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Abstract

In a game, an item of information is considered common knowledge if all players know it, and all
players know that they know it, and all players know that theyknow that they know it,ad infinitum. We
investigate how the information structure of a game can affect equilibrium and explore how common
knowledge can be approximated by Monderer and Samet’s notion of common belief in the case it cannot
be attained.

1 Introduction

A propositionA is said to becommon knowledgeamong a group of players if all players knowA, and all
players know that all players knowA and all players know that all players know that all players knowA,
and so onad infinitum. The definition itself raises questions as to whether common knowledge is actually
attainable in real-world situations. Is it possible to apply this infinite recursion?

There are situations in which common knowledge seems to be readily attainable. This happens in the case
where all players share the same state space under the assumption that all players behaverationally. We will
see an example of this in section 3 where we present the Centipede game.

A public announcement to a group of players also makes an eventA common knowledge among them [12].
In this case, the players ordinarily perceive the announcement ofA, soA is implied simultaneously is each
others’ presence. ThusA becomes common knowledge among the group of players.

We observe this in the celebrated Muddy Foreheads game, a variant of anexample originally presented by
Littlewood (1953). In this game ofn players, each player is to determine whether he has mud on his forehead
whilst being able to observe the state of then−1 other players, and not his own. If a sage announces to then
players that at least one of them has a muddy forehead, then this information becomes common knowledge.
Everyone knows that at least one player has a muddy forehead, and everyone knows that everyone knows
that at least one player has a muddy forehead, and so on. If, at eachperiod, the sage questions the players as
to whether they have mud on their foreheads, and under the assumption the players are rational and truthful,
it can be proven by induction that ifk players have muddy foreheads, then by thekth period, allk will confess
to having mud on their foreheads. In section 3, we revisit this game in greaterdetail and observe how the
presence and absence of common knowledge can drastically affect equilibrium in this game. We investigate
how crucial the assumption of common knowledge is and how certain theories collapse in the event common
knowledge is absent [7].
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The above view of common knowledge may be applicable only in limited contexts. Inthe case that knowl-
edge is derived from sources that are not completely reliable (as in sending and receiving information
through a medium which is not perfectly reliable), then common knowledge cannot be achieved [8].

Consider the case of processors in a distributed system that must jointly execute a complex computer pro-
tocol [3]. The processors are to coordinate themselves by means of communicating to each other what they
know. It has been established that a necessary condition for the processors to be able to perfectly synchro-
nize themselves is that of common knowledge. But given that messages sentand received between them
have the possibility of failing, then common knowledge seems to be an excessively strong requirement that
may rarely be achieved in practice.

Figure 1: The Coordinated Attack Problem

Consider a version of Gray’s original coordinated attack problem whichcan serve as an analogy to the
communicating processors. The game is as follows: Suppose there are two allied armies situated on
opposite hilltops wishing to attack their foe, residing in the valley (Figure 1). The state of the enemy
Prepared, Unprepared, is only observable to the first commander. When he sees that the enemy is unpre-
pared, he wants to alert the second commander. The first commander will not attack unless he is absolutely
sure the second commander will do the same. If they attack at the same time while theenemy is unprepared,
they will win the battle, otherwise they will be defeated. Their only means of communication is through a
messenger pigeon, which with positive probability may not make it to the other side at some point during
its rather dangerous trek. In the case that the message sent from the first commander to the second does
arrive successfully, both commanders now know the message, but the first commander cannot be sure that
the second knows it. Hence, the second will need to send a confirmation to thefirst. Assuming it arrives,
we now have that commander 1 knows that commander 2 knows, but we do not have that commander 2
knows that commander 1 knows that he knows. This will require commander 1to send another confirma-
tion. Wouldn’t this be enough for the two to know they will both attack? No, because again, we have that
commander 1 is not absolutely certain that his last message was received, and so on and so forth. We must
convince ourselves that under this protocol, in which communication is not 100% reliable, no matter how
many trips the pigeon makes, there is no iron-clad guarantee that the opposing side will attack at the same
time.

