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Abstract

In a game, an item of information is considered common kndgéeif all players know it, and all
players know that they know it, and all players know that tkiegw that they know itad infinitum We
investigate how the information structure of a game cancaffguilibrium and explore how common
knowledge can be approximated by Monderer and Samet’smoticommon belief in the case it cannot
be attained.

1 Introduction

A propositionA is said to becommon knowledgamong a group of players if all players kndw and all
players know that all players kno# and all players know that all players know that all players kfgw
and so orad infinitum The definition itself raises questions as to whether common knowledge ighactua
attainable in real-world situations. Is it possible to apply this infinite recursion?

There are situations in which common knowledge seems to be readily attain@idenappens in the case
where all players share the same state space under the assumption tagieadl jpehaveationally. We will
see an example of this in section 3 where we present the Centipede game.

A public announcement to a group of players also makes an avemrnmon knowledge among them [12].
In this case, the players ordinarily perceive the announcemehtsifA is implied simultaneously is each
others’ presence. Thusbecomes common knowledge among the group of players.

We observe this in the celebrated Muddy Foreheads game, a varianeranple originally presented by
Littlewood (1953). In this game afplayers, each player is to determine whether he has mud on his forehead
whilst being able to observe the state of thel other players, and not his own. If a sage announces to the
players that at least one of them has a muddy forehead, then this infanrbattomes common knowledge.
Everyone knows that at least one player has a muddy foreheadyarybee knows that everyone knows
that at least one player has a muddy forehead, and so on. If, apedoH, the sage questions the players as
to whether they have mud on their foreheads, and under the assumptidaythies@are rational and truthful,

it can be proven by induction thatkfplayers have muddy foreheads, then bykfgeriod, allk will confess

to having mud on their foreheads. In section 3, we revisit this game in gréetit and observe how the
presence and absence of common knowledge can drastically affddiragm in this game. We investigate
how crucial the assumption of common knowledge is and how certain theotiagse in the event common
knowledge is absent [7].



The above view of common knowledge may be applicable only in limited contextke loase that knowl-
edge is derived from sources that are not completely reliable (as inngeadd receiving information
through a medium which is not perfectly reliable), then common knowledgeotde achieved [8].

Consider the case of processors in a distributed system that must jointiytexecomplex computer pro-

tocol [3]. The processors are to coordinate themselves by means of aooating to each other what they
know. It has been established that a necessary condition for thesporsdo be able to perfectly synchro-
nize themselves is that of common knowledge. But given that messageanserdceived between them
have the possibility of failing, then common knowledge seems to be an ex@lgssinong requirement that

may rarely be achieved in practice.
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Figure 1: The Coordinated Attack Problem

Consider a version of Gray’s original coordinated attack problem wb#&hserve as an analogy to the
communicating processors. The game is as follows: Suppose there ardlibdloaamies situated on
opposite hilltops wishing to attack their foe, residing in the valley (Figure 1)e State of the enemy
Prepared Unprepared is only observable to the first commander. When he sees that the enenpyes un
pared, he wants to alert the second commander. The first commandertvaittack unless he is absolutely
sure the second commander will do the same. If they attack at the same time whkihethg is unprepared,
they will win the battle, otherwise they will be defeated. Their only means of camuation is through a
messenger pigeon, which with positive probability may not make it to the othersisome point during
its rather dangerous trek. In the case that the message sent from tloedirsander to the second does
arrive successfully, both commanders now know the message, butsheofinmander cannot be sure that
the second knows it. Hence, the second will need to send a confirmation fissthé\ssuming it arrives,
we now have that commander 1 knows that commander 2 knows, but wet d@avethat commander 2
knows that commander 1 knows that he knows. This will require commanttesdnd another confirma-
tion. Wouldn't this be enough for the two to know they will both attack? Noabse again, we have that
commander 1 is not absolutely certain that his last message was receiglesh an and so forth. We must
convince ourselves that under this protocol, in which communication is r@#oI@liable, no matter how
many trips the pigeon makes, there is no iron-clad guarantee that the appuasrwill attack at the same
time.

