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Abstract
Linear programming has been a successful tool in combinatorial optimization to achievepolynomial time algorithms for problems in P and also to achieve good approximationalgorithms for problems which are NP-hard. We demonstrate that iterative methods givea general framework to analyze linear programming formulations of combinatorial opti-mization problems. We show that iterative methods are well-suited for problems in Pand lead to new proofs of integrality of linear programming formulations. We then usethe new proofs as basic building blocks for obtaining approximation algorithms for variousextensions which are NP-hard.In this thesis, we focus on degree bounded network design problems. The most stud-ied problem in this class is the Minimum Bounded Degree Spanning Tree problemde�ned as follows. Given a weighted undirected graph with degree bound B, the taskis to �nd a spanning tree of minimum cost that satis�es the degree bound. We presenta polynomial time algorithm that returns a spanning tree of optimal cost and maximumdegree B + 1. This generalizes a result of Furer and Raghavachari [37] to weighted graphs,and thus settles a 15-year-old conjecture of Goemans [42] a�rmatively. This is also thebest possible result for the problem in polynomial time unless P = NP.We also study more general degree bounded network design problems including theMinimum Bounded Degree Steiner Tree problem, the Minimum Bounded De-gree Steiner Forest problem, theMinimum Bounded Degree k-Edge Connectedsubgraph problem and theMinimum Bounded Degree Arborescence problem. Weshow that iterative methods give bi-criteria approximation algorithms that return a solu-tion whose cost is within a small constant multiplicative factor of the optimal solution andthe degree bounds are violated by an additive error in undirected graphs and a small mul-tiplicative factor in directed graphs. These results also imply �rst additive approximationalgorithms for various degree constrained network design problems in undirected graphs.We demonstrate the generality of the iterative method by applying it to the degreeconstrained matroid problem, the multi-criteria spanning tree problem, the multi-criteriamatroid basis problem and the generalized assignment problem achieving or matching bestknown approximation algorithms for them.
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1Introduction
Combinatorial optimization deals with obtaining e�cient solutions to discrete problems.In a seminal paper, Edmonds [26] advocated that an algorithm be considered e�cient ifthe number of atomic operations the algorithm takes to return a solution is polynomial inthe problem size. On the contrary, an algorithm which requires superpolynomial numberof operations is not considered e�cient. For example, in many cases, a brute force searchcan be exponential in the problem size, and hence, not considered e�cient.This leads to a natural classi�cation of problems into simple and hard problems,depending on whether one obtains a polynomial time algorithm for them. Cook [17] for-malized this classi�cation by introducing the complexity classes P and NP, and the notionof NP -completeness. Cook [17] and Karp [55] proved that a large class of natural com-binatorial optimization problems are NP-complete and that we cannot hope to obtainpolynomial time algorithms for such problems, unless P = NP . Over the years, mostcombinatorial optimization problems have been proven to be in P or are NP-complete.Importantly, most practical problems are NP-complete.For many problems in P, fast polynomial time algorithms which solve the problemsoptimally have been developed (see Schrijver [91]). For example, the problems of computingminimum spanning trees and matchings in graphs have polynomial time algorithms. Onthe other hand, one cannot obtain polynomial time exact algorithms for NP -completeproblems, unless P = NP . For such problems, the focus has been to seek algorithmswhich try to solve these problems approximately. An important area of research is tocompute bounds on the worst case performance of approximate algorithms that run inpolynomial time, as compared to the optimum solutions [49, 99].A large class of NP-complete problems are obtained by introducing side constraints3



4 CHAPTER 1. INTRODUCTIONto simple problems. In this thesis we demonstrate that iterative methods give a generalmethodology for dealing with such side constraints. First, we give new iterative proofsthat natural linear programming formulations for these simple problems are integral. Wethen extend the integrality results to LP relaxations of NP-hard problems to obtain ap-proximation algorithms. We apply this framework to degree constrained network designproblems and obtain (almost) optimal approximation algorithms and, in some cases, wealso obtain additive approximation algorithms.1.1 De�nitionsGiven a minimization problem, let S be the set of all feasible solutions. The value of theobjective function for any A ∈ S is denoted by f(A). Let S∗ = argminAf(A) denote anoptimum solution. An algorithm is called a (multiplicative) α-approximation algorithm if
f(S) ≤ αf(S∗)where S is the solution returned by the algorithm. An algorithm is called an additive