Given that the attainment of common knowledge is not possible in such contexts, we are left with the open
problem of determining how common knowledge may be approximated. In section4, we go on to apply
Monderer and Samet’s proposed way of achieving a reasonable level of coordination by approximating
common knowledge with the weaker concept ofcommon belief.

In the last section, we comment on the protocol used in the coordinated attackgame as well as provide a brief
discussion on the possible limitations of the proposed solution to approximating common knowledge.
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In the next section, we formalize the definition of common knowledge and givea brief background on
concepts needed for the rest of this paper.

2 Background

2.1 Preliminaries

We present the basic definitions of Mutual Knowledge and Common Knowledge.

Definition 2.1 An event isMutual Knowledge if players know this event. Note this is weaker than common
knowledge.

Let P be a finite set of players, and let the space(Ω,Σ,µ) be a probability space, whereΩ is the state space,
Σ is theσ-field of events, andµ is the probability measure onΣ. Let Hi , i ∈ P be a measurable partition
of Σ andHi(ω) be the element ofHi containingω, ω ∈ Ω. The setHi(ω) contains the set of states that is
indistinguishable to playeri whenω occurs. Last but not least, letFi be theσ-field generated byHi . We will
need this when proving a theorem on common knowledge.

Let Ki(E) denote the eventplayer i knows event E. This set will consist of all statesω in which playeri
knowsE:

Ki(E) = {ω : Hi(ω)⊆ E}.

We refer toK as the “knowledge operator”.

Hence the eventeveryone knows E(Mutual Knowledge) is defined by

K (E) = ∩i∈PKi(E) = {ω : ∪i∈PHi(ω)⊆ E}.

We refer toK as the “everyone knows” operator and can construct a recursive chain as follows:

The eventeveryone knows that everyone knows E(Second order mutual knowledge) is defined by

K 2(E) = ∩i∈PKi(K (E)) = {ω : ∪i∈PHi(ω)⊆K (E)}.

Everyone knows that everyone knows that everyone knows E(third order mutual knowledge) is defined
by

K 3(E) = ∩i∈PKi(K
2(E)) = {ω : ∪i∈PHi(ω)⊆K 2(E)}.

Note that this is a decreasing sequence of events, forKn+1(E)⊆ Kn(E) and thatK0(E) = E.

The eventeveryone knows that everyone knows that everyone knows (ad infinitum) E can be defined as
the intersection of all sets of the formK n(E):

K ∞(E) = ∩n≥1K
n(E),

whereK n(E) = ∩i∈PKi(K
n−1(E)). BecauseK ∞ is a countable intersection of classes, it must itself be in

this class.

Proposition 2.2 An event E iscommon knowledge at stateω ⇐⇒ ω ∈K ∞(E).
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Some properties of the “knowledge operator”,K.

Property 1 Ki ∈ Fi .

Property 2 If E ∈ Fi , then Ki(E) = E.

Property 3 Ki(Ki(E)) = Ki(E).

Property 4 If F ⊆ E then Ki(F)⊆ Ki(E).

Property 5 If (An) is a decreasing sequence of events, then Ki(
T

nAn) =
T

nKi(An).

Proof (Proposition 2.2).

( =⇒ ) Suppose that event E is common knowledge atω.

There exists anω ∈ F ⊆ E such thatF ∈ Fi ∀i ∈ P . By properties 2 and 4,F = Ki(F) ⊆ Ki(E). Hence
F ⊆∩iKi(E). Recall we have defined this intersection to be one iteration of the “everyone knows” operator,
K . SoF ⊆ K (E). SinceK n+1(E)⊆ K n(E), then by induction onn, n≥ 1, F ⊆ K n(E). But this implies
thatE′ ⊆ ∩n≥1K

n =K ∞. Therefore,ω ∈ F ⊆K ∞.

(←−) Conversely, suppose thatω∈K ∞. It will suffice to show thatK ∞(E)⊆E and thatK ∞(E)∈Fi ∀i ∈P .
BecauseK satisfies the decreasing sequence of events property, then forn≥ 1,K ∞(E)⊆K n(E)⊆K (E)⊆
Ki(E)⊆ E.