Given that the attainment of common knowledge is not possible in such cogntexgése left with the open
problem of determining how common knowledge may be approximated. In seGtiwa go on to apply
Monderer and Samet’s proposed way of achieving a reasonable fegebmdination by approximating
common knowledge with the weaker conceptommon belief

In the last section, we comment on the protocol used in the coordinated gétaekas well as provide a brief
discussion on the possible limitations of the proposed solution to approximatimgaon knowledge.



In the next section, we formalize the definition of common knowledge and ajiveef background on
concepts needed for the rest of this paper.

2 Background

2.1 Preliminaries

We present the basic definitions of Mutual Knowledge and Common Knoeledg

Definition 2.1 An event isMutual Knowledge if players know this event. Note this is weaker than common
knowledge.

Let P be a finite set of players, and let the sp&@eX, 1) be a probability space, whefgis the state space,
> is theo-field of events, anql is the probability measure an Let H;, i € P be a measurable partition
of X andH;(w) be the element dff; containingw, w € Q. The setH;(w) contains the set of states that is
indistinguishable to playemwhenw occurs. Last but not least, |6t be theo-field generated bi;. We will
need this when proving a theorem on common knowledge.

Let K;(E) denote the everglayer i knows event EThis set will consist of all states in which playeri
knowsE:
Ki(E) ={w: Hi(w) CE}.

We refer toK as the “knowledge operator”.
Hence the evergveryone knows BMutual Knowledge) is defined by
K(E) = NiceKi(E) = {w: UicpHi(w) CE}.
We refer toX as the “everyone knows” operator and can construct a recurisaia as follows:

The eveneveryone knows that everyone knowSEcond order mutual knowledge) is defined by
K(E) = NierKi(K(E)) = {w: UicpHi(w) € K(E)}.

Everyone knows that everyone knows that everyone knoisrel order mutual knowledge) is defined
by
K3(E) = NicaKi(K*(E)) = {w: UieoHi(w) € K(E)}.

Note that this is a decreasing sequence of eventTot(E) C K"(E) and thatk°(E) = E.

The eventeveryone knows that everyone knows that everyone knows (atumjirk can be defined as
the intersection of all sets of the for&"(E):

K*(E) = Nn=1K"(E),

where K"(E) = NiceKi(X"1(E)). BecauseX™ is a countable intersection of classes, it must itself be in
this class.

Proposition 2.2 An event E isommon knowledge at statew <— we X*(E).
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Some properties of the “knowledge operatd{”,

Property 1 K; € %.

Property 2 IfE € 7, then K(E) = E.

Property 3 Ki(Ki(E)) =Ki(E).

Property 4 If F C E then K(F) C Ki(E).

Property 5 If (A,) is a decreasing sequence of events, thémMKA") =N, Ki(A").
Proof (Proposition 2.2).

(=) Suppose that event E is common knowledge.at

There exists am € F C E such thatr € % Vi € P. By properties 2 and 4 = K;(F) C K;(E). Hence
F C niKi(E). Recall we have defined this intersection to be one iteration of the “eveyrmows” operator,
K. SoF C X(E). SinceX"1(E) C K"(E), then by induction om, n> 1, F C X"(E). But this implies
thatE’ C N1 K" = KX*. Thereforewe F C K.

(«—) Conversely, suppose thatc K. It will suffice to show that”(E) C E and thatX*(E) € % Vi € P.
BecauseX satisfies the decreasing sequence of events property, theprfbr X (E) C K"(E) C X(E) C
Ki(E) CE.

With the help of property 5, we also have tH#t (E) € X™(E) C N1 Ki(X"(E)) = Ki(Nh=1 X"(E)) €
Ki(X”(E)) € KX*(E). This shows thatiX™(E) € 4.

