
mappings and the usage dependencies), a weaver combines
the model/code fragments of the reused concern correspond-
ing to the selected features with the application models/code.

3 Critical Assessment
3.1 Separation of Concerns
The SoC power of MDE is limited when it comes to develop-
ment concerns that do not align with the levels of abstraction
of the MDE process and the used GPMLs. Some development
concerns, e.g., Security, need to be considered not only during

FIDDLR: Streamlining Reuse with Concern-Specific Modelling Languages SLE ’21, October 17–18, 2021, Chicago, IL, USA

Requirements
Phase

Design
Phase

Implementation
Phase

Standard MDE Process Domain-Specific Modelling Aspect-Oriented Modelling

Composition
Specification

Structural
Design

GPML
Behavioural

Design

GPML

Code

GPPL

Requirements
Model

GPML

Architecture /
Design Model

GPML

Code

GPPL

Model A
GPML

Model B
GPML

Model A+B
GPML

= Refinement / Model and Code Generation
= Consistency Constraints / Dependencies

Domain-
Specific Model

DSML

= Automated Model and
 Code Generation

= Model Composition / Weaving

Structural
Requirements

GPML
Behavioural

Requirements

GPML

Figure 1. MDE, DSML and AOM

the requirements phase, but also during architecture, design
and implementation. Addressing security properly requires
dealing with security-related structure and behaviour at all
phases of development, and hence, security-related model
elements end up scattered across multiple models. In this
case, the use of modelling languages that are not aligned
with the development concern in question introduces what
is called accidental complexity.
DSMLs have the potential for addressing this drawback,

because they can define language features that allow a mod-
eller to express properties relating to any level of abstraction
of software development for the targeted domain.

Furthermore,MDE also fails to properly address SoCwithin
a model. Consider a design class diagram of a system under
development that contains functionality for user Authentica-
tion. The structural properties needed to deal with Authenti-
cation (e.g., the users, their credentials, sessions) are tangled
with the rest of the application design structure. Hence, in
the overall design class diagram, there is no clear separation
between classes related to Authentication and classes related
to other business functionality of the application.

AOM and CORE address this drawback, as they augment
modelling languages with advanced constructs that make it
possible to decompose a model into fragments, and later on
re-compose them with a model weaver. Provided the AOM/-
CORE decomposition mechanisms align with the boundaries
of a concern, proper SoC is possible.

3.2 Reuse
As previously discussed, the modelling language is the main
unit of reuse in MDE and DSMLs. It allows for reuse of
domain knowledge, as well as model transformations and
other tool support provided by the language engineers.

Within a language, however, reuse in MDE and DSMLs is
relatively limited. Because most modelling languages lack
language features that enable proper modularization and

packaging, it is not easy to encapsulate a set of model el-
ements that, e.g., represent a recurring modelling pattern
as a reusable model. This is exactly what CORE is good
at, because it extends the modularization technology of-
fered by AOM with language constructs for grouping model
fragments behind well-defined reuse interfaces, and pro-
vides means for customizing generic model elements with
application-specific structure and behaviour.

3.3 Accidental Complexity
CORE integrates well with MDE. The relevant properties
of a concern can be expressed at the appropriate level of
abstraction using the most appropriate GPML. Customiza-
tion and usage also work well for concerns whose nature is
aligned with the concepts of the GPMLs used in the MDE
process. For example, the Observer design pattern, when
modularized with CORE, can be reused easily by mapping
the Subject and Observer classes and their operations to
the corresponding application design classes and operations.

However, for concerns that do not align well with GPML
concepts, the standard way of customization and usage of-
fered by CORE introduces significant accidental complexity.
For example, imagine a situation where the design of an
application is modelled using class-, state- and sequence dia-
grams. Imagine now a Workflow concern that can be used
to define and execute workflows that are constituted of in-
terdependent and potentially concurrent activities. Neither
state nor sequence diagrams are well suited to model work-
flows. While those models can be used to design a workflow
execution engine, the customization of this workflow engine
design would be very difficult for a concern user, who would
have to understand the internal design details of the engine.
This is where DSMLs can help. Accidental complexity

can be avoided by defining a Concern-Specific Modelling Lan-
guage (CSML) targeted at exposing the concepts of a concern,
just like a DSML would expose the concepts of a domain.

SLE ’21, October 17–18, 2021, Chicago, IL, USA Maximilian Schiedermeier, Jörg Kienzle, and Bettina Kemme

Application Concern

Requirement
Models

GPML

Architecture /
Design Models

GPML

Code

GPPL

Concern
Requirements

Models

GPML

Concern
Architecture /

Design Models

GPML

Concern Code

GPPL

Concern-Specific
Modelling Language

(CSML)

Generated Customi-
zation and Usage

Requirements Models

GPML

Generated
Customization and

Usage Design Models

GPML

Generated
Concern Customization

and Usage Code

GPPL

Generated
Composition
Specification

Generated
Composition
Specification

Concernified Application

Requirement
Models

GPML

Architecture /
Design Models

GPML

Code

GPPL

Concern-
Specific Model

CSML Generated
Composition
Specification

= Specified by the Concern User

= Specified by the Concern Designer
= Automated Model Generation
= Weaving / Composition

= Consistency Constraints
 and Dependencies
= User-Defined Mappings

= Refinement

Step 1

Step 2 Step 3
Step 4

Figure 2. The FIDDLR Framework

Additionally, a CSML is also designed to streamline the reuse
of a concern, i.e., facilitate its customization and use.

4 FIDDLR
Motivated by the complementarity of MDE, DSMLs and
COREwe elaborated FIDDLR, a 𝐹 ramework for the 𝐼ntegration
of𝐷omain-SpecificMo𝐷elling𝐿anguageswith concern-orien-
ted 𝑅euse, illustrated in Fig. 2.

FIDDLR puts forward the idea that DSML technology can
be exploited effectively for implementing and applying con-
cerns that do not align well on standard GPML concepts.
In particular, FIDDLR defines an approach for packaging a
DSML with a concern, and as a framework provides clear
tasks to integrate the concern implementation with MDE
tooling, existing GPML models and code. FIDDLR therefore
is beneficial for both concern designers and concern users.