With the help of property 5, we also have thatK ∞(E)⊆K n+1(E)⊆
T

n≥1Ki(K
n(E)) = Ki(

T

n≥1K
n(E))⊆

Ki(K
∞(E))⊆K ∞(E). This shows thatK ∞(E) ∈ Fi .

2.2 Computing Common Knowledge

To better grasp the notion of common knowledge, we use the Muddy Foreheads game to illustrate a simple
example on how to determine what is common knowledge among a set of players.

We consider a simple case with only three players. Let us compute player 1’sinformation partition. Denote
the case where a player has a muddy forehead by 1 and that in which he does not by 0. Given he can see
the other two players and not his own forehead, he would not be able to distinguish between the state in
which he has a muddy forehead, and that in which he does not, regardless of the other players’ foreheads.
In the case that there is exactly one muddy forehead and it belongs to player 1, then he will know he has a
muddy forehead. In the case that there are no muddy foreheads, the sage will announce so, and player 1 will
know he does not have mud on his forehead. Hence, player 1’s information partitionH1 will consist of the
following sets, where each individual set contains a set of states that is indistinguishable to player 1.

H1 = [{000},{100},{001,101},{010,110},{011,111}].

We can construct analogous information partitions for players 2 and 3.
Fudenberg and Tirole show that if all three foreheads are clean and allplayers are informed of this in public
by a sage, then eventE= “There are no muddy faces”= 000 is common knowledge when it occurs.So
K (E) = {000}, K (K (E)) = K (E) = E = {000}, and so on. Iterating the “everyone knows operator”
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will always give us back state 000:K ∞ = 000. Everyone will be able to distinguish that they have a clean
forehead and will know that every other player knows that every otherplayer,..., knows they have clean
foreheads. The event 000 is common knowledge when it occurs.

Similarly, the eventE= “At least one player has a muddy forehead” ={100,001,101,010,110,011,111}
can be shown to be common knowledge when it occurs. One iteration of the “everyone knows operator”
gives:K (E) = {100,001,101,010,110,011,111}= E. Assuming common knowledge of rationality, then
everyone knows that everyone knows there is at least one muddy forehead, and so on, i.e.K 2(E) = E,
K 3(E) = E,... and so on. This illustrates howK acts as a fixed point operator in the case of common
knowledge.

Let us attempt to compute common knowledge in an environment in which it does not exist. Suppose there
is no sage who makes any sort of public announcement. In this case, player 1’s information partitionH1 will
consist of the following sets (similarly for players 2 and 3),

H1 = [{000,100},{001,101},{010,110},{011,111}].

Let us begin applying the “everyone knows” operator on the eventE =“there exists at least one muddy
forehead”. In the case that there is exactly one muddy forehead, not everyone will know the eventE for the
player whose forehead is muddy does not know that there is at least onemuddy forehead. Thus we cannot
include states 000, 100, 001, 010 in the spaceK (E). In the case that there are at least two muddy foreheads,
then everyone will knowE. HenceK (E) will consist solely of the following states:

K (E) = {111,110,101,011}.

Let use see what happens when we iterate again. Now we want to know in what states everyone knows that
everyone knowsE. Let us consider the case in which there are exactly two muddy foreheads, that is, the
states 110, 101, and 011. In state 110, player 1 sees only one muddy forehead, hence knows eventE. Since
he does not know his own status, he cannot determine what player 2 sees. He thinks: if he has mud on his
forehead, then player 2 will see one muddy forehead. If he does not, then player 2 would see zero muddy
foreheads. He is unsure. That is, he is not able to distinguish between these two states ({110,010}), hence
he does not know that player 2 knowsE. We can argue similarly for the remaining states in which there are
exactly two muddy foreheads. Hence the only state in which all players knows that all players knowE is
the state in which all three players have muddy foreheads:

K (K (E)) =K (111,110,101,011) = 111.

Iterating again,K (111) results in a null set, for no player can distinguish 111 from the state in which he
does not have mud on his forehead and that in which he does. There does not exist anω whereE is common
knowledge [3].

