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1 Introduction

Specular reflections are exhibited by a wide range of materials whosetaefte can be described as a linear
combination of specular and diffuse components [5]. There are $d@refits to separating an image into
the two components. By isolating the diffuse component (which is often wetiribeed by thd_ambertian
mode), powerful Lambertian-based tools for tracking, reconstruction aedgnition (e.g. shape-from-
shading) can be more widely applied to real-world, non-Lambertian sc8pesular reflectance itself plays
an evident role in human perception. Based on this, several computar algiorithms have been designed
to successfully infer shape solely from specularities [3].

Figure 1: Specularities from a basket of fruit [5]

Recovering a diffuse component and a monochromatic specular confom@na single three-channel
RGB image is an ill-posed problem. In this work, we explore a framework byidkaet al., which uses a
partial differential equation (PDE) approach for separating the two coemuts in images [5].

Their solution proposes to first transform the image into the SUV color spdtdeh conveniently provides

a partial separation of the diffuse and specular components. This ho&d$otr surfaces which are well-
represented by Shafer's dichromatic model (where the spectral dt&iribof the specular component is
similar to that of the light source color, and the diffuse component reliese@mtterial properties of the
surface [5]). The separation will then be completed using spatio-temindoaiation by evolving a PDE

that iteratively erodes the specular component locally at each pixel.

We evaluate this approach using images of textured and untexturedesurie observe that the erosion
process for each of these cases essentially mimics a grassfire flolwdijth different speed terms.

The remainder of this report is organized as follows. Section 2 providekgibound on the reflectance
model, the SUV color space, and upwind derivatives. Section 3 prdgatiiek et al.'s specularity removal



algorithm. Our results along with implementation details are presented in Sectioe 4onMlude with a
discussion about advantages and limitations of the algorithm in Section 5.

2 Background

2.1 Shafer’s Dichromatic Model of Reflectance

Surfaces well-represented by the dichromatic model have a speculaogenipvhose spectral distribution
is similar to that of the light source color (illuminant) while the diffuse componeatvhy relies on the
material properties of the surface.

The bidirectional reflectance distribution function (BRDF) for the dichrienanodel can be expressed
as

f(A,0) =ga(A) 4+ f5(©), 1)
whereA is the wavelength of light® = (6;,@,6,,@ ) parameterizes directions of incoming irradiance and
outgoing radianceayy is thespectral reflectanceand fy and fs are thediffuseandspecularBRDFs, respec-
tively.

An RGB color vector contains three measurements, definée=d$;, 1, I3}T, with
Ik = (Dxfa + Scfs(©))A-1, 2

whereDy = [Ck(A)L(A)gq(A)dA is the effectivealbedoin the k" channel ands, = [Cx(A)L(A)dA is the
effective source strengtras measured by th" sensor channel. Note thaf)) is the spectral power
distribution of the light source, an@y()) is the camera sensitivity functionThe termsh andi denote
the surfacenormal and the light sourcdirection respectively. The illuminant is defined as source vector
S=[S1,$,S|". Itis a unit vector with base at the origin and has an azimuthal and elevatipa [Egure

2].

2.2 SUV Color Space

The SUV color space is an illuminant-dependent color space. It is dedmedotation of the RGB space
where one axis (S) is aligned with the illuminant color and thus contains the ctengplecular component,
while the other two channels (U and V) are purely diffuse. lsgig denote an image in RGB spadeyy
the image in SUV space, amithe rotation matrix with the following properties:

lsuv=Rlres, RS=[100". (3
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Figure 2: (a) RGB to SUV Transformation (b) SUV parameterization ipt® and@. [5]
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Expanding (3) using equation (2), we obtain
Isuv = (RDfq+ RSfs(@))A-1. (4)

If we letr] denote thé'" row of R, we observe that the expressions for the U and V channels are dévoid o
the specular component due to the prop&8/=[1 00" from equation (3):

lu =rsDfgA-1, Iy =riDfygA-1 (5)

The S channel contains the full specular component (plus some diffissenation, hence being a partial
separation): A A
Is=riDfgh-1+ f5(©)-1. (6)

2.3 Upwind Derivatives

Non-linear PDEs are defined at points where partial derivatives eRisting the evolution of a PDE, a
discontinuity known as ahockmay develop. An example occurs in the grassfire flow [12] which is the
evolution of a curveC in the direction of the inner norm#&; = I'N, whose level-set form is given by
W, =T ||0¥|| with speed” = 1. To mitigate this problem, standard derivatives can be replaced byiaer-s
derivatives by implementing what is known aswpwinding schemg.1].