4.1 Concern Design
In alignment with CORE, the unit of reuse in FIDDLR is the
concern. Designing a concern is by nature a complex task.
If a DSML is used within, it becomes even more complex.
Even with FIDDLR, the design of a concern is still compli-
cated, since the concern designer must excel in multiple
disciplines such as DSML design, model transformations,
and of course expertise on the concern’s domain. The con-
tribution of FIDDLR is that it splits the task of designing
a concern into smaller, independent steps, namely concern
realization, CSML design, CSML->GPML transformation, and
CSML->composition specification. Each step reuses existing
technologies whenever possible, thus simplifying concern de-
sign and reducing the amount of work required significantly.
The FIDDLR concern design steps can even be distributed
over a team of individuals that are experts in their field.

Step 1) Concern Realization. In the spirit of MDE, a con-
cern designer realizes a concern using the most appropriate
GPML models at the right levels of abstraction. Fig. 2 de-
picts the artefacts created by the concern designer in red,
i.e., concern-related requirements models, architecture and
design models, as well as code. Which models are needed
depends on the MDE process being used, and on the nature
of the concern. Some concerns are relevant at all levels of
abstraction, e.g., Security, and therefore such concerns con-
tain many realization models. This step should be performed
by a developer with expertise in implementation of the con-
cern, in collaboration with an expert of the GPML modelling
languages used in the MDE process.

Step 2) CSML Design. Whenever the nature of a concern
and its properties do not align or can not easily be expressed
with GPMLs, or when a concern covers several MDE ab-
straction layers, the concern designer can provide a CSML
together with the concern realization models (also shown
in red in Fig. 2) that exposes the main concepts of the con-
cern and streamlines the concern customization and usage.
This step should be performed by a DSML expert collaborat-
ing with the concern domain expert, who would define the
language metamodel and actions for manipulating models.

Step 3) CSML->GPML Transformation. The concern
designer must also create model transformations that, given
a CSML model as input, can generate the appropriate GPML
models/code that customize and make use of the developed
GPML realization models/code of the concern for each rele-
vant level of abstraction. This step should involve a model
transformation expert, possibly again in collaboration with
a concern implementation expert.

FIDDLR: Streamlining Reuse with Concern-Specific Modelling Languages SLE ’21, October 17–18, 2021, Chicago, IL, USA

Step 4) CSML->Composition Specification. Finally, the
concern realization expert and the MDE expert need to de-
cide at which level of abstraction the concern-specific model
is best composed with the application’s realization models.
For example, some of a concern’s behaviour might best be
composed at the code level, while other behaviour can better
be composed at the level of state charts or sequence diagrams.
A model transformation expert then designs a transforma-
tion that, given a CSML model and mappings provided by
the user as input, produces composition specifications for
the customized GPML models produced in step 3.

4.2 Concern Use
With FIDDLR, whenever an application reuses a concern
that comes packaged with its own CSML, the concern user
has access to language elements tailored specifically for the
concern reuse. Thus the standard CORE reuse process [18]
is significantly streamlined for the concern user. In standard
CORE, the concern user has to manually customize each
GPML realization model by mapping the generic model ele-
ments (and code) to application-specific elements (and code).
Furthermore, for each GPML model of the application, the
concern user must specify how the concern is used. Thanks
to the CSML, the concern user can simply create a model
describing the concern-related properties in the context of
the application in which it is reused. This is shown in blue in
Fig. 2. Customization and usage then only require linking the
appropriate model elements from the created CSML model
to model elements in the GPML models of the application as
illustrated with the blue arrows.

4.3 Concern Composition
To combine the application and concern models, FIDDLR
reuses existing MDE, DSML and CORE tooling as much as
possible.

From the concern-specific model provided by the concern
user, the model transformations provided by the concern
designer automatically generate GPML models that contain
the application-specific customization mappings and usage
of the concern API (step 3), as well as composition specifica-
tions that connect the generated models with the application
models at each relevant level of abstraction (step 4). The
automatically generated models and composition specifi-
cations are highlighted in speckled blue/red in Fig. 2. The
composition specifications and models are then provided
as input to the CORE model weavers, which generate the
concernified application, i.e., the GPML models in which
the concern-specific and application-specific structure and
behaviour have been combined.

5 Evaluation / Case Study
To evaluate the potential of FIDDLR we conduct an in-depth
case study, motivated by two primary research questions:

• Can the FIDDLR framework be applied with reason-
able effort, to design and implement a CSML-enabled
concern?

• Does the provision of a CSML facilitated by FIDDLR
streamline concern reuse?

We pursued these questions by implementing and reusing
a sample concern, related to the Representational State Trans-
fer (REST) architectural style. REST allows the invocation of
remote services through a resource-oriented interface. The
re-exposure of existing functionality through REST com-
monly requires thorough domain expertise. In this section
we explain how FIDDLR supports the design of RESTify, a
concern that can be used to re-expose any application func-
tionality through a REST-adherent (RESTful) interface.

In a first subsection, we provide an overview of REST, de-
scribe the common stages required when manually adding a
REST interface to an application, and discuss the associated
challenges. Subsequently we present how FIDDLR supports
the design of RESTify, a concern to streamline the REST
refactoring process. In a third subsection, we exemplify how
a concern user applies the concern to an application using
RESTify’s key stages. Finally, the last subsection presents
a qualitative and quantitative comparison of the RESTify
concern with manually adding a REST interface to an appli-
cation.

5.1 REST and Service Refactoring
RESTful service interfaces consist of hierarchically struc-
tured resources with selected CRUD operations [5] (Create,
Read, Update, Delete) enabled. Those operations are com-
monly invoked over HTTP as Put, Get, Post and Delete re-
quests. Clients interact with a service that is adherent to the
REST style (i.e., a RESTful service) uniquely over those selec-
tively enabled CRUD operations. Having a RESTful service
therefore constitutes a layer of abstraction, as it strictly con-
ceals service implementation details1. Over the last decade,
RESTful service interfaces gained widespread acceptance for
modern web architectures and component-based systems,
notably in a Micro-Service context [31]. This is mainly due
to the efficient abstraction from implementation details, but
also due to the versatility of HTTP, which provides free
choice of implementation language for communicating soft-
ware components. Yet the design of a proper REST interface
for a given functionality remains a challenging task. For one,
because correct interface engineering is subject to a vari-
ety of design rules. Secondly, because the underlying web
technology that enables the execution of a RESTful service
imposes a complex technological stack. A side effect of this
complexity is that real-world services often showcase misuse
or even anti-patterns to the REST style [6].

In the following we show how a simple Java desktop appli-
cation of a Bookstore can be refactored to a RESTful service,
1This notably distinguishes REST from simple Remote Procedure Calls.