2.3 Common Beliefs

We introduce the concept of common belief which will be used in section 4 of thepaper. Common belief
can be defined similarly to common knowledge only that the phraseplayers knows E atω is replaced by
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players p-believe E atω. Thus, an event is commonp-belief if everyone believes it with probability at least
p, and everyone believes with probability at leastp that everyone believes it with probability at leastp, and
so onad infinitum.

Definition 2.3 A player ip-believes E atω if he believes that E occurs with probability at least p atω. More
formally, µi(E|Hi(ω))≥ p, where µi is player’s i probability distribution overΩ.

We replace our definition from section 2.1 of “player i knows E”, by “player i p-believes E” as fol-
lows:

Bp
i (E) = {ω : µ(E|Hi(ω)≥ p}.

We can definenth-order mutualp-belief analogously tonth-order mutual knowledge as we have done in
section 2.1.

Hence the eventeveryone p-believes E(Mutual Knowledge) is defined by

B p(E) = ∩i∈PBp
i (E)

Everyone knows that everyone knows that everyone knows...(k times)E (kth-order mutual knowledge) is
defined by

B
p
k (E) = ∩i∈PBp

i (B
p
k−1(E)))

Hence the eventeveryone knows that everyone knows that everyone knows (ad infinitum) Ecan be defined
as the intersection of all sets of the formB p

n (E):

B p
∞(E) = ∩n≥1B

p
n (E),

whereB p
n (E) = ∩i∈PBi(K

n−1(E)).

Proposition 2.4 An event E iscommon p-belief at stateω if ω ∈ B p
∞(E).

The proof is similar to that of proposition 2.2.

Commonp-belief is a weakening of common knowledge. It has been shown by Monderer and Samet that if
perfectcoordination is achievable in a game where there is common knowledge of the structure of the game,
thenapproximatecoordination is achievable when there is commonp-belief, for somep sufficiently close
to 1 [7,8].

From this result, Kajii and Morris show that ifΣi∈P pi < 1, thenP(B p
∞(E)) is close to 1 wheneverP(E) is

close to 1. This is implied in the following proposition which they call theCritical Path Result:

Proposition 2.5 If Σi pi < 1, then the probability that event E is common p-belief is at least

1− (1−P(E))
1−min(pi)

1−Σi pi
.

We will not prove, but we will use Monderer and Morris’ results in section4 of the paper to show that by
approximating with common belief, there exists an equilibrium where commanders are able to coordinate
an attack under the condition that the probability the enemy is unprepared is close to 1.
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In the next section, we examine how the presence and absence of common knowledge can affect the Nash
equilibrium in the Muddy Foreheads and the Centipede games.

3 The Effect of Common Knowledge on Equilibrium

We see how the presence and lack of common knowledge affects equilibriumin the Muddy Foreheads game.
We also briefly comment on the relationship between common knowledge and backward induction using the
Centipede game.

3.1 The Muddy Foreheads Game

We elaborate on the previously mentioned muddy foreheads game of three players by introducing payoffs
associated to players’ actions as follows. We make use of the same payoffsFudenberg and Tirole use in [4].
Each player receives:

1. a payoff ofδt if he confesses in periodt while having a muddy forehead. 0< δ < 1, so that the
longer it takes a player to confess, the smaller his payoff will be. This will give players an incentive
to confess immediately once they know their forehead is muddy.

2. a payoff of 1 if he does not confess while having a clean forehead.

3. a large negative payoff of -100 if he confesses while having a cleanforehead.

4. a small negative payoff of -1 if he does not confess while having a muddy forehead.

The payoffs can be summarized in the following table.

Muddy Clean
Confess δt -100
¬Confess -1 1

Table 1: Payoff Matrix - Muddy Forehead Game

Thus, it is in each player’s own interest to not confess to a muddy forehead unless they are absolutely certain
that this is the case.

The game begins with a sage publicly announcing that at least one player has a muddy forehead, if and
only if this is the case. This makes a fact that may have been previously knows to all the players common
knowledge. Following the announcement, players will be able to determine theirown type by the actions of
the other players [13].