2.2 Computing Common Knowledge

To better grasp the notion of common knowledge, we use the Muddy Falehaae to illustrate a simple
example on how to determine what is common knowledge among a set of players.

We consider a simple case with only three players. Let us compute playafdrimation partition. Denote
the case where a player has a muddy forehead by 1 and that in whicles@aioby 0. Given he can see
the other two players and not his own forehead, he would not be ablettogdish between the state in
which he has a muddy forehead, and that in which he does not, regaddlitse other players’ foreheads.
In the case that there is exactly one muddy forehead and it belongs to plapen he will know he has a
muddy forehead. In the case that there are no muddy foreheadsgtheilaannounce so, and player 1 will
know he does not have mud on his forehead. Hence, player 1's infiormzartitionH; will consist of the
following sets, where each individual set contains a set of states thaissimiguishable to player 1.

H; = [{000}, {100},{001,101},{010,110},{011 111}].

We can construct analogous information partitions for players 2 and 3.

Fudenberg and Tirole show that if all three foreheads are clean apldydirs are informed of this in public
by a sage, then eveli= “There are no muddy faces”= 000 is common knowledge when it occhos.
X (E) = {000}, X(X(E)) = X(E) = E = {000}, and so on. lterating the “everyone knows operator”



will always give us back state 00@& ™ = 000. Everyone will be able to distinguish that they have a clean
forehead and will know that every other player knows that every qtleyer,..., knows they have clean
foreheads. The event 000 is common knowledge when it occurs.

Similarly, the evenE= “At least one player has a muddy forehead{#00,001,101,010110,011 111}

can be shown to be common knowledge when it occurs. One iteration of\theytme knows operator”
gives: X (E) = {100,001,101 010,110,011, 111} = E. Assuming common knowledge of rationality, then
everyone knows that everyone knows there is at least one muddyetmigand so on, i.eX?(E) = E,
K3(E) = E,... and so on. This illustrates hof acts as a fixed point operator in the case of common
knowledge.

Let us attempt to compute common knowledge in an environment in which it dbegist Suppose there
is no sage who makes any sort of public announcement. In this case, piydormation partitiortH; will
consist of the following sets (similarly for players 2 and 3),

Hy = [{000,100}, {001, 101}, {010,110}, {011, 111}].

Let us begin applying the “everyone knows” operator on the effertthere exists at least one muddy
forehead”. In the case that there is exactly one muddy foreheadveryiome will know the eveni for the
player whose forehead is muddy does not know that there is at leastuohdy forehead. Thus we cannot
include states 000, 100, 001, 010 in the spA4€&). In the case that there are at least two muddy foreheads,
then everyone will knovE. HenceX (E) will consist solely of the following states:

% (E) = {111,110,101,011}.

Let use see what happens when we iterate again. Now we want to knomairstates everyone knows that
everyone know€. Let us consider the case in which there are exactly two muddy forehtbadss, the
states 110, 101, and 011. In state 110, player 1 sees only one mudbgddr hence knows evdhit Since

he does not know his own status, he cannot determine what player.2Hsé#sinks: if he has mud on his
forehead, then player 2 will see one muddy forehead. If he does eotplayer 2 would see zero muddy
foreheads. He is unsure. That is, he is not able to distinguish betwesntthe states{(L10,01Q), hence

he does not know that player 2 kno&s We can argue similarly for the remaining states in which there are
exactly two muddy foreheads. Hence the only state in which all playerskitwat all players knovi is

the state in which all three players have muddy foreheads:

K(X(E)) = %(111,110,101,011) = 111

Iterating again,X(111) results in a null set, for no player can distinguish 111 from the state in whéch h
does not have mud on his forehead and that in which he does. Theraalosxist arw whereE is common
knowledge [3].

2.3 Common Beliefs

We introduce the concept of common belief which will be used in section 4 gbdper. Common belief
can be defined similarly to common knowledge only that the phpésgers knows E at is replaced by



players p-believe E ab. Thus, an event is commambelief if everyone believes it with probability at least
p, and everyone believes with probability at lepghat everyone believes it with probability at le@siand
so onad infinitum

Definition 2.3 A player ip-believesE atwif he believes that E occurs with probability at least patMore
formally, 4(E|H;(w)) > p, where pis player’s i probability distribution ovef).