α-approximation algorithm if
f(S) ≤ f(S∗) + αAdditive approximation algorithms are rare and have been obtained for a selectedfew problems, including edge-coloring [100], coloring in planar graphs [2], bounded-degreespanning and Steiner trees [37, 42].Bi-criteria approximation algorithms We also consider problems which have two ob-jective functions f and g and one seeks a solution which minimizes both objectives si-multaneously. A standard approach is to give a bound for one of the objective functions,say g(S) ≤ B and seek the best solution with respect to the other objective, f . Let

S∗ = argimS{f(S) : g(S) ≤ B}. A multiplicative (α, β)-approximation algorithm returnsa solution S such that
f(S) ≤ αf(S∗) and g(S) ≤ βBOne may also seek bi-criteria approximation algorithms where one of the objectivefunction is violated by an additive amount and the other by a multiplicative factor.In this thesis, we will study bounded-degree network design problems. The most



1.2. OUR CONTRIBUTIONS AND RESULTS 5studied problem in this class is theMinimum Bounded-Degree Spanning Tree (MBDST)problem which is de�ned as follows. Given an undirected graph with degree upper bound
Bv on each vertex v and a cost function on the edges, the task is to �nd a spanning tree ofminimum cost which satis�es all the degree bounds. Observe that we have two objectivefunctions in the MBDST problem, degree and cost and the goal is �nd bicriteria approx-imation algorithms. The cost is usually approximated by a multiplicative factor but thedegree is approximated by a combination of a multiplicative factor and an additive amount.Degree constrained versions of more general network design problems, the Steinertree problem, the Steiner forest problem, the Arborescence problem, and theStrongly k-edge connected subgraph problem, are similarly de�ned. We will obtainbi-criteria approximation algorithms for the above problems which approximate both thecost and the degree of the solution.1.2 Our Contributions and ResultsIn this thesis, we propose iterative methods as a general technique to achieve structuralresults for simple combinatorial optimization problems, and use this as a building blockfor obtaining approximation algorithms for NP-hard variants.The �rst step of the iterative method is the application to underlying base problemthat is polynomial time solvable and showing that a natural linear programming relaxationhas integral vertex solutions. The integrality is shown in an inductive manner and givesnew integrality proofs for the following problems. These results were obtained jointly withLau and Ravi [68] and appear in Chapter 3.Theorem 1.1 The iterative method shows that a natural linear programming relaxationsfor the following problems has integral vertex solutions.1. Minimum spanning tree.2. Maximum weight bipartite matching.3. Minimum cost arborescence.4. Minimum cost base in matroids.5. Minimum cost perfect matching in general graphs.The real power of the new proofs, obtained via the iterative method, is realized whenwe consider NP-hard variants of the underlying simply problems. The crucial observation is



6 CHAPTER 1. INTRODUCTIONthat a large class of NP-hard problems are simple problems with additional side constraints.For example, adding degree bound constraints to the minimum spanning tree problem givesus the minimum bounded-degree spanning tree problem.We introduce the iterative relaxation method to deal with the additional side con-straints. A generic relaxation step proceeds as follows.Iterative Relaxation. Fix a threshold β. If there is a constraint ∑
i aixi ≤ b such that