1. Period 1: If there is exactly one muddy forehead, the player with the mud observes no muddy fore-
heads, and thus infers he has the mud. He confesses immediately due to the discount factorδ.

2. Period 2: If in period 1, no one confessed, then it is common knowledgethat all players know that
there are at least two muddy foreheads. Otherwise, we would have expected someone to confess in
the first period.
If there are exactly two muddy foreheads then the two players with mud observe only one clean
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forehead. Since they know that there is more that one muddy forehead from period 1, then they infer
that they must be the second player with mud. Hence they confess in the second round.

3. Period 3: If no player confessed in the second round, this means thateach player saw two muddy
foreheads. Each player will make the deduction that all of them have mud ontheir foreheads, thus
they should all confess in the third period.

More generally, in ann-player game in which there arek muddy foreheads, all players with mud will confess
by thekth period. Thus,equilibriumarises afterk periods of iterated rationality.

3.2 Removing the Common Knowledge Assumption in the Muddy Foreheads Game

Let us tweak the game to observe what would happen in the case in which there is no public announcement
at the beginning of the game, i.e. removing the assumption of common knowledge (while still keeping the
assumption of rationality).

We consider the 3-player game. Each player can see the foreheads of their opponents, but in this case,
whether they see no muddy foreheads, one muddy, or two muddy, it will notbe enough information for
players to infer their state at any period in the game. In this case, player 1’sinformation partition would be
H1 = [{000,100},{001,101},{010,110},{011,111}]. Take for example, the case in which there is exactly
one muddy forehead. The players with clean foreheads each observeone muddy forehead and thus know
there is at least one muddy forehead while the player with the mud sees no muddyforeheads, and thus does
not know that there is at least one muddy forehead. For all he knows, there can be no muddy foreheads. If
we iterate the everyone knows operator, we saw in section 2.2 that it will collapse at some point, because we
will not find anω in which the event is common knowledge.

Because he believes muddy and clean is equally likely, he will not confess.If he confesses while having a
clean forehead, he suffers a large negative payoff. So it is in his owninterest to stay quiet, and receive, at
worst, a negative payoff of -1. Hence the players learn nothing from their opponents’ play and will continue
to believe, at each round, that muddy and clean are equally likely. Thus noplayer will have the incentive to
deviate from their choice of not confessing as it would render a large negative expected payoff.

So the Nash equilibrium in this case is for all players to never confess, even when all their foreheads are
muddy. As in the coordinated attack game, when there is a lack of common knowledge between players,
they choose to play it safe.

Drawing a comparison, in ann-player game in whichall players have muddy foreheads,

1. if common knowledge is satisfied, then all players receive a payoff ofδn≥ 0 by then-th round.

2. if common knowledge is not satisfied, the Nash is to not confess, and thusall players receive payoff
-1.

We conclude that the players were better off when common knowledge was satisfied.
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3.3 Backward Induction and Common Knowledge

We comment on how common knowledge of rationality among players has strong implications for backward
induction.

Definition 3.1 Backward induction is an iterative process for solving finite sequential games. The last
player, who must choose between leaves of the game tree, makes a choice that maximizes his payoff. Then,
the second-to-last player makes a choice maximizing his payoff. The process continues until we reach the
beginning of the game at which point all players’ actions have been determined. Effectively, one determines
the Nash equilibrium of each subgame of the original game.

This can be manifested in the Centipede Game (Rosenthal 1981) in which two players must take turns
choosing either to move down in which they take a slightly larger share of the increasing pot, or to move
right in which case they pass the pot to the other player.

Figure 2: The Centipede Game

If we were to reach the last round of the game, and assuming that player 2 isrational, he would choose to
move down and receive a payoff of 4 rather than to move right and receive a payoff of 3. However, given
that player 2 will choose to move down, then player 1 should choose to move down in the second to last
round, receiving 3 instead of 2. But knowing this, player 2 ought to movedown in the third to last round,
taking a slightly higher payoff than he would have received by allowing the first player to defect in the
second to last round. This reasoning proceeds until we have reachedthe first node of the tree, concluding
that the best action for the first player is to move down on the first round. Thus the Nash Equilibrium is to
get (1,0).