We replace our definition from section 2.1 of “player i knows E”, by “@ay p-believes E” as fol-
lows:
BP(E) = {w: W(E|Hi(w) > p}.

We can defineit"-order mutualp-belief analogously ta"-order mutual knowledge as we have done in
section 2.1.

Hence the evergveryone p-believes @lutual Knowledge) is defined by

B°(E) = NicrB(E)

Everyone knows that everyone knows that everyone knows...(k Enfe§)order mutual knowledge) is
defined by
BP(E) = NiceBP(BL_1(E)))

Hence the everdveryone knows that everyone knows that everyone knows (atlimjifc can be defined
as the intersection of all sets of the forB¥ (E):

BL(E) = Mn=1B7(E),
whereB(E) = NicsBi (X" 1(E)).
Proposition 2.4 An event E izommon p-belief at statew if w e BL(E).

The proof is similar to that of proposition 2.2.

Commonp-belief is a weakening of common knowledge. It has been shown by Mended Samet that if
perfectcoordination is achievable in a game where there is common knowledge ofutbeigtrof the game,
thenapproximatecoordination is achievable when there is comnpabelief, for somep sufficiently close

to 1[7,8].

From this result, Kajii and Morris show thatXic,p; < 1, thenP(BE(E)) is close to 1 wheneved?(E) is
close to 1. This is implied in the following proposition which they call @r#tical Path Resutt

Proposition 2.5 If ;p; < 1, then the probability that event E is common p-belief is at least

1—min(p)

1-(1-PE) g

We will not prove, but we will use Monderer and Morris’ results in sectoof the paper to show that by
approximating with common belief, there exists an equilibrium where commandeebke to coordinate
an attack under the condition that the probability the enemy is unpreparedéstold.
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In the next section, we examine how the presence and absence of compwledge can affect the Nash
equilibrium in the Muddy Foreheads and the Centipede games.

3 The Effect of Common Knowledge on Equilibrium

We see how the presence and lack of common knowledge affects equilinthemMuddy Foreheads game.
We also briefly comment on the relationship between common knowledge akdrddnduction using the
Centipede game.

3.1 The Muddy Foreheads Game

We elaborate on the previously mentioned muddy foreheads game of thyeesphy introducing payoffs
associated to players’ actions as follows. We make use of the same playdéeberg and Tirole use in [4].
Each player receives:

1. a payoff of&" if he confesses in periodwhile having a muddy forehead. € 8 < 1, so that the
longer it takes a player to confess, the smaller his payoff will be. This wi#t glayers an incentive
to confess immediately once they know their forehead is muddy.

2. apayoff of 1 if he does not confess while having a clean forehead.
3. alarge negative payoff of -100 if he confesses while having a éteahead.
4. a small negative payoff of -1 if he does not confess while having a ynicidhead.

The payoffs can be summarized in the following table.

Muddy | Clean
Confess o | -100
-Confess -1 1

Table 1: Payoff Matrix - Muddy Forehead Game

Thus, itis in each player’s own interest to not confess to a muddy facklieless they are absolutely certain
that this is the case.

The game begins with a sage publicly announcing that at least one player haddy forehead, if and
only if this is the case. This makes a fact that may have been previouslyskiooa¥l the players common
knowledge. Following the announcement, players will be able to determineotheitype by the actions of
the other players [13].

1. Period 1: If there is exactly one muddy forehead, the player with the rhselrees no muddy fore-
heads, and thus infers he has the mud. He confesses immediately due tathaiiactor.

2. Period 2: If in period 1, no one confessed, then it is common knowlddgeall players know that
there are at least two muddy foreheads. Otherwise, we would havetegmmeone to confess in
the first period.