Given speed functiofi, and time step\t, the level sets can be approximated bfjrat-order space con-
vex

W+l — W _ At[max(™,0)0" +min(I",0)0], (7)
where
0" = [max(Wy ,0)2+min(¥ 0>+ max ¥} ,0)% + min(W;,0)2]*/2 (8)
0" = [max(W;,0)2+ min(¥, ,0)2+ max ¥} ,0)% + min(W, ,0)4]*/2, (9)
and
X Ax ’ X Ax
+ +
Wy = Ay , Wy = Ay (10)
are forward and backward spatial derivatives, respectivelg,[(sH, equation(4.7)).
The above extends second-order space convex
0% = [max(A, 0)2 + min(B,0)2 + max(C, 0)? -+ min(D, 0)?]*/? (11)
0~ = [max(B,0)2 + min(A, 0)2 4+ maxD, 0)% 4+ min(C, 0)?]%/2, (12)



where

_ Ax __ _
A=W, + 7m(wxx vwix ) (13)
B= LP)T - A?Xm(wi—x-‘rv qJ)—&_) (14)
_ Ay —— a—
C=Wwy +m(Wy W) (15)
Ay _
D=Wy, — ?m(w;yﬂ W) (16)
17)
and the switch function (which turns itself off when a shock is detectedYfiisatbas
<
x MW
mx,y) =4y X >1yl (18)
0 xy < 0.

3 Algorithm

3.1 Mallick et al.’'s Specularity Removal Algorithm

To complete the separation between specular and diffuse componentiyafdPDEs is derived as follows.
The input image is first transformed to SUV space using equation (3) abB@eerding to [4] we can take
R = [Re(9s)][Re(—6s)], where(gs,Bs) are the elevation and azimuthal angles of the source vé&chor
the RGB coordinate system. Note tl&ais the effective illuminant color, and the same illuminant color is
assumed over the entire image.

The SUV image is then reparametrized using cylindrical and sphericalicabes:
p=1/IG+1Z 8= tanfl(llﬁ), o= tanl(ls), (19)
%

where@ = @y + ¢ is a linear combination of specular and diffuse componentspafdare purely diffuse
(since they depend only on the U and V channels) and contain hue adidgaformation, respectively

[5].

The problem of computing the separatioméduceduo that of estimatingy(x,y) at each image point. Once
known, the RGB diffuse component is recovered by inverting equatit®sand (3) withg replaced with

Q.
The multi-scale erosion @by a structuring seB C R?, at scal@ (wheret is time), is given as
W(x,t) = (f ©tB)(x) £ inf{@(x +AX) : Ax € tB}, (20)

whereB is compacttB = {tb: b € B}, andx = (x,y). According to [5] [1], this multi-scale erosion is
computed by evolving the PDE

W, — lim inf{OWY Ax.AxeAtB})

21
At—0 At (1)



whereOW is the two-dimensional spatial gradiénof W evaluated at timé.

We will take @ as our initial . Basically, when we sé¥(x,0) = @(x), and evolve the PDE to iteratively
erode the specular contribution ¢p the value ofp at each image point is replaced by the minimum value
within a neighborhood established By Sinceqy < ¢, Mallick et al. claim that when the image contains at
least one image point for whiops = 0 (purely diffuse), the process will convergedig ast is sufficiently
large.
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Figure 3: Disk-like Structuring Set

This PDE is considered for different cases. In the case of an ungekturrface with homogeneous diffuse
color, a disk-like structuring set can be used to erode the specular cempequally in all directions (i.e.
diffuse color information can be shared in all directions) [Figure 3]. Ia tlase, [5][1] show that equation
(21) takes the form

Wy = —|[0W]], (22)

which is essentially a grassfire flow described in Section 2.3.