∑
i ai ≤ b + β then remove the constraint.For problems where variables take values from {0, 1}, the iterative relaxation stepensures that the corresponding constraint can only be violated by an additive error of β evenafter it is removed. This step is crucial in achieving additive approximation algorithms.We also note that the iterative relaxation method is similar to the techniques of Beck andFiala [6] result on discrepancy of sets. One application of the iterative relaxation techniquegives us the following results that we obtain jointly with Lau [96] and appears in Chapter 4.Theorem 1.2 There exists a polynomial time algorithm for the Minimum Bounded-Degree Spanning Tree problem which returns a tree of optimal cost such that the degreeof any vertex v in the tree is at most Bv + 1. Here, the optimal cost is the cost of theminimum cost tree which satis�es the degree bounds exactly.Theorem 1.2 is the optimal result for the MBDST problem unless P = NP andpositively resolves a conjecture of Goemans [42].Iterative rounding technique was introduced by Jain [53] for approximation generalnetwork design problems and works as follows for typical cut-covering formulations ofgeneral connectivity problems.Iterative Rounding. Fix a threshold α ≥ 1. If there is a variable xi which the LP setsto a value of at least 1

α then pick the corresponding element in the integral solution.We extend the work of Jain [53] and use the two steps, rounding and relaxation,in various combinations to derive strong approximation algorithms for a large class ofproblems.� We obtain bi-criteria approximation algorithm for theMinimum Bounded-DegreeSteiner Tree problem, theMinimum Bounded-Degree Steiner Forest prob-lem and the Minimum Bounded-Degree Steiner Network problem. The so-lution returned by the algorithm costs at most twice the optimal solution and the



1.2. OUR CONTRIBUTIONS AND RESULTS 7Network Topology Single Criterion Previous Bi-criteria Our resultsCost DegreeSpanning Tree 1 B + 1 [37] (1, B + 2) [42] (1, B + 1)Steiner Tree 1.55 [90] B + 1 [37] (4, 2B + log n) [61] (2, B + 3)Steiner Forest 2 [1] B + 3∗ (O(log n), O(log n)) (2, B + 3)k-EC Subgraph 2 [53] B + O(k)∗ (k log n, k log n) [33] (2, B + O(k))Steiner Network 2 [53] B + O(rmax)∗ - (2, B + O(rmax))k-Strongly EC 2 [101] 3B + 5∗ - (3, 3B + 5)Arborescence 1 2B + 2∗ - (2, 2B + 2)Table 1.1: Results on Minimum Cost Degree-Bounded Network Design Problems, where ∗ denotesthat our results on bi-criteria approximation also improve the single-criterion guarantees.degree of any vertex violates its degree bound by an additive amount which dependson the maximum connectivity requirement. These results were obtained jointly withLap Chi Lau [70] improving on the previous results obtained jointly with Lau, Naorand Salavatipour [69] and are presented in Chapter 5.� As a corollary to the previous results, we also obtain �rst additive approximation al-gorithms for the Bounded-Degree Steiner Forest problem and the Bounded-Degree k-edge connected subgraph problem for bounded k.� We obtain constant factor bi-criteria approximation algorithm for the MinimumBounded-Degree Arborescence problem and theMinimum k-arc connectedsubgraph problem where both the cost and the maximum degree of the solutionis within constant multiplicative factor of the optimal solution. These results wereobtained jointly with Lap Chi Lau, Se� Naor and Mohammad Salavatipour [69] andare presented in Chapter 6.We also show applications of iterative methods to other combinatorial optimizationproblems and give the following results in Chapter 7.� We obtain a 2-approximation algorithm for the generalized assignment problemmatching the result of Shmoys and Tardos [95].� We obtain a polynomial time approximation scheme (PTAS) for the multi-criteriaspanning tree problem and the multi-criteria matroid basis problem. These resultswere obtained jointly with R. Ravi [89].� We obtain an additive approximation algorithm for the degree constrained matroidproblem which generalizes the Minimum bounded Degree spanning tree prob-