SLE ’21, October 17–18, 2021, Chicago, IL, USA Maximilian Schiedermeier, Jörg Kienzle, and Bettina Kemme

illustrating the common challenges when re-exposing ser-
vice functionality through REST. The Bookstore database
holds sample book metadata, reviewer comments and inven-
tory of individual stores. In its original state, the Bookstore
offers a set of public methods that allow for local querying
and manipulation of the Bookstore data. Adding a REST in-
terface is beneficial because it allows clients to consult or
modify the database remotely.

Fig. 3 provides an overview of the main steps that we ex-
pect an experienced developer to perform to manually add
a REST interface to an existing application. It starts with a
technical choice. Enabling REST for the Bookstore requires
the integration of a framework or library that implements
the runtime communication infrastructure and protocols re-
quired for REST. We assume the developer prefers Spring
Boot over various implementations of the Jakarta RESTful
Webservices (JAX-RS) [8, 10, 11, 15] specification, which con-
stitute other viable alternatives.2 Spring is a JDK-external
artefact and therefore can only be invoked if referenced by
the system’s classpath. Thus, our developer modifies the
Bookstore’s existing build system configuration, declaring
a dependency to Spring Boot, and exchanging the default
build settings by a Spring-specific plugin. Next, the developer
replaces the original Java launcher class with one that initial-
izes the Spring framework during startup. These preliminary
steps are summarized in the Prepare stage of Fig. 3.

As a next step, the application API needs to be re-exposed
in REST format. Using Spring, Java methods can be mapped
on CRUD operations of REST resources using Spring-specific
Java annotations. An annotation parameter then specifies
the resource location. An example for the syntax used is
shown in Listing 1. Spring annotations are highlighted in
green.

Listing 1. Spring Annotated Bookstore Method. Accessible
by HTTP GET Request at e.g.
"/bookstore/stocklocations/minastirith."

@GetMapping(value = "/bookstore/stocklocations/{stocklocation}",
produces = "application/json; charset=utf-8")

public Map<Long , I n t e g e r >
↩→ g e t E n t i r e S t o r e S t o c k (
↩→ @PathVariable("stocklocation") S t r i n g c i t y) {
return s t o c k s P e rC i t y . g e t (c i t y) .

↩→ g e t E n t i r e S t o c k () ; }

Similarly, individual parameters can be annotated where
needed, to resolvemethod arguments to details of themapped
resource query. This can be either a dynamic fragment of the
resource path, a HTTP query parameter or the parsed HTTP
body. Regarding the Bookstore, our developer therefore iden-
tifies the existing Java methods that must be exposed and

2Spring was assumed due to it’s high industrial relevance, however any
alternative could have been used for the purpose of this case study.

Table 1. LOC Modified during Bookstore Conversion

File(s) SLOC Added SLOC Modified SLOC Removed
Legacy Launcher - - 31 / 31
New REST-Service Launcher 10 - -
Annotations in other Classes 15 10 / 296 0 / 296
Build System Configuration 25 2 / 109 27 / 109

decorates their signatures with the required Spring annota-
tions. This step is represented by the Expose stage in Fig. 3.
The modified code only becomes of practical use for remote
clients, if built and deployed on a server. Building is un-
complicated, as the configured build system compiles the
modified Bookstore into a self-contained JAR file that can
be executed as-is on any system with a compatible Java
Runtime Environment. Self-contained means that the JAR
includes Spring and its transitive dependencies. If executed,
the launcher class invokes Spring, which in turn powers up
an embedded web server. Using reflection, Spring detects the
added annotations and ensures that inbound HTTP queries
are delegated to the decorated methods and that parameters
are correctly resolved. The Bookstore has hereby effectively
become a RESTful service. This final step is illustrated by
the last stage, Deploy in Fig. 3.
Table 1 shows the code modifications performed by our

developer. Only a relatively low fraction of the code has been
touched. Yet these modifications require significant expertise.
For example, during the Prepare stage of Fig. 3, the developer
first has to make a choice of which REST framework to use,
and then update several files, i.e., the build files and launcher
classes. This is not straightforward and requires detailed
framework knowledge (curved arrow in Fig. 3).
In the Expose stage, the placed annotations implicitly en-

code an entire REST interface, that represents the design of an
entire resource treewith selectively enabled CRUD operations
and parameter mappings. The developer has to build this
tree by placing annotations that encode individual branches
of the tree in URLs. While in case of the Bookstore the REST
interface was expressed with only 28 annotations, those are
scattered over the code base. This conceptual mismatch –
building a tree by writing URLs sprinkled over several source
files – imposes a high mental load on the developer. Further-
more, the developer must have a thorough knowledge of the
Spring annotation syntax. Hence the Expose stage is not at all
straightforward, and is therefore illustrated as a twirly arrow
in Fig. 3. Only the build and deployment of the refactored
code base are straightforward and illustrated as a straight
arrow in the Deploy stage.

On top of an implicit and scattered REST interface design
process, the described procedure is prone to errors. As il-
lustrated in Table 2, Spring’s annotations establish resource
mappings through arguments of type String, representing
the resources’ absolute locations. As a result, path elements
closer to the root are replicated as Strings in annotation pa-
rameters of lower level resources mappings. Additionally,

FIDDLR: Streamlining Reuse with Concern-Specific Modelling Languages SLE ’21, October 17–18, 2021, Chicago, IL, USA

-Import legacy code into IDE
-Update build-sys. config

-Replace launcher class
-Add REST boilerplate code

Prepare
-Place annotation-strings for:
 Resource hierarchy & types,

CRUD-mappings, Parameter-
mappings, Payload-encodings

Expose

-Build project
-Deploy

Deploy

Modified
Bookstore

Code

RESTful
Bookstore

Code
Bookstore

Service
Legacy

Bookstore
Code

Figure 3. Manual Steps Required for Adding a REST Interface to Existing Code

Table 2. Annotations Added to Bookstore

Annotation Amount
Parameter-Mapping 17
Resource CRUD Mapping 11
Boilerplate 4

Table 3. Resources String Replications across Annotations

Resource String replications
isbn (isbns subresource) 13
bookstore 12
isbns 8
stocklocation 6
comments 5
commentid 4
stocklocations 4
isbn (stocklocation subresource) 4

parameter mappings may on top refer to resource path ele-
ments and therefore further increase String replication.