For more complicated scenes having regions of distinct colors or texteraptive may cause “color bleed-
ing” or unwanted blurring of the diffuse texture. Therefore, we neetdke into account an appropriate
structuring set, as well as a stopping functpio attenuate the erosion process and thus prevent “bleed-
ing™:

Wi = —g(p, 0p)(OWTMOW) Y2, (23)

where the matrixM determines the shape of the structuring set for the erosion process.

For textureless surfaces having large regions of distinct uniformsgiftwlor, a disk structuring sé¥l =
I2x2) is used, and the stopping function is defined as

(24)

1—eP\ e (Opl-1)
1+ e—P> 1+ e (B0’

g(p,0p) = (

wheret is a threshold or|Op||, above which erosion is attenuated [5]. Erosion will attenuate Wihépj|
is large, as this indicates a boundary between areas of distinct coloyssachich information should not
be shared [5]. This process is knownlsstropic Erosion

Wy = —g(p, 0p)(OWT 12,20W) Y2 = —g(p, Op)||OW||. (25)

In textured regions, the above would blur the diffuse texture. We wanstead erode anisotropically and
therefore use alinear structuring set aligned with the iso-conto@réndiich is independent of both specular

1Upwind derivatives will be used for this matter in the implementation.



and shading information and thus provides uncorrupted surface cdtomiation). A local predictor is
defined for the direction in whiclpy is constant:

08 — 0e/|/08]| ||08[| >0 (26)
0 |08]| = 0.
The PDE becomes o
W, = —g(p, 0p)(OWT (12,2 — 0806 ) OW) Y2, (27)

Note that when the diffuse color is constant, (i@ﬁ = [0 OT), this equation reduces to isotropic erosion
(25). So this PDE can be used for either textured or non-texturedcestféallick et al. go on to describe
cases for more complicated scenes requiring a 2D ellipse structuring detissmdiscuss the extension
to specularity removal in videos, but for the purpose of the project weliwiit our study to the above
cases.

In the next section, we discuss implementation details and present our.results

4 Experimental Results

4.1 Implementation Details

The above algorithm was implemented using MATLAB 7.6. There were subtietiek/ed in the imple-
mentation, especially in the transformation from RGB to SUV space, as thetafgavas sensitive to the
type of image data.

We have chosen to work with JPEG images downloaded from the internete wbme were taken from
the authors’ paper. We did not have access to the original high-qualityesrthg authors have acquired in
their laboratory under known illuminant color, but to the low-dynamic ranges@vailable on the internet

in JPEG format. In [5], it is suggested thastandard gamma correctioof 2.2 is applied to JPEG images.
Gamma correction is a nonlinear operation used to code and decode lumiaaresin image systems [9].
JPEG images contajamma-encodedalues and not linear intensities. Before carrying out the separation,
a gamma correction of 2.2 was applied to the image using MATLAB®dj ust function. The inverse
correction was then applied when recovering the diffuse RGB compoAetitnes, these corrections may
not recover the original brightness exactly, but they come close. Witheworrection, the resulting diffuse
images resulted in being too dark or at times corrupted.

Because we are processing JPEG images, we needed to make an assabautidhe illuminant color: [5]
suggested assuming the illuminant color is white when it is unknown. We asshesame illuminant color
over the entire image. With this, the transformation matrix was computed usingay(8), and applied to
each pixel of the RGB image. The imagesd andg were computed according to equation (19).

Erosion was applied directly on the level curves of the imagehere all curves simultaneously obey. Up-
wind derivatives (equations (7)-(10)) were used to compute spati@btiges of W, while standard central
differences (see [11], equation (4.7)) were usedfand®.

A first-order upwind scheme was used. With the second-order upwirahsg, resulting images were com-
parably similar, onlyslightly less smooth. Because results were similar, we favored the first-ordemech
in order to avoid the extra computational cost of the second-order scheme
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Because intensity values are located only at each pixel in images, a sfgiialze of 1 was chosen in both
the x andy directions. The stopping function in equation (24) is expressed in terrpsaofl relies on a
parameter which controls the erosion. We found that settingp half the maximum value taken on by

p, with a time step between 0.1 and 0.5 effectively reduced specularities amenped color bleeding

in our results. If the threshold is decreased to allow less erosion, the time step should be increased
accordingly, and if it is increased to allow more erosion, then the time stepdshewecreased to avoid
instabilities.