In his paper “Backward Induction and Common Knowledge of Rationality”, Aumann’s proves thatif com-
mon knowledge of rationality obtains in a game of perfect information, then thebackward induction outcome
is reached[2]. In order to have reasoned backwards to the first node, we needed that the players were ra-
tional. Aumann states that simple rationality on the part of each player is not enough - the players must
ascribe rationality to each other. (Otherwise player 1 may believe that the next player may choose to go
right instead of down, giving him the opportunity of receiving a greater payoff on his next turn). So if it is
common knowledge that all players are rational, then they know the next player will choose to move down
in order to maximize his payoff, meaning player 1’s best response is to choose to go down on the first round.

In the next section, we return to the coordinated attack game in which it seems impossible to attain common
knowledge through unreliable communication.
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4 The Coordinated Attack Game

4.1 Truncating the Knowledge Hierarchy

When we introduced this game, we left off by stating that the pigeon is to make aninfinite number of trips
between the two commanders in order to achieve common knowledge. Let us convince you of this. Even
though it seems sensible to believe that form large,m messages would sufficiently approximate common
knowledge of the enemy being unprepared, (i.e. thatK m≈ K ∞), we will see through Rubinstein’s theory,
that it is not possible to approximate common knowledge withmth-level mutual knowledge. Before attempt-
ing to prove this, we give more structure to the game by presenting the payoffmatrices in the cases where
the enemy is prepared and that in which he is not. It is further assumed that all players have common prior
probabilities: P(message f ailing to be delivered) = ε > 0, and P(enemy prepared) = δ whereε < δ.

Commander 2

Commander 1
Attack ¬Attack

Attack (1,1) (-M,0)
¬Attack (0,-M) (0,0)

Table 2: Payoff Matrix when Enemy is Unprepared

Commander 2

Commander 1
Attack ¬Attack

Attack (-M,-M) (-M,0)
¬Attack (0,-M) (0,0)

Table 3: Payoff Matrix when Enemy is Prepared

The play-it-safe strategy for both armies is to not attack. They may run the risk of not obtaining positive
payoff this way, but they can avoid attacking alone and receiving large negative payoff.

Proposition 4.1 Truncating common knowledge hierarchy at any finite level can lead agents to behave as
though they had no mutual knowledge at all.

Rubinstein has proved the above using the “Electronic Mail Game” which is also a game involving coordi-
nation, somewhat similar to the coordinated attack problem. We shall present the proof by induction applied
to the coordinated attack problem.

Proof. Suppose that the enemy is initially unprepared. LetN1 be the number of messages that commander
1 sends andN2 be the number of messages commander 2 sends.

BASE CASE:

If N2=0, then commander 2 did not send a reply for he did not receive any messages from commander 1.
This may be due to the following two possibilities:
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1. N1 = 0 AND N2 = 0: The enemy is prepared, so commander 1 did not send a message. This occurs
with probabilityδ.

2. N1 = 1 AND N2 = 0: The enemy is unprepared, but commander 1’s message failed to deliver. This
occurs with probability(1−δ)∗ ε.

In either case, commander 2 believes that with probabilityδ
δ+(1−δ)∗ε > 1/2 that the enemy is prepared. We

see that expected utility of commander 2 in the case he chooses not to attack is greater than that of if he
chooses to attack:

E(U2(Attack)|N2 = 0)≤−M(1/2)+1(1/2) < 0.

E(U2(¬Attack)|N2 = 0) = 0.

Commander 2 is better off playing it safe and not attacking, no matter what commander 1 choose to do.

Let’s see what happens to commander 1’s expected payoff: If the enemyis prepared, then no message is sent
and clearly his best response is to not attack. If the enemy is unprepared, and he receives no confirmation to
his first message, then he believes that commander 2 did not receive his message with a probability of:

(1−δ)∗ ε
(1−δ)∗ ε+(1−δ)∗epsilon∗ (1− ε)

=
ε

ε+(1− ε)ε
> 1/2.