Table 3 shows the string replication counters for the man-
ually converted Bookstore. Since these mappings are string-
encoded they are exempt from verification at compile time.
As a result, typographic mismatches will not be detected
unless the service is deployed and tested.

To summarize, even the conversion of simple applications
is subject to a tedious introduction of boilerplate code and re-
quires sophisticated knowledge of the applied technologies.
The refactoring process involves implicit design choices, scat-
tered over the code-base. We argue that existing GPMLs can-
not accurately capture the essence of above design choices,
i.e., the selection of a REST framework, and the design of
a resource layout and mapping of CRUD methods and pa-
rameters on existing functionality. In the next subsection,
we demonstrate how the above challenges can be addressed
with a concern built according to the FIDDLR approach.

5.2 Designing the RESTify Concern
The purpose of the RESTify concern is to maximally stream-
line the process of adding a REST interface to expose appli-
cation functionality. When applied, the concern must guide
the user through essential design choices, hide implementa-
tion details and automate any repetitive development tasks.

Figure 4. Bookstore Resource Layout Designed with the
ResTL Editor. Circled Letters Below a Resource Represent
Enabled CRUD (Get, Put, Post, Delete) Operations.

Designing and implementing the RESTify concern itself, how-
ever, is not straightforward. This is where the guidance of
FIDDLR helps. Fig. 5 illustrates the FIDDLR based design
process of the RESTify concern. As before, components and
transformations provided by the concern designer are red,
artefacts created by the concern user are blue, and speckled
blue/red components depict generated components. In a first
step, the concern designer has to decide on the REST tech-
nologies the concern will support. So far, the implemented
concern only supports Spring, but other REST frameworks
could be integrated in the future.

As we have seen before, the manual conversion required
an implicit definition of REST resources via annotations. A
more direct approach is an explicit design of the desired re-
source layout. However, existing GPMLs are not made for
modelling resource trees, hence the concern designer should
define a CSML for this specific purpose (step 2). We there-
fore elaborated the Resource Tree Language (ResTL), a CSML
designed for the specification of hierarchically arranged re-
sources and basic CRUD operations. Fig. 4 shows a possible
model that a concern user could model using ResTL to define
a resource layout for the Bookstore.

SLE ’21, October 17–18, 2021, Chicago, IL, USA Maximilian Schiedermeier, Jörg Kienzle, and Bettina Kemme

Spring
Framework

Annotated
Bookstore

Code

Bookstore RESTify Concern

Bookstore
Design Models

CD

Bookstore
Code

Java+Mvn

Spring
Launcher

Design Models

CD

Resource Tree
Language

Generated
REST-Annotated
Design Models

CD+SD
Generated

Composition
Specification

Restified Bookstore

Composed
Design Models

CD+SD

Glue Code /
Launcher Code

Java+Mvn

Bookstore
REST Tree

ResTL

= Specified by the Concern User

= Specified by the Concern Designer
= Automated Model Generation
= Weaving / Composition

= Consistency Constraints
 and Dependencies
= User-Defined Mappings

= Refinement

Spring
Launcher Code

Spring
Framework

Java

Figure 5. FIDDLR applied to the RESTify Concern

Note that the concern designer does not need to define a
language for establishing the mappings between the ResTL
model and the rest of the Bookstore application. CORE al-
ready provides a generic artefact for 1:1 model element map-
pings, which allows the concern user to map CRUD opera-
tions to elements of the base application, i.e., the methods
that the Bookstore offers. The Bookstore ResTL model and
the mapping (illustrated as a blue arrow in the figure) are
the only artefacts the concern user needs to provide, once a
REST technology is selected. We provide an example of how
to create the ResTL model and mappings in section 5.3.

One goal of FIDDLR is a maximized reuse of existing MDE
and CORE concepts. The concern designer therefore has
to decide at which levels of abstraction the REST concern
is best integrated with the GPML models and code of the
base application. For RESTify we decided to perform the
integration at the design level only, e.g., using class diagrams
and sequence diagrams, and rely on standard MDE code
generation to produce the running application.

First, the concern designer creates design models (step 1)
that invoke the REST launcher code required by Spring. Fig. 5
shows these models as Spring Launcher Design Models.

The next step is to provide a model transformation (step 3)
that transforms the CSML model into GPML design mod-
els, i.e., that converts the mapped ResTL models into class
diagrams and sequence diagrams that include the required
annotations and trigger the Spring launcher behaviour dur-
ing startup of the application. This transformation is depicted
in Fig. 5 as a red horizontal double-lined arrow.
Furthermore, in order to integrate the generated mod-

els with the functionality of the original application using
CORE technology, the concern designer must provide a sec-
ond transformation that, given the mappings, produces a
composition specification (step 4). This composition specifica-
tion, when given to the CORE weaver, composes the GPMLs
of the base application with the generated GPML models

RESTify

Spring Boot JAX-RS

Apache CXFEclipse Jersey JBoss
RESTEasy

Figure 6. Variation Interface of the RESTify Concern

containing the REST-specific information. This second trans-
formation is also shown as a red double-lined arrow in Fig. 5.
No further work is necessary. Notably, it is not required

to implement an adapted weaver or code generator, as the
standard COREweaver is used to compose the designmodels,
and the standard MDE code generator is used to generate
the executable. In our case, this tooling is provided by the
CORE reference implementation, TouchCORE [22].
In summary, from the perspective of a concern designer,

FIDDLR requires only the definition of the ResTL CSML, the
design models for launching Spring, and the twomodel trans-
formations generating the GPMLmodels and the composition
specification. The technologies that are reused are the map-
pings and the weaver provided by CORE, the code generator
provided by MDE, and the Spring framework itself.

5.3 Applying the RESTify Concern
This subsection illustrates how easy it is for a concern user
to add a REST interface to an application following FIDDLR’s
structured reuse process. By means of the Bookstore example
we showcase how RESTify maximally focuses the concern
user on REST-specific decision making and efficiently auto-
mates all technology-specific integration tasks.
From a concern user point of view RESTify is perceived

as a sequence of three graphical model editors. Each editor
allows explicit, but assisted decision making for an essential
design question.