If there are exactly two muddy foreheads then the two players with mudwebseaty one clean



forehead. Since they know that there is more that one muddy foretmadriod 1, then they infer
that they must be the second player with mud. Hence they confess in thelsecmd.

3. Period 3: If no player confessed in the second round, this meansdbhtplayer saw two muddy
foreheads. Each player will make the deduction that all of them have mutldeanforeheads, thus
they should all confess in the third period.

More generally, in am-player game in which there akenuddy foreheads, all players with mud will confess
by thek!" period. Thusequilibriumarises aftek periods of iterated rationality.

3.2 Removing the Common Knowledge Assumption in the Muddy Fa@heads Game

Let us tweak the game to observe what would happen in the case in whiehigher public announcement
at the beginning of the game, i.e. removing the assumption of common knowletide $till keeping the
assumption of rationality).

We consider the 3-player game. Each player can see the foreheadsrafghonents, but in this case,
whether they see no muddy foreheads, one muddy, or two muddy, it wib@@nough information for
players to infer their state at any period in the game. In this case, play@fdrmation partition would be
Hi = [{000, 100}, {001,101},{010,110},{011, 111}]. Take for example, the case in which there is exactly
one muddy forehead. The players with clean foreheads each olmservauddy forehead and thus know
there is at least one muddy forehead while the player with the mud sees no foueltyads, and thus does
not know that there is at least one muddy forehead. For all he knoarg tan be no muddy foreheads. If
we iterate the everyone knows operator, we saw in section 2.2 that it wilpsella some point, because we
will not find anw in which the event is common knowledge.

Because he believes muddy and clean is equally likely, he will not conlfdss.confesses while having a
clean forehead, he suffers a large negative payoff. So it is in hisim@rest to stay quiet, and receive, at
worst, a negative payoff of -1. Hence the players learn nothing fr@in dpponents’ play and will continue
to believe, at each round, that muddy and clean are equally likely. Thpkper will have the incentive to
deviate from their choice of not confessing as it would render a largative expected payoff.

So the Nash equilibrium in this case is for all players to never confess,welien all their foreheads are
muddy. As in the coordinated attack game, when there is a lack of common kiyabetween players,
they choose to play it safe.

Drawing a comparison, in amplayer game in whiclall players have muddy foreheads,
1. if common knowledge is satisfied, then all players receive a pay@ff bf0 by then-th round.

2. if common knowledge is not satisfied, the Nash is to not confess, andltilayers receive payoff
-1.

We conclude that the players were better off when common knowledgeatisfes!.



3.3 Backward Induction and Common Knowledge

We comment on how common knowledge of rationality among players has stroliggtigms for backward
induction.

Definition 3.1 Backward induction is an iterative process for solving finite sequential games. The last
player, who must choose between leaves of the game tree, makesetbab maximizes his payoff. Then,
the second-to-last player makes a choice maximizing his payoff. Bleeg® continues until we reach the
beginning of the game at which point all players’ actions have beenméted. Effectively, one determines
the Nash equilibrium of each subgame of the original game.

This can be manifested in the Centipede Game (Rosenthal 1981) in which tyerglaust take turns
choosing either to move down in which they take a slightly larger share of tiheasiog pot, or to move
right in which case they pass the pot to the other player.

1,0 0,2 3,1 2,4

Figure 2: The Centipede Game

If we were to reach the last round of the game, and assuming that playeatiisal, he would choose to
move down and receive a payoff of 4 rather than to move right andveegpayoff of 3. However, given
that player 2 will choose to move down, then player 1 should choose to nowe ith the second to last
round, receiving 3 instead of 2. But knowing this, player 2 ought to numyen in the third to last round,
taking a slightly higher payoff than he would have received by allowing tts¢ filayer to defect in the
second to last round. This reasoning proceeds until we have rettahéidst node of the tree, concluding
that the best action for the first player is to move down on the first rouhds The Nash Equilibrium is to
get (1,0).