8 CHAPTER 1. INTRODUCTIONlem and Minimum Crossing Tree problem. This result was obtained jointly withKirály and Lau [58] which also contain results on degree constrained submodular�ow problem that are not included in this thesis.1.3 Related WorkExact LP Formulations. Linear programming has been used in combinatorial opti-mization soon after the simplex algorithm was developed by Dantzig [23] in the 1940's.Earlier combinatorial results of König [63] and Egerváry [32] on bipartite matchings andresults of Menger [75] on disjoint paths in graphs were interpreted as integrality of lin-ear programming formulations for these problems. Many other problems like maximum�ow, assignment and transportation were also shown to be solvable by formulating lin-ear programs for these problems which are integral. Edmonds [26, 27, 28, 29] formulatedlinear programs for basic problems like matching, arborescence, matroids, matroid inter-section and showed that the formulations are integral. Total Dual Integrality [31] and TotalUnimodularity [11] were developed as general techniques to show the integrality of linearprogramming formulations. The uncrossing technique, which is used to simplify compli-cated set-systems while preserving certain structural properties, has played a crucial rolein combinatorial optimization (see [28, 31, 35, 44] for some applications). The uncrossingtechnique plays an important role in the results in our work as well and appears throughoutthe thesis. We refer the reader to Schrijver [91, 93] and Nemhauser and Wolsey [80], Cooket al [18] for extensive historical as well as technical details for above mentioned topics.Network Design. Much focus has been given to designing approximation algo-rithms for network design problems; we refer the reader to [65] for a survey. Primal-dualalgorithms initially played a central role in achieving strong approximation algorithmsfor network design problems starting with Agarwal, Klein and Ravi [1] and Goemansand Williamson [43]. The techniques were then applied to general connectivity problems(see [41]) with moderate success. A breakthrough result is due to Jain [53] who gavea 2-approximation algorithm for the edge-connectivity Survivable Network Designproblem and introduced the iterative rounding framework. This result considerably gen-eralized and improved previous work on network design problems. Later, the iterativerounding approach was applied to other settings including network design problems indirected graphs [38, 101] and undirected graphs [14, 34].Degree Constrained Network Design. Network design problems with degreeconstraints have been studied extensively lately. A simpler setting is minimizing the max-



1.3. RELATED WORK 9imum degree of a subgraph (without considering the cost) satisfying certain connectivityrequirements. A well-known example is theMinimum Degree Spanning Tree (MDST)problem, where the objective is to �nd a spanning tree of smallest maximum degree. Thisproblem is already NP-hard as it generalizes the Hamiltonian Path problem. Fürerand Raghavachari [37] gave an elegant approximation algorithm returning a solution withmaximum degree at most one more than the optimal solution developing on the work onWin [106]. Furer and Raghavachari [37] also generalized their result to the MinimumDegree Steiner tree problem. Ravi, Raghavachari, and Klein [59, 87] considered theMinimum Degree k-Edge-Connected Subgraph problem, and gave an approxima-tion algorithm with performance ratio O(nδ) for any �xed δ > 0 in polynomial time,and O(log n/ log log n) in sub-exponential time. Recently, Feder, Motwani and Zhu [33]obtained a polynomial time O(k log n)-approximation algorithm.For the general problem of �nding a minimum cost subgraph with given connectiv-ity requirements and degree bounds Bv on every vertex v, the most-studied case is theMinimum Bounded-Degree Spanning Tree (MBDST) problem. The �rst approxi-mation was an (O(log n), O(log n))-algorithm by [86]. This was subsequently improved ina series of papers [12, 13, 60, 62, 88] using a variety of techniques which included pri-mal dual algorithms, Lagrangian relaxation, push-pre�ow framework and LP roundingalgorithms. Recently, Goemans [42] made a breakthrough for this problem by giving a
(1, Bv + 2)-approximation algorithm. The algorithm in [42] uses matroid intersection andgraph orientation algorithms to round a linear programming relaxation for the problem.Very little was known for more general connectivity requirements before our work.For theMinimum Bounded-Degree Steiner Tree problem, there is an (O(log n), O(log n))approximation algorithm [86]. This bound was improved to (O(1), O(Bv+log n))-approximationby [61], but the algorithm runs in quasi-polynomial time.How to Read this ThesisThe thesis can certainly be read in a linear fashion. We highlight the dependence invarious sections which may help the reader to jump to their favorite part of the thesis.We discuss linear programming basics and de�nitions in Chapter 2 which will be usedthroughout the thesis. In Chapter 3 we apply the iterative framework to show integralityof linear programming relaxations for basic combinatorial optimization problems. It isrecommended that the reader read Section 3.1 for a simple application of the iterativemethod and Section 3.2 where the uncrossing technique is illustrated.