FIDDLR: Streamlining Reuse with Concern-Specific Modelling Languages SLE ’21, October 17–18, 2021, Chicago, IL, USA

Equivalent to the manual approach, the process starts with
selecting the desired REST technology. Where in the classic
conversion a developer needs expert knowledge on viable
alternatives and actions needed for their integration, RES-
Tify offers this choice with a CORE-based variation interface
(VI) that captures the technologies considered by the con-
cern designer as shown in Fig. 6. The VI can also contain
information on the impact of user made choices on result-
ing software qualities of the outcome, such as performance,
security, etc. This information stems from an optional goal
model provided by the concern developer.

Once the desired technology selected, the user is brought
to the ResTL model editor. The concern user then models a
possible resource layout as previously shown in Fig. 4, as-
sisted by the editor that enforces a coherent layout. Thanks
to the ResTL CSML provided by the concern designer, the
concern user is maximally focused on this REST-specific de-
sign task. In case of RESTify the spotlight is on a definition
and organization of resources and exposing of CRUD opera-
tions. Detailed REST interface information, e.g., input- and
return parameters, is purposely omitted at this stage.

This illustrates one of the key differences between a stan-
dard DSML and a CSML. While a REST-DSL would have to
specify detailed parameter information, the ResTL language
does not. It integrates perfectly into the concern reuse work-
flow. The parameter names and types are specified at the
right level of abstraction in the application models, in our
case in the design models of the Bookstore.
To connect the newly created resource layout with the

Bookstore application logic, the concern user must now es-
tablish mappings between the CRUD operations of the re-
source tree and the methods of the Bookstore application.
State of the art CORE implementations allow an automatic
signature extraction from existing artefacts, e.g. JAR files.
Depending on target signatures the user may also have to de-
fine additional mappings for method parameters. Note that
these mappings are generic and CORE-provided. That is to
say no extra CSML is required to instantiate these mappings.

The mappings are defined in a third editor that uses a split
view: one side of the screen displays the class diagram show-
ing the Bookstore’s classes and methods and the other side
the ResTLmodel of the Bookstore’s resource layout. The con-
cern user then proceeds to establish links between individual
CRUD operations and existing Bookstore methods. If needed,
the user also provides mappings between signature parame-
ters and intermediate dynamic resources. These represent
dynamic path fragments (denoted as a placeholder enclosed
by curly brackets). Afterwards, remaining un-mapped pa-
rameters are assumed to be either HTTP query parameters
or encoded as body payloads. Fig. 7 depicts this split view
and illustrates user-defined mappings between ResTL and
legacy application Design Models.
This is all the concern user needs to do to add a REST

interface to the Bookstore. From there, as described in the

previous subsection, RESTify is able to internally perform
model transformations, model weaving and code generation.
The latter also produces a build system configuration that
ensures automatic integration of Spring at compile time.

5.4 Qualitative and Quantitative Comparison
With RESTify, adding a REST interface to an application is
done in three steps – selecting a technology, designing the
resource layout, and establishing themappings to the applica-
tion. Each step is as simple as possible, performed at the right
level of abstraction supported by the right modelling nota-
tions. No expert REST knowledge is required by the concern
user. Likewise there is no need to deal with any technical
details, e.g., framework-specific boilerplate code, annotation
syntax or intricate configuration file modifications. In the
manual approach, the developer spent a significant fraction
of the overall efforts on preliminary tasks and implicit deci-
sion making, whereas with RESTify the process is guided and
straightforward with explicit decision making and minimal
overhead as illustrated in Fig. 8.

Another advantage of RESTify is the elimination of unnec-
essary redundancy. Where the manual Bookstore conversion
showcased severe replication of resource strings, scattered
over annotations in multiple files (see Table 2), the RESTify
models define every resource name exactly once, hence elim-
inating a source of potential errors.

Finally, RESTify also facilitates evolution, as changes can
be made efficiently at the right level of abstraction. This
is an indirect consequence of FIDDLR’s strict separation of
concerns, which enforces the concern user to diligently deal
with one task at a time using the right modelling notation.
For example, restructuring the REST interface’s URL tree
can be done easily by rearranging the resource tree layout in
the ResTL editor. But even more complex evolution scenarios
are considerably simplified. For example, switching from the
Spring-Boot based implementation to a JAX-RS based imple-
mentation such as Jersey would be as simple as selecting a
different feature from the variation interface of the RESTify
concern. A manual migration from one technology to the
other would constitute a considerable effort, because here the
annotation syntax differs between REST frameworks. List-
ing 2 shows the JAX-RS semantical equivalent of Listing 1
(Spring-Boot syntax).

Listing 2. JAX-RS Annotated Bookstore Method. Accessible
by HTTP GET Request at e.g.
"/bookstore/stocklocations/minastirith."

@Path("stocklocations")
public c l a s s Globa l S t o ck Imp l {

[. . .]
@GET
@Path("{stocklocation}")
@Produces("application/json")

SLE ’21, October 17–18, 2021, Chicago, IL, USA Maximilian Schiedermeier, Jörg Kienzle, and Bettina Kemme

Figure 7. TouchCORE Screenshot showing Split View in Action. Mappings can be highlighted selectively to improve visibility.

-Generate Code
-Build Project

-Deploy

Deploy

Legacy
Bookstore

Bookstore
Model

Bookstore
Service

RESTful
Bookstore

Model

-Select REST
Technology

Prepare

-Design Resource
Tree & CRUDs

-Map CRUDs
-Map params

Expose

Figure 8. Application of the RESTify Concern. Preliminary Tasks are Reduced to a Minimum. Decision-Making is Explicit.

Table 4. Atomic Actions to Convert Bookstore with RESTify

Element Occurrences in Bookstore Actions
Technology select 1 1
Resources 8 24
CRUD Operations 12 12
CRUD Mappings 12 12
Parameter Mappings 13 13

public Response g e t E n t i r e S t o r e S t o c k (
↩→ @PathParam("stocklocation") S t r i n g c i t y) {

return Response
. s t a t u s (Response . S t a t u s .OK)
. e n t i t y (s t o c k s P e rC i t y . g e t (c i t y) .

↩→ g e t E n t i r e S t o c k ())
. b u i l d () ; } }

By nature it is hard to define a metric for comparing a
modeling approach to a code-based approach. To provide a
quantitative comparison with the manual approach, we ap-
plied an action based metric to compare the efforts required.