In his paper “Backward Induction and Common Knowledge of Rationalityim&nn’s proves that com-
mon knowledge of rationality obtains in a game of perfect information, thelpatlevard induction outcome
is reached2]. In order to have reasoned backwards to the first node, weedetbat the players were ra-
tional. Aumann states that simple rationality on the part of each player is nagknahe players must
ascribe rationality to each other. (Otherwise player 1 may believe that theplager may choose to go
right instead of down, giving him the opportunity of receiving a greassoff on his next turn). So if it is
common knowledge that all players are rational, then they know the nexrphaly choose to move down
in order to maximize his payoff, meaning player 1's best response is t@elogo down on the first round.

In the next section, we return to the coordinated attack game in which it seemssifle to attain common
knowledge through unreliable communication.



4 The Coordinated Attack Game

4.1 Truncating the Knowledge Hierarchy

When we introduced this game, we left off by stating that the pigeon is to maikdimite number of trips
between the two commanders in order to achieve common knowledge. Letwieg®you of this. Even
though it seems sensible to believe thatiolarge, m messages would sufficiently approximate common
knowledge of the enemy being unprepared, (i.e. K&t~ X*), we will see through Rubinstein’s theory,
that it is not possible to approximate common knowledge withlevel mutual knowledge. Before attempt-
ing to prove this, we give more structure to the game by presenting the pagites in the cases where
the enemy is prepared and that in which he is not. It is further assumedItpblayars have common prior
probabilities: Pfnessage failing to be delivergd € > 0, and P€énemy pre pared= d wheree < 9.

Commander 2

Attack | —Attack
Commander 1 Attack | (1,1)| (-M,0)
—Attack | (0,-M) (0,0)

Table 2: Payoff Matrix when Enemy is Unprepared

Commander 2
Attack | —Attack

Commander 1 Attack | (-M,-M) (-M,0)
—Attack | (0,-M) (0,0)

Table 3: Payoff Matrix when Enemy is Prepared

The play-it-safe strategy for both armies is to not attack. They may run thefrisot obtaining positive
payoff this way, but they can avoid attacking alone and receiving laggative payoff.

Proposition 4.1 Truncating common knowledge hierarchy at any finite level can leadtage behave as
though they had no mutual knowledge at all.

Rubinstein has proved the above using the “Electronic Mail Game” whichdsaadgmme involving coordi-
nation, somewhat similar to the coordinated attack problem. We shall preegabitf by induction applied
to the coordinated attack problem.

Proof. Suppose that the enemy is initially unprepared. Nigbe the number of messages that commander
1 sends andil; be the number of messages commander 2 sends.

BASE CASE:

If N>=0, then commander 2 did not send a reply for he did not receive anyagesfrom commander 1.
This may be due to the following two possibilities:
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1. N =0 AND N; = 0: The enemy is prepared, so commander 1 did not send a message. Cuns oc
with probability d.

2. N; =1 AND N, = 0: The enemy is unprepared, but commander 1's message failed to délhigsr
occurs with probability(1 — ) * €.

In either case, commander 2 believes that with proba% > 1/2 that the enemy is prepared. We
see that expected utility of commander 2 in the case he chooses not to attae&tes ghan that of if he
chooses to attack:

E(Uz(Attack|N, = 0) < —M(1/2) +1(1/2) < 0.
E(Uz(—Attack|N, = 0) = 0.

Commander 2 is better off playing it safe and not attacking, no matter what codema choose to do.

Let's see what happens to commander 1's expected payoff: If the eisgmgpared, then no message is sent

and clearly his best response is to not attack. If the enemy is unpreparkte receives no confirmation to

his first message, then he believes that commander 2 did not receive ssgaegth a probability of:
(1—-90)*e 3

(1-9)*e+(1—90)«epsilon(1—¢) - e+ (1—¢)e >1/2

Hence, commander 1 believes that with probability greater thianHis message never arrived and thus with
probability greater than/2, commander 2 will not attack. Once again, the expected payoffs for codena
1 are the same as those above. His best response is to not attack.