10 CHAPTER 1. INTRODUCTIONThe latter half of the thesis deals with constrained versions of the simple base prob-lems in Chapter 3. Chapter 4 on the Minimum Bounded-Degree Spanning Treeproblem and Section 7.2 on multi-criteria spanning tree problem build on materialin the spanning tree Section 3.2. Algorithms for the Multi criteria matroid basisproblem and the degree constrained matroids in Chapter 7 develop on the itera-tive algorithm for matroid basis problem in Section 3.4. Algorithms for the Minimumbounded-degree Arborescence problem in Section 6.2 develops on Section 3.3 on thearborescence problem. The treatment of generalized assignment problem in Section 7.1develops on the bipartite matching problem in Section 3.1.In Chapter 5 we consider degree constrained versions of general network design prob-lems in undirected graphs which develops on the work of Jain [53]. In Chapter 6 we considerdegree constrained network design problems in directed graphs which develops on work ofGabow [38]. Nonetheless, we have made an e�ort to make these sections as much self-contained as possible.



2Linear Programming Basics
In this chapter we discuss some linear programming basics. We also prove a crucial ranklemma which will be used throughout the thesis. We close by reviewing some standardgraph and set notation used in the thesis.2.1 Linear Programs and Vertex SolutionsUsing matrix notation, a linear program is expressed as follows.minimize cT xsubject to Ax ≥ b

x ≥ 0If x satis�es (Ax ≥ b, x ≥ 0), then x is feasible. If there exists a feasible solution to anLP, it is feasible; otherwise it is infeasible. An optimal solution x∗ is a feasible solution suchthat cT x∗ = min{cT x s.t.Ax ≥ b, x ≥ 0}. The LP is unbounded (from below) if ∀λ ∈ R,∃feasible x such that cT x < λ. The space of all feasible solutions P = {x : Ax ≥ b, x ≥ 0} isa called a rational polyhedron if all entries of A and b are rational. In this thesis we workonly with rational polyhedra.There are di�erent forms in which a general linear program can be represented in-cluding the normal form and the standard form. Simple linear transformations show thatthese forms are identical to the general linear program we consider above [16].11



12 CHAPTER 2. LINEAR PROGRAMMING BASICSDe�nition 2.1 Let P = {x : Ax ≥ b, x ≥ 0} ⊆ Rn. Then x is a vertex of P if there doesnot exist y 6= 0 such that x + y, x− y ∈ P .For any polyhedron P , we de�ne PI to denote the convex hull of all integral vectorsin P , i.e. PI = conv{x : Ax ≥ b, x ≥ 0, x ∈ Zn}.De�nition 2.2 P is called integral polyhedron if P = PI , i.e., P is the convex hull of allintegral vectors in P .We call a linear program min{cx : x ∈ P} integral if P is integral. The followingequivalent conditions follow easily (see Schrijver [93], pages 231-232) and condition (2) isused to show the integrality of a polyhedron throughout the thesis.Theorem 2.3 The following conditions are equivalent.1. P is integral.2. min{cx|x ∈ P} is attained by an integral vector, for each c for which the minimumis �nite.We now show basic properties about vertex solutions. Most proofs are standardand we give a short sketch. The reader is referred to Chvátal [16] or lecture notes byGoemans [40] for details. The following lemma directly implies Theorem 2.3.Lemma 2.4 Let P = {x : Ax ≥ b, x ≥ 0} and assume that min{cT x : x ∈ P} is �nite.Then ∀x ∈ P,∃ a vertex x′ ∈ P such that cT x′ ≤ cT x. i.e., there is always a vertex optimalsolution.Proof: The idea of the proof is that by using the de�nition of a vertex, we can move froma current optimal solution to one that has more zero components or more tight constraintsand is closer to being a vertex. Let Ai denote the ith row of A and bi denotes the ith-coordinate of the vector b.Consider x such that it is optimal but not a vertex. That implies there exists y 6= 0such that x + y ∈ P and x− y ∈ P . Therefore,
A(x + y) ≥ b, x + y ≥ 0