The atomic modeling actions that need to be performed in
RESTify are as follows: The desired technology has to be se-
lected with a single click. Creation of the tree model requires
three interactions for each modeled resource: one create in-
struction, one interaction to specify the resource type, and
a third interaction to enter its name. Exposure of a CRUD
operation is achieved with a single click. Finally, every re-
source or parameter mapping requires an additional action.
For the Bookstore we end up with a total of 62 modelling
actions as shown in Table 4. This represents a reduced ef-
fort when compared with the over 100 lines of source code
that have to be written, modified or removed in the manual
approach as shown in Table 1. We believe the comparison
and conclusion drawn is fair. There are more textual code
changes required than graphical interactions, and textual
modifications constitute a greater effort than atomic clicks.

5.5 Lessons Learned
In regard to the research questions initially stated in 5, the
RESTify case study validated the feasibility of concern im-
plementation with integrated CSML, following the FIDDLR

FIDDLR: Streamlining Reuse with Concern-Specific Modelling Languages SLE ’21, October 17–18, 2021, Chicago, IL, USA

framework. Among the required steps, the model transfor-
mation to convert CSML-application mappings to GPML-
application mappings required the most effort. The reusable
toolchain provided by CORE (model weaver and code gener-
ator) worked as expected.

Furthermore, the case study validated the purposefulness
of the RESTify concern. While direct modelling of annota-
tions would have been feasible, it would have been highly
inconvenient for the concern user. In contrast, the integration
of ResTL allowed for a focused development of a meaningful
resource layout, abstracting away obfuscating implementa-
tion details.
The case study did not provide insight on the question

whether a concern implementation based on FIDDLR actu-
ally accelerated concern development. While we strongly
believe that the clear task order and reusable toolchain has
a positive impact on concern development, we did not have
the resources to also develop an alternative implementation
of RESTify without FIDDLR in parallel and compare the re-
quired efforts.

6 Related Work and Limitations
This section discusses relevant related work in two subsec-
tions. In the first one we present related software engineer-
ing and model-driven engineering frameworks and other
domain-specific modelling approaches that reduce complex-
ity. The second subsection then elaborates on related mod-
elling approaches for REST interfaces. In a third sub-section
we finally point out limitations of FIDDLR.

6.1 Modelling Frameworks
FIDDLR is a framework for integrating MDE, DSMLs, Separa-
tion of Concerns and Reuse both conceptually and technically.
FIDDLR is built on CORE [1], where the main unit of mod-
ularization and reuse is the concern. To integrate concerns
with each other, standard and aspect-oriented composition
techniques are used.
As such, FIDDLR is a realization of the multidimensional

separation of concerns approach proposed by Tarr et al. in [29]
applied to models and code. FIDDLR also aligns with theMod-
elSoC approach proposed by Johannes et al. in [16]. Com-
pared to ModelSoC, FIDDLR also supports software product
lines by allowing concerns internally to be modularized ac-
cording to features, and it allows concerns to be packaged
with a CSML. Furthermore, FIDDLR does not rely on a central
concern management system as does ModelSoC.

One of the main goals of FIDDLR is to allow existing tool-
ing infrastructure to be reused by the concern designer (as
illustrated in Fig. 2 and demonstrated by the RESTify case
study). In particular, the CORE tooling is reused to com-
bine the generated GPML models with the application mod-
els. Other weavers could be used as well, e.g., the generic

composer GeKo [20], or potentially even other composition-
based approaches, e.g., facet-oriented modelling [23]. Stan-
dard MDE tooling is reused as well, e.g., the Acceleo code
generator [9] or the Epsilon family of languages [19] for
writing the model transformation from the CSML to the
GPML models. Furthermore, since CORE has no special re-
quirements on the languages that are being composed, any
DSML tooling and SLE workbenches can be reused to define
a CSML for a concern, provided that the generated language
is metamodel-based. For example, Degeule et al. provide a
set of reusable engine related tools, i.e., a language called
Melange, for reusing languages, their metamodels [3] and
associated transformations. We believe that their techniques
can be used by a concern designer to facilitate the creation
of CSMLs and the transformations towards GPMLs.
Other modelling frameworks and tools have been pro-

posed in the past that make it easy to reuse DSMLs and
integrate them with each other or with GPMLs.

[30] is a language workbench that facilitates the creation
and reuse of DSMLs. It also defines an approach for inte-
grating different DSMLs with each other, e.g., by defining
relationships and constraints between concepts from differ-
ent languages.

In [13], Hardebolle et al. describe ModHel’X, a component-
oriented approach for the design and integration of mod-
elling languages to build a multi-formalism modelling en-
vironment. The approach focuses on the simulation of be-
havioural models of a system. SoC is achieved by choos-
ing modelling languages that align with the concern bound-
aries. Although they do not explicitly focus on reuse, their
component-oriented approach suggests language modules
as potential unit of reuse.
In a similar spirit, Bousse et al. describe Gemoc, a work-

bench intended to ease the development of DSMLs and the
required tooling infrastructure (execution/simulation, debug-
ging, trace management) [2].
Our approach differs from ModHel’X and Gemoc, as they

focus on coordination of models, while FIDDLR is based on
composition and generation. Furthermore, we not only offer
SoC and reuse through DSMLs, but also enable SoC and reuse
within and across models expressed in the same language.

6.2 Modelling REST
There exist already several DSMLs that allow the specifi-
cation of REST interfaces. TheWeb Application Description
Language (WADL)3 was designed to describe HTTP resource
behaviour in a machine readable manner. It has been shown
that WADL can be used to express the contractual interfaces
of REST service implementations [7]. However, since WADL
does not require the use of the base concepts of the REST

3WADL is not to be confused with the Web Service Description Language
(WSDL), designed for Simple Object Access Protocol and Remote Procedure
Call specifications.

SLE ’21, October 17–18, 2021, Chicago, IL, USA Maximilian Schiedermeier, Jörg Kienzle, and Bettina Kemme

style, it does by itself not assist or guarantee REST compliant
interface design [27].
TheWeb Resource Modeling Language (WRML) [25] pro-

posed byMasse in [24] is a REST-specific modelling approach
based around resources. In contrast to WADL it therefore
partially enforces the REST style. To the best of our knowl-
edge, WRML is also the only other REST DSML proposal
that considers a graphical editor that implicitly organizes
resources into a tree structure. In contrast to WRML, the
ResTL language purposely does not allow the description of
a complete REST interface specification.
The RESTful API Modeling Language (RAML) is a textual

modeling language that adheres closely to the REST princi-
ples [26]. Interface specifications provided in RAML can be
converted into OAS/Swagger specifications, and from there
into a variety of server and client sided stub implementa-
tions. A fundamental difference to the ResTL provided by
our RESTify concern is that the inherent tree structure of
a REST interface is not prominent in RAML specifications.
Furthermore, with OAS/Swagger-based code generation it is
not possible to generate fully working services.
In summary, there are already several DSMLs that allow

the specification of REST interfaces. However, these lan-
guages target an accurate description of finalized interfaces,
followed potentially by the generation of code skeleton im-
plementations. The CSML we defined for RESTify was de-
signed to facilitate the process of adding a REST interface to
an already existing application structure and logic.