I.H.
For all Ni < n, each commander’s best response is to not attack so that the uniquefNashgame is
(—Attack —Attack).

STEP CASE:

AssumeN; = n. That is, commander 1 senimessages and no more, for he did not receive a response after
his last message(KiK,)"~1(enemy-prepared is true, but it is not true thak,K»)"(enemy-prepared.

He is uncertain whether the last message was received successfully, Hehdoes not know which of the
two following events actually occurred.

A : hisnth message was lost, i.B, =n— 1.
B : hisn'" message was not lost, but commanderd'sesponse was lost.

The probability that the last message from commander 1 to commander 2 wearidst expressed as,

BNy = AH(A)

H(AINy =n) = U(Nz = n[A)U(A) + p(Ny = n[B)u(B)
_ 1xp(A)
1+ H(A) + 1% u(B)
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B 3
e+ (l-¢g)
>1/2.

Hence u(A|Ny = n) > 1— p(A|Ny = n) = u(B|N; = n), i.e. event A is more likely than event B. So in the
case thaN; = nandN, = n— 1, by the induction hypothesis, commander 1 assesses that commander 2 will
choose not to attack. The expected utility of commander 1 choosing to attalekrwlh receiving amt”
confirmation from commander 2 is thus:

E(U1(Attack|N; = n) < —-M(1/2) +1(1/2) < 0.

And the expected utility of commander 1 choosing to not attack while not iegeann™ confirmation
from commander 2 is:

E(Uy(—Attack|N; =n) =0.

We compute commander 2's expected utilities analogously.
Hence(—Attack —Attack) is the unique Nash of the coordinated attack game far fiflite.
i

Thus no number of messages will suffice in order to achieve common kngewtddhe desire to attack under
the current protocol. In the next subsection, we restore this unbdumdearchy by replacing common
knowledge with common belief. We explore how under particular circumssarcenmanders may have
the incentive to attack.

4.2 Approximating Common Knowledge with Common Beliefs

We have seen that under their communication protocol, the commanders weitlashieve common knowl-
edge, hence never achieve a coordinated attack. But Morris anddReihistate that the fact that they could
not achieve common knowledge does not exclude the possibility that withyegsibbability they will both
attack.

The general idea here is that under certain circumstances, the commamaehave incentive to attack
if they assign a common high probability to the enemy being unpreparsohdll), to the communication
being reliable £ < ), and to the other side attacking. In other words, we may weaken the nétomanon
knowledge to that of common belief to achieve approximate coordination.

In the example of the coordinated attack problem seen thus far, the commmdidieot commit to strategies
before the communication stage. Secondly, the commanders were allowee wifferent objectives, i.e. a
commander would prefer the other side to attack alone than for his side to alibaek- he receives greater
payoff this way. Perhaps, if they were to commit to an action protocol befommunication took place,
coordinated attack may take place with high probability. But what if we make raateple and tweak
the payoff matrices so that the two commanders have the same objective2icmremove the conflict of
interest, suppose the new payoff matrices were as follows:
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Commander 2

Attack | —Attack
Commander 1 Attack 1,1) | (-M,-M)
—Attack | (-M,-M) (0,0)

Table 4: New Payoff Matrix when Enemy is Unprepared

Commander 2
Attack | —Attack

Commander 1L Attack | (-M,-M) | (-M,-M)
—Attack | (-M,-M) (0,0)

Table 5: New Payoff Matrix when Enemy is Prepared

We note that not attacking is no longer a “play-it-safe” strategy. For if ide doesot attack while
the other side does, they can do just as bad! Morris and Shin descritieatieattack”-equilibrium as
risk-dominant in the sense that there exists a probatplity1/2* such that if one commander assigns this
probability to the other side attacking, his best response is to attack. Theethiak to be%. GivenM
large, this comes sufficiently close tg2L