We have chosen to visualize the behavior of one level curve at a heighténsity) of 0.8 or 0.9. This was
visualized by slicing the family of curves at a particular height using MATIsA®nt our function, and
overlaying the isocurve on thpeol or plot of the family of images. Using a crossing detector such as MAT-
LAB’s edge function with the’ zer ocr oss’ option is another alternative in visualizing an isocurve.

The resulting RGB diffuse component was recovered by inverting eaqisaf®) and (19) withp replaced
with ¢y. The specular component was displayed by visualiging

4.2 Results
4.2.1 Isotropic Erosion

Isotropic erosion is applied to an 8-bit JPEG version of Mallick et al.'s imdgefauit basket, for which
gamma is assumed to be 2.2. Because the illuminant color is unknown, it is assuinedvhite [5].
Although these conditions introduce noise, the algorithm successfullyeescthe diffuse and specular
components as seen in Figures 4 to 6.
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Figure 4. (a)-(c) Original RGB image along with its S, U, and V channel countéspéfter
reparameterization, (d)-(e) represent the purely diffusnd6, while @ contains the specular information.

In the following series of images in Figure 5, we observe the level curf/éiseosuccessively erodegl
images. The first row displays the entire family of images, behaving simultalyeotise second row
displays one level curve’s behavior at intensity 0.9. We can obserteinkeng and eventually vanishing
about the specularities, as expected.
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Figure 5: Level curves of the successwely erodgiiages at epochs 0, 20, 40, 60, 80, 180=0.1.

The resulting complete separation after recovering the RGB image - theeddhds specular components
are successfully separated:

‘Specular Component

Diffuse Component

Original Image
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(a) Original Image [5] (b) Diffuse Component (c) Specular Component
Figure 6: Resulting Separation - Isotropic Erosion
4.2.2 Anisotropic Erosion

We apply anisotropic erosion to the image of a textured pear. If we insteddcirsotropically, the texture
would become blurred or corrupted.

iginal Inse
|
|
ol
|
10 3
o,

120 TR
10 " P
200 o e
1) S
£ :
|

T EJ & )

I RS B

d)p (e)8 URY
Figure 7: Parameterization of Pear RGB.



In Figure 8, we observe the level curves of the successively erpuhedges of the textured pear. Again, the
first row displays the entire family of images behaving simultaneously while ttengerow displays one
level curve’s behavior at intensity 0.8. We observe shrinking abowgpbeularities.

Figure 8: Level curves of the successively erodgitnages at epochs 0, 50, 75, 100, 150, 280+ 0.1.

Despite the presence of noise due to JPEG artifacts, the algorithm manageésde the specularity. In the
following separation, notice that the pear’s diffuse texture is presehredghout, while the specularity is
picked up:
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(a) Original Image [5] (b) Diffuse Component (c) Specular Component
Figure 9: Resulting Separation - Anisotropic Erosion

Additional Results
Anisotropic erosion (which handles both textured and untextured s)adth illuminant white and gamma
2.2 was applied to the following JPEG images [8][10].

Original Image Diffuse Component

50 100 150 200 250

(a) Original Image [8] (b) Difftuse Component (c) Specular Component
Figure 10: Recovery of diffuse and specular components in image of flowers.
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(a) Original Image [10] (b) Diffuse Component (c) Specular Compbnen
Figure 11. Recovery of diffuse and specular components in image of leaves.

4.2.3 Encountered Algorithm Limitations

At times, the algorithm had difficulty in separating the two reflectance comparEmitsmay be due to the
fact that the specular and diffuse components are not distinct, espegfaly the illuminant is assumed
to be white and a white background is present in the image. ThereforerShditdromatic model of

reflectance does not hold. We notice that the authors have chosen tfoefualgorithm on images with
black backgrounds (See Figures 3-6 in [5]), and this may be due exadtiis issue. In the image below,
we suspect the algorithm will attempt to erode some of the white backgroanddathe pepper.

Original Image Diffuse Companent

Specular Component

El 0 100 120

(a) Original Image [7] (b) Diffuse Component (c) Specular Component
Figure 12. Resulting Separation

We decided to replace the white background with a black background touekypothesis. The algorithm

succeeds in separating the diffuse and specular components with a atkgcdund as opposed to a white
one.