Hence, commander 1 believes that with probability greater than 1/2, his message never arrived and thus with
probability greater than 1/2, commander 2 will not attack. Once again, the expected payoffs for commander
1 are the same as those above. His best response is to not attack.

I.H.:
For all Ni < n, each commander’s best response is to not attack so that the unique Nashof the game is
(¬Attack,¬Attack).

STEP CASE:
AssumeN1 = n. That is, commander 1 sentn messages and no more, for he did not receive a response after
his last message.(K1K2)

n−1(enemy¬prepared) is true, but it is not true that(K1K2)
n(enemy¬prepared).

He is uncertain whether the last message was received successfully. Thus, he does not know which of the
two following events actually occurred.

A : his nth message was lost, i.e.N2 = n−1.

B : his nth message was not lost, but commander 2’snth response was lost.

The probability that the last message from commander 1 to commander 2 was lostcan be expressed as,

µ(A|N1 = n) =
µ(N1 = n|A)µ(A)

µ(N1 = n|A)µ(A)+µ(N1 = n|B)µ(B)

=
1∗µ(A)

1∗µ(A)+1∗µ(B)
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=
ε

ε+(1− ε)ε
> 1/2.

Hence,µ(A|N1 = n) > 1−µ(A|N1 = n) = µ(B|N1 = n), i.e. event A is more likely than event B. So in the
case thatN1 = n andN2 = n−1, by the induction hypothesis, commander 1 assesses that commander 2 will
choose not to attack. The expected utility of commander 1 choosing to attack while not receiving annth

confirmation from commander 2 is thus:

E(U1(Attack)|N1 = n)≤−M(1/2)+1(1/2) < 0.

And the expected utility of commander 1 choosing to not attack while not receiving annth confirmation
from commander 2 is:

E(U1(¬Attack)|N1 = n) = 0.

We compute commander 2’s expected utilities analogously.

Hence(¬Attack,¬Attack) is the unique Nash of the coordinated attack game for alln finite.

Thus no number of messages will suffice in order to achieve common knowledge of the desire to attack under
the current protocol. In the next subsection, we restore this unbounded hierarchy by replacing common
knowledge with common belief. We explore how under particular circumstances, commanders may have
the incentive to attack.

4.2 Approximating Common Knowledge with Common Beliefs

We have seen that under their communication protocol, the commanders will never achieve common knowl-
edge, hence never achieve a coordinated attack. But Morris and Rubinstein state that the fact that they could
not achieve common knowledge does not exclude the possibility that with positive probability they will both
attack.

The general idea here is that under certain circumstances, the commanders may have incentive to attack
if they assign a common high probability to the enemy being unprepared (δ small), to the communication
being reliable (ε < δ), and to the other side attacking. In other words, we may weaken the notion of common
knowledge to that of common belief to achieve approximate coordination.

In the example of the coordinated attack problem seen thus far, the commanders did not commit to strategies
before the communication stage. Secondly, the commanders were allowed to have different objectives, i.e. a
commander would prefer the other side to attack alone than for his side to attackalone - he receives greater
payoff this way. Perhaps, if they were to commit to an action protocol before communication took place,
coordinated attack may take place with high probability. But what if we make matters simple and tweak
the payoff matrices so that the two commanders have the same objective? In order to remove the conflict of
interest, suppose the new payoff matrices were as follows:
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Commander 2

Commander 1
Attack ¬Attack

Attack (1,1) (-M,-M)
¬Attack (-M,-M) (0,0)

Table 4: New Payoff Matrix when Enemy is Unprepared

Commander 2

Commander 1
Attack ¬Attack

Attack (-M,-M) (-M,-M)
¬Attack (-M,-M) (0,0)

Table 5: New Payoff Matrix when Enemy is Prepared

We note that not attacking is no longer a “play-it-safe” strategy. For if oneside doesnot attack while
the other side does, they can do just as bad! Morris and Shin describe the“both attack”-equilibrium as
risk-dominant in the sense that there exists a probabilityp < 1/21 such that if one commander assigns this
probability to the other side attacking, his best response is to attack. They take thisp to be M

2M+1. GivenM
large, this comes sufficiently close to 1/2.