So the “both-attack” equilibrium occurs so long as it is comnczﬁﬁkl-belief that the enemy is unprepared.
And given that the state in which the enemy is unprepared occurs with lglibpalose to 1, then with
the use of proposition 2.6 from section 2.3, we are able to show that comntiehdiehe enemy being
unprepared also occurs with probability close to 1. Consider propositbimz2he case of two players,
wherep; = pp = 5)t4. ThenZipi = 2p. So the conditior¥;p; < 1 reduces tg < 1/2. Now, given the
probability the enemy is unprepared(s— &), we have that it is commog,\z"—ﬂ-belief that the enemy is
unprepared with probability

<1-(1-(-8)(; )

M
1- M1
1—2M_
2M+1

=1-3M+1)
~ 1.

So if, with sufficiently high probability, it is commogg';-belief that the enemy is unprepared, then with
sufficiently high probability, the equilibrium behavior implied by common beliefragimates behavior
implied by common knowledge.

1Recall from the proof of proposition 4.1, that if at any point commariddoes not receive a confirmation from commander
2, then he assigns probability less than 1/2 to the second commandeinmgdes message. Thus it cannot be that it is common
p-belief that the enemy is unprepared where 1/2 — p<1/2.
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5 Discussion and Conclusion

We have seen how the information structure of a game can affect the eiguilibf the game. In the Muddy

Foreheads game, if it was not common knowledge that at least one pkyenind on his forehead, then
the equilibrium was for no player to confess, as opposed to playeressing truthfully by a certain period
when common knowledge was satisfied. We have also seen in the Centipeddhgd if the backward

induction outcome is not reached then the players did not possess comowledge of rationality.

In these games, common knowledge of the environment seemed to be reatibtéétamong players for it
followed from the fact that the players perceived an event simultahe@hsred the same state space, and
from the assumption that all players were logically competent. In other manplea situations, such as the
coordinated attack problem in which players communicate information to eaehtbtiough an unreliable
medium, we have seen that the attainment of common knowledge was not pobsithlis case, we have
explored a possible way of approximating the notion of common knowledge vattofltommonp-belief

in order to achieve a coordinated attack with high probability.

The communication protocol used in the coordinated attack problem may ppearad foolish and unreal-
istic. It would seem feasible for the commanders to coordinate an attack witlptogability if they would
agree to abide by an action protocol prior to the communication phase. &wpé, their action protocol
could be to attack if they receive at least one message. In this case,ve¢ muire the notion of common
knowledge or commop-belief in order to achieve a reasonable level of coordination. But tlggesis
other open questions in areas away from that of approximating commoridahgev That is, in the area of
the design of optimal action protocols in systems that are subject to communifzalimes.

Despite seeming to have no practical interest, the coordinated attack protalgreerve some purpose in
determining how to deal with situations having similar unfortunate information tsteic In his paper,

“Comparing the Robustness of Trading Systems to Higher Order Unceita8itin demonstrates that if
the fact that trade is feasible is not common knowledge among traders ineatdgized market, then
efficient trade is not attained [10]. The problem of trading in a decenddlizarket in which traders obtain
noisy observations of the true state of payoffs seems to have similar implicasahe coordinated attack
problem.

On another note, we are led to ask the question: in the case that common dgewnnot be attained, to
what extent can the notion of common knowledge be relaxed in order tovaatoerdination? It was pos-
sible to relax common knowledge in the coordinated attack game, a game thahamgsand finite. There
were only two players who chose from two possible actigktsackor —Attack and there were two possi-
ble outcomesWin or Lose Given that the authors of papers surveyed thus far have only reaibidered
binary and finite games, this may suggest that approximation using comsbelef may be feasible only
in limited contexts. In [11], Shin seems to suggest that commbelief will not suffice in approximating
common knowledge in multi-player games in which players choose actions fcomtiauum, and in which
there are many possible outcomes of coordination.

The question remains: does there exist a form of approximate common kigemMieat would suffice in
order to achieve coordination in such complex contexts? This is yet to bertiesel.
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