6.3 Limitations
FIDDLR streamlines reuse for the concern user by reducing
the work required to the essential steps (see Fig. 8):

1. Choose a concern variant from the concern’s VI
2. Model the concern-specific properties of the applica-

tion using the CSML
3. Specify mappings that connect the concern-specific

properties with the application-specific models
As a result, the concern user is shielded from solution-specific
design choices and technical intricacies. Furthermore, the
complex transformation pipeline that FIDDLR is based on –
CSML to GPML model generation, weaving, and code gener-
ation (see Fig. 2) – is also hidden from the concern user.

This fundamental operating mode of FIDDLR is inherently
linked to a general limitation – low traceability between
what a concern user models and the generated code. This
hinders debugging seriously and can make it very difficult
for the concern user to apply corrective actions at the CSML
level in situations where the generated outcome does not
produce the expected behaviour. While traceability and de-
bugging is a well-known issue with generative approaches
as well as with compositional approaches, the problem is

even more pronounced in FIDDLR because it uses generation
and composition technologies.
A further limitation of our implementation of FIDDLR is

that it was built on top of the CORE tooling infrastructure
and therefore inherits all its technical limitations, i.e., CSMLs
have to be EMF-based, and code generation targets Java and
Maven only.

7 Contribution and Future Work
In this article we presented FIDDLR, a framework to stream-
line reuse and promote separation of concerns that integrates
MDE, DSMLs and CORE. FIDDLR augments the unit of reuse
of CORE, the concern, with the possibility of including a mod-
elling language that is specifically designed to express the
concern’s properties and integration in the most appropriate
way. In other words, the concern designer can now define
a Concern-Specific Modelling Language to maximally focus
the concern user on the relevant concepts of the concern
and facilitate the concern’s customization and usage. Just
like DSMLs, doing this can significantly reduce accidental
complexity as well as integration complexity, in particular
for concerns that are not easily expressed with a GPML or
that crosscut several abstraction levels or phases of software
development.

To validate our proposed framework, we developed an ex-
ample concern called RESTify that streamlines a state-of-the-
art development activity: exposing application functionality
as RESTful services. We discussed how thanks to FIDDLR,
the concern designer implementing RESTify can reuse the
existing MDE, DSML and AOM technology at various levels
in the development process. We showed how RESTify greatly
facilitates the task of exposing application functionality as
RESTful services for the concern user, compared to a manual
refactoring activity. We concluded that this provides convinc-
ing evidence that FIDDLR bares great potential and merits
further investigation.

In a near future, we plan to run an empirical user study to
determine the practical benefits of RESTify: we are planning
to ask inexperienced developers to expose the functionality
of some sample applications with REST, either manually,
or using the RESTify concern. By comparison with a con-
trol group we hope to demonstrate a significant speedup in
development time and gain in software quality.

Furthermore, we are planning to evaluate FIDDLR further
by building another reusable concern, this time one that
clearly crosscuts multiple views and levels of abstraction of
the system under development. Specifically we are going to
modularize, encapsulate and package in a concern everything
needed for an application to define and execute workflows.
We envision that a DSML such as, for example Use-Case
Maps, is needed to make it easy for the concern user to define
workflows and link the activities of the workflow with the
functional models of the system.

FIDDLR: Streamlining Reuse with Concern-Specific Modelling Languages SLE ’21, October 17–18, 2021, Chicago, IL, USA

References
[1] Omar Alam, Jörg Kienzle, and Gunter Mussbacher. 2013. Concern-

Oriented Software Design. In Proceedings of the 16th International Con-
ference on Model-Driven Engineering Languages and Systems - MODELS
2013 (Lecture Notes in Computer Science), Vol. 8107. Springer, Berlin,
Heidelberg, 604–621.

[2] Erwan Bousse, Thomas Degueule, Didier Vojtisek, Tanja Mayerhofer,
Julien Deantoni, and Benoit Combemale. 2016. Execution framework
of the GEMOC studio (tool demo). In Proceedings of the 2016 ACM
SIGPLAN International Conference on Software Language Engineering.
ACM, New York, NY, USA, 84–89.

[3] Thomas Degueule, Benoit Combemale, Arnaud Blouin, Olivier Barais,
and Jean-Marc Jézéquel. 2015. Melange: A Meta-Language for Modular
and Reusable Development of DSLs. In Proceedings of the 2015 ACM
SIGPLAN International Conference on Software Language Engineering
(SLE 2015). Association for Computing Machinery, New York, NY, USA,
25–36. https://doi.org/10.1145/2814251.2814252

[4] Edsger Wybe Dijkstra. 1976. A discipline of programming. Vol. 1.
Prentice-Hall, Hoboken, NJ.

[5] Roy T Fielding. 2000. Architectural styles and the design of network-
based software architectures. Vol. 7. University of California, Irvine.

[6] Roy T Fielding, Richard N Taylor, Justin R Erenkrantz, Michael M
Gorlick, Jim Whitehead, Rohit Khare, and Peyman Oreizy. 2017. Re-
flections on the REST architectural style and principled design of the
modern web architecture (impact paper award). In Proceedings of the
2017 11th Joint Meeting on Foundations of Software Engineering. ACM,
New York, NY, USA, 4–14.

[7] Marios Fokaefs and Eleni Stroulia. 2015. Using WADL specifications
to develop and maintain REST client applications. In 2015 IEEE In-
ternational Conference on Web Services. IEEE, Piscataway, NJ, USA,
81–88.

[8] Apache Software Foundation. 2021. Apache CXF Documentation.
http://cxf.apache.org/docs/jax-rs.html.

[9] Eclipse Foundation. 2019. Acceleo. https://www.eclipse.org/acceleo/.
[10] Eclipse Foundation. 2021. Eclipse Jersey User Guide. https://eclipse-

ee4j.github.io/jersey/.
[11] Eclipse Foundation. 2021. Jakarta RESTful WebServices Online 3.0

Specification. https://jakarta.ee/specifications/restful-ws/3.0/jakarta-
restful-ws-spec-3.0.html.