A(x− y) ≥ b, x− y ≥ 0



2.1. LINEAR PROGRAMS AND VERTEX SOLUTIONS 13Let A= be the submatrix of A restricted to the rows which are at equality at x and
b= be the vector b restricted to these rows. Hence, we have A=x = b=. Hence, we musthave A=y ≥ 0 and A=(−y) ≥ 0. Subtracting, we get A=y = 0. Since x is optimal, thefollowing holds,

cT x ≤ cT (x + y)

cT x ≤ cT (x− y)

⇒ cT y = 0Moreover, since y 6= 0, without loss of generality assume there exists j such that
yj < 0 (if not then consider −y). Consider x + λy for λ > 0 and increase λ until x + λy isno longer feasible (due to the non-negativity constraints). Formally, let

λ∗ = min{ min
j:yj<0

xj

−yj
, min
i:Aix>bi,Aiy<0

Aix− bi

−Aiy
}Now x + λ∗y is a new optimal solution with one more zero coordinate or one extratight constraint. Since x + y ≥ 0 and x − y ≥ 0, if xi = 0 then yi = 0. Therefore, thecoordinates that were at 0, remain at 0. Moreover A=(x + y) = A=x = b since A=y = 0,hence tight constraints remain tight. Hence this process terminates with at a vertex asclaimed. �The next theorem relates vertex solutions to corresponding non-singular columns ofthe constraint matrix.Lemma 2.5 Let P = {x : Ax ≥ b, x ≥ 0}. For x ∈ P , let A= denote the matrixconsisting of rows of A which are satis�ed at equality by x and A=
x denote the submatrixof A= consisting of the columns corresponding to the nonzeros in x. Then x is a vertex i�

A=
x has linearly independent columns (i.e., A=

x has full column rank).Proof: (⇐) If x is not a vertex, we will show that A=
x has linearly dependent columns. Bythe hypothesis, there exists y 6= 0 such that A=y = 0 (see the proof of the previous lemma).Therefore A=

y (the columns where y has a nonzero coordinate) has linearly dependentcolumns. By the observation made at the end of the previous proof, xj = 0 ⇒ yj = 0.Therefore, A=
y is a submatrix of A=

x . Therefore, the columns of A=
x are linearly dependent.(⇒) We want to show that if A=

x has linearly dependent columns then x is not avertex. By the hypothesis, there exists y 6= 0 such that A=
x y = 0. Complete y to an
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n-dimensional vector by setting the remaining coordinates to 0. Now by construction,
A=y = 0. Moreover, by construction yj = 0 whenever xj = 0. Also note that there exists
ε 6= 0 such that x + εy ≥ 0 and x− εy ≥ 0. Moreover x + εy and x− εy are feasible since
A(x + εy) = Ax + εAy ≥ b and A(x − εy) ≥ b for small enough ε > 0. Hence, x is not avertex. �We get the following Rank Lemma that will form a basic ingredient of all iterativeproofs which states that each vertex solution is determined by n linearly independentconstraints at equality where n is the number of variables (See Schrijver [93], page 104).Lemma 2.6 (Rank Lemma) Let P = {x : Ax ≥ b, x ≥ 0} and let x be a vertex of
P such that xi > 0 for each i. Then any maximal number of linearly independent tightconstraints of form Aix = bi for some row i of A equals the number of variables.Proof: Since xi > 0 for each i, we have A=