So the “both-attack” equilibrium occurs so long as it is commonM
2M+1-belief that the enemy is unprepared.

And given that the state in which the enemy is unprepared occurs with probability close to 1, then with
the use of proposition 2.6 from section 2.3, we are able to show that common belief of the enemy being
unprepared also occurs with probability close to 1. Consider proposition 2.6 in the case of two players,
wherep1 = p2 = M

2M+1. ThenΣi pi = 2p. So the conditionΣi pi < 1 reduces top < 1/2. Now, given the
probability the enemy is unprepared is(1− δ), we have that it is common M

2M+1-belief that the enemy is
unprepared with probability

≤ 1− (1− (1−δ))(
1− p
1−2p

)

= 1−δ(
1− M

2M+1

1− 2M
2M+1

)

= 1−δ(M +1)

≈ 1.

So if, with sufficiently high probability, it is common M
2M+1-belief that the enemy is unprepared, then with

sufficiently high probability, the equilibrium behavior implied by common belief approximates behavior
implied by common knowledge.

1Recall from the proof of proposition 4.1, that if at any point commander 1 does not receive a confirmation from commander
2, then he assigns probability less than 1/2 to the second commander receiving his message. Thus it cannot be that it is common
p-belief that the enemy is unprepared wherep≥ 1/2 =⇒ p < 1/2.
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5 Discussion and Conclusion

We have seen how the information structure of a game can affect the equilibrium of the game. In the Muddy
Foreheads game, if it was not common knowledge that at least one player had mud on his forehead, then
the equilibrium was for no player to confess, as opposed to players confessing truthfully by a certain period
when common knowledge was satisfied. We have also seen in the Centipede game that if the backward
induction outcome is not reached then the players did not possess common knowledge of rationality.

In these games, common knowledge of the environment seemed to be readily attainable among players for it
followed from the fact that the players perceived an event simultaneously, shared the same state space, and
from the assumption that all players were logically competent. In other more complex situations, such as the
coordinated attack problem in which players communicate information to each other through an unreliable
medium, we have seen that the attainment of common knowledge was not possible. In this case, we have
explored a possible way of approximating the notion of common knowledge with that of commonp-belief
in order to achieve a coordinated attack with high probability.

The communication protocol used in the coordinated attack problem may have appeared foolish and unreal-
istic. It would seem feasible for the commanders to coordinate an attack with high probability if they would
agree to abide by an action protocol prior to the communication phase. For example, their action protocol
could be to attack if they receive at least one message. In this case, we donot require the notion of common
knowledge or commonp-belief in order to achieve a reasonable level of coordination. But this suggests
other open questions in areas away from that of approximating common knowledge. That is, in the area of
the design of optimal action protocols in systems that are subject to communicationfailures.

Despite seeming to have no practical interest, the coordinated attack problemmay serve some purpose in
determining how to deal with situations having similar unfortunate information structure. In his paper,
“Comparing the Robustness of Trading Systems to Higher Order Uncertainty”, Shin demonstrates that if
the fact that trade is feasible is not common knowledge among traders in a decentralized market, then
efficient trade is not attained [10]. The problem of trading in a decentralized market in which traders obtain
noisy observations of the true state of payoffs seems to have similar implicationsas the coordinated attack
problem.

On another note, we are led to ask the question: in the case that common knowledge cannot be attained, to
what extent can the notion of common knowledge be relaxed in order to achieve coordination? It was pos-
sible to relax common knowledge in the coordinated attack game, a game that was binary and finite. There
were only two players who chose from two possible actions:Attackor ¬Attack, and there were two possi-
ble outcomes:Win or Lose. Given that the authors of papers surveyed thus far have only really considered
binary and finite games, this may suggest that approximation using commonp-belief may be feasible only
in limited contexts. In [11], Shin seems to suggest that commonp-belief will not suffice in approximating
common knowledge in multi-player games in which players choose actions from acontinuum, and in which
there are many possible outcomes of coordination.

The question remains: does there exist a form of approximate common knowledge that would suffice in
order to achieve coordination in such complex contexts? This is yet to be determined.
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