Original Image

C] 100 120 80 100 120

(a) Original Image (b) Diffuse Component (c) Specular Component
Figure 13: Resulting Separation

Videos for the above results as well as additional results can be viewed at
http://ww. cs.ncgill. cal ~mscacc/ Conp766/ vi deos. ht m
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5 Discussion and Conclusion

Mallick et al. have presented a specularity removal technique requiringarual intervention, no seg-
mentation of the image, or polarization filters to reduce reflections. Theirigdgocan be successfully
applied to a variety of images, including textured and untextured surfacklses led to some practical re-
sults. In [5], the approach is shown to have application in dichromatic edvtingre different object surface
appearances could be simulated by editing and recombining the two refleatimmonents [5].

We have successfully implemented the approach and demonstrated itveffess on a variety of fruit and
plant images, both textured and untextured. The successful recolvdiffuse and specular components
for both isotropic and anisotropic erosion was observed. In the mpeashave also encountered a few
limitations of the approach. Because the approach relies purely on ldcalaswd shading information,
it is limited to dichromatic surfaces where the diffuse and specular componentiséinct [5]. Also, it
requires that the illuminant color is known or approximated beforehands My potentially result in
suboptimal separations. For instance, if the illuminant color is unknown gasdmed to be white), the
approach may suffer when applied to images with specularities and a whikgrband. There may be
difficulty distinguishing the white of the specularity from that of the surrongdliffuse background. In
this case, it may be necessary to segment the image in order to restrichefasther possibility is to take
into consideration additional cues such as polarization [4] or local gbdpastead of only color to further
guide the erosion correctly.

To further improve the approach, it may be helpful to approximate the illumimaen it is unknown, instead
of assuming it is white. For instance, by implementing a method proposed by $onlay al. [2] which

relies on the fact that the “chromacity of most illuminants lie along a known cimreliromacity space”
[2] [4]. With this, the illuminant color is recovered using the image of a singladgeneous dichromatic
surface.

The approach currently recovers a monochromatic specular compademquire as to whether it would
work with a scene that is lit using multiple light sources of possibly differeown colors. It would be
interesting to test this in a laboratory with a real scene. The authors deaterstratural extension of their
approach to videos. Again, it appears that the illuminant is known a pmorisassumed to be constant
throughout. It would be interesting to observe what would happen if theesariere subsequently lit with
different light sources of different colors in a video.

The paper [5] offers little discussion regarding numerical techniqued. uBhere is a brief mention about
the use of morphological derivatives, for which we have used an upatheme to successfully handle
the issue of shocks. There is no discussion about the ideal setting®éwrethreshold (for the stopping
function) versus temporal step size, and how it affects the accura@solts. The authors mention that
erosion should be attenuated whgpi| is large, but do not clarify the notion of “large”. Through trial and
error, we found the algorithm effectively eroded specularities with sreglsize {t =~ 0.1—0.5) and larger
erosion thresholdt(~ (maxp)/2). Because the color-space transformation and erosion is appliedito eac
pixel, we found the approach computationally expensive for large imddgsmay not render it suitable for
real-time application. The approach is however practical in applicationsawinee is not an issue.

It is interesting how any erosion process can be treated as a curvéi@vgitocess, and we reflect on the
equivalence between the two. We also reflect on the similarities betweeareans! anisotropic diffusion.
Anisotropic diffusion can be considered as a specularity removal filtgogingess. It homogenizes the
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texture inside edges [6], so the colors are diffused and shiny areasraoved. Unlike anisotropic erosion,
it does not require any a priori information about the illuminant. Howevaraiy not be suitable for textured
surfaces, as it may blur the texture inside regions which is otherwiserpeeldsy anisotropic erosion.

In all, Mallick et al. have presented a clever technique for specularity vaimo images requiring no
manual intervention. Through our experimental results, the approagbkgto be robust under the presence
of noise. We did not know the true illuminant color and had access only td?E& Jersions of the images.
Nonetheless, our results were comparable to those from the paperdditiersal results also demonstrated
successful separation of the two reflectance components. In the,fiitureuld be interesting to try the
approach on a real scene by acquiring an image using a high-qualityaeenermeasuring the illuminant
using a spectrometer.
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