x = A=. From Lemma 2.5 it follows that A= hasfull column rank. Since the number of linearly independent columns equals the numberof non-zero variables in x and the row rank of any matrix equals the column rank [52]we have that the row rank of A= equals the number of variables. Then any maximalnumber of linearly independent tight constraints is exactly the maximal number of linearlyindependent rows of A= which is exactly the row rank of A= and hence the claim follows.
�2.2 Solving Linear ProgramsIn this section, we brie�y mention various methods of solving linear programs.2.2.1 Simplex AlgorithmSimplex algorithm was developed in 1940's by Dantzig [23] for solving linear programs tooptimality. The idea of the simplex algorithm is to move from vertex to vertex ,along edgesof the polyhedron, until we reach the optimal vertex solution. An important implemen-tation issue is that vertices and edges of the polyhedron are not speci�ed explicitly butrepresented by sets of linearly independent tight constraints (basis) as given by Lemma 2.6.Unfortunately, such a representation need not be unique and leads to technical issues (de-generacy) which need to be addressed. We refer the reader to Chvátal [16] for details. Many



2.2. SOLVING LINEAR PROGRAMS 15variants of the simplex algorithm have been considered, each de�ned by which neighboringvertex to move to. Although the simplex algorithm works e�ciently in practice, there areexamples where each variant of the simplex algorithm runs in exponential time.2.2.2 Polynomial Time AlgorithmsPolynomial time algorithms for solving linear programs fall in two categories: The ellipsoidalgorithm [56] and interior point algorithms [54]. We refer the reader to Nemhauser andWolsey [80] and Wright [108] for details about these algorithms. Both these algorithmssolve linear programs to give near optimal solution in polynomial time. Moreover, thereare rounding algorithms [80] which convert a near optimal solution to an optimal vertexsolution.Theorem 2.7 [80] There is a polynomial time algorithm which returns an optimal vertexsolution to a linear program.2.2.3 Separation and OptimizationIn this thesis, we will encounter linear programs where the number of constraints is ex-ponential in the size of the problem (e.g. in the spanning tree problem in Chapter 4, wewill write linear programs where the number of constraints is exponential in the size ofthe graph) and it is not obvious that one can solve them in polynomial time. We use thenotion of separation to show that sometimes exponentially sized linear programs can besolved in polynomial time.De�nition 2.8 Given x∗ ∈ Qn and a polyhedron P = {x : Ax = b, x ≥ 0}, the sepa-ration problem is the decision problem whether x∗ ∈ P . The solution of the separationproblem is the answer to the membership problem and in case x∗ /∈ P , it should return avalid constraint πx ≥ π0 for P which is violated by x∗, i.e., πx∗ < π0.The framework of ellipsoid algorithm argues that if one can solve the separationproblem for P in polynomial time then one can also optimize over P in polynomial time.Theorem 2.9 of Grötschel, Lovász and Schrijver [45] showed that polynomial time sep-aration is equivalent to polynomial time solvability of a linear program. The basis ofthis equivalence is the ellipsoid algorithm. We now state the equivalence formally (seeSchrijver [93], Chapter 14 for details). The size of a rational number is de�ned to be
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log(|p| + 1) + log q and the size of a set of inequalities Ax ≤ b is de�ned to be the sumof sizes of entries in A and b plus mn where A is a m by n matrix. Let for each i ∈ N,
P (i) be a rational polyhedron and suppose that we can compute, for each i ∈ N, in timepolynomially bounded in log i, the natural numbers ni and σi where P (i) ⊆ Rni and suchthat Pi has a representation of size at most σi. Then the separation problem for P (i)for i ∈ N is said to polynomial time solvable if there exists an algorithm, which for input
(i, y), with i ∈ N and y ∈ Qni solves the separation problem for P (i) in time polynomiallybounded by log i and size(y). The optimization problem is polynomial time solvable for
P (i) for i ∈ N de�ned similarly, after replacing separation for optimization.Theorem 2.9 [45] For any class P (i) where i ∈ N, the separation problem is polynomiallytime solvable if and only if the optimization problem is polynomial time solvable.Clearly, one can solve the separation problem by checking each constraint but forproblems where the number of constraints is exponential in size such a method is notpolynomial time. For problems we consider in this thesis, e�cient separation oracles havebeen obtained and we