[12] Jeff Gray, Juha-Pekka Tolvanen, Steven Kelly, Aniruddha Gokhale,
Sandeep Neema, and Jonathan Sprinkle. 2007. Domain-Specific Mod-
eling. In Handbook of Dynamic System Modeling. CRC Press, Boca
Raton.

[13] Cécile Hardebolle and Frédéric Boulanger. 2007. Modhel’x: A
component-oriented approach to multi-formalism modeling. In In-
ternational Conference on Model Driven Engineering Languages and
Systems. Springer, Berlin, Heidelberg, 247–258.

[14] M. Jamshidi. 2008. System of systems engineering? New challenges for
the 21st century. Wiley, Hoboken, NJ. 616 pages.

[15] Red Hat / JBoss. 2021. JBoss RESTEasy JAX-RS Community DocBook
and Javadoc Documentation. https://resteasy.github.io/docs/.

[16] Jendrik Johannes and Uwe Aßmann. 2010. Concern-based (de) com-
position of model-driven software development processes. In Interna-
tional Conference on Model Driven Engineering Languages and Systems.

Springer, Berlin, Heidelberg, 47–62.
[17] Stuart Kent. 2002. Model Driven Engineering. In International Con-

ference on Integrated Formal Methods – IFM. Springer-Verlag, London,
UK, 286–298.

[18] Jörg Kienzle, Gunter Mussbacher, Omar Alam, Matthias Schöttle,
Nicolas Belloir, Philippe Collet, Benoit Combemale, Julien Deantoni,
Jacques Klein, and Bernhard Rumpe. 2016. VCU: the three dimensions
of reuse. In International Conference on Software Reuse. Springer, Berlin,
Heidelberg, 122–137.

[19] Dimitrios S. Kolovos, Richard F. Paige, and Fiona A. C. Polack. 2008.
The Epsilon Transformation Language. In Theory and Practice of Model
Transformations, Antonio Vallecillo, Jeff Gray, and Alfonso Pierantonio
(Eds.). Springer, Berlin, Heidelberg, 46–60.

[20] Max E. Kramer, Jacques Klein, Jim R. H. Steel, Brice Morin, Jörg Kienzle,
Olivier Barais, and Jean-Marc Jézéquel. 2013. Achieving Practical
Genericity in Model Weaving through Extensibility. In Proceedings of
the 6th International Conference on Model Transformation - ICMT 2013
(Lecture Notes in Computer Science), Keith Duddy and Gerti Kappel
(Eds.), Vol. 7909. Springer, Berlin, Heidelberg, 108–124. https://doi.
org/10.1007/978-3-642-38883-5_12

[21] Krueger. 1992. Software Reuse. CSURV: Computing Surveys 24 (1992),
131–183.

[22] SCORE Labs. 2021. TouchCORE User Guide.
http://touchcore.cs.mcgill.ca/. Accessed: 2021-09-24.

[23] Juan De Lara, Esther Guerra, and Jörg Kienzle. 2021. Facet-Oriented
Modelling. ACM Transactions on Software Engingeering and Method-
ology 30, 3, Article 27 (Feb. 2021), 59 pages. https://doi.org/10.1145/
3428076

[24] Mark Masse. 2011. REST API Design Rulebook: Designing Consistent
RESTful Web Service Interfaces. "O’Reilly Media, Inc.", Sebastopol, CA.

[25] Mark Masse. 2021. Web Resource Modeling Language Definition.
https://github.com/wrml/wrml. Accessed: 2021-04-28.

[26] MuleSoft. 2021. RESTful API Modeling Language Defini-
tion. https://github.com/raml-org/raml-spec/blob/master/versions/
raml-10/raml-10.md/. Accessed: 2021-04-28.

[27] Leonard Richardson and Sam Ruby. 2008. RESTful web services.
"O’Reilly Media, Inc.", Sebastopol, CA.

[28] Douglas C. Schmidt. 2006. Model-Driven Engineering. IEEE Computer
39 (2006), 41–47.

[29] Peri Tarr, Harold Ossher, William Harrison, and Stanley M. Sutton,
Jr. 1999. N Degrees of Separation: Multi-Dimensional Separation of
Concerns.. In ICSE’1999. IEEE CS, Piscataway, NJ, USA, 107 – 119.

[30] Markus Voelter. 2011. Language and IDE Modularization and Com-
position with MPS. In International Summer School on Generative and
Transformational Techniques in Software Engineering. Springer, Berlin,
Heidelberg, 383–430.

[31] Jóakim von Kistowski, Simon Eismann, Norbert Schmitt, André Bauer,
Johannes Grohmann, and Samuel Kounev. 2018. Teastore: A micro-
service reference application for benchmarking, modeling and resource
management research. In 2018 IEEE 26th International Symposium on
Modeling, Analysis, and Simulation of Computer and Telecommunication
Systems (MASCOTS). IEEE, Piscataway, NJ, USA, 223–236.

https://doi.org/10.1145/2814251.2814252
https://www.eclipse.org/acceleo/
https://doi.org/10.1007/978-3-642-38883-5_12
https://doi.org/10.1007/978-3-642-38883-5_12
https://doi.org/10.1145/3428076
https://doi.org/10.1145/3428076
https://github.com/wrml/wrml
https://github.com/raml-org/raml-spec/blob/master/versions/raml-10/raml-10.md/
https://github.com/raml-org/raml-spec/blob/master/versions/raml-10/raml-10.md/

	Abstract
	1 Introduction
	2 Building Blocks
	2.1 MDE, Modelling Languages and Processes
	2.2 Domain-Specific Modelling
	2.3 Aspect-Oriented and Concern-Oriented Reuse

	3 Critical Assessment
	3.1 Separation of Concerns
	3.2 Reuse
	3.3 Accidental Complexity

	4 FIDDLR
	4.1 Concern Design
	4.2 Concern Use
	4.3 Concern Composition

	5 Evaluation / Case Study
	5.1 REST and Service Refactoring
	5.2 Designing the RESTify Concern
	5.3 Applying the RESTify Concern
	5.4 Qualitative and Quantitative Comparison
	5.5 Lessons Learned

	6 Related Work and Limitations
	6.1 Modelling Frameworks
	6.2 Modelling REST
	6.3 Limitations

	7 Contribution and Future Work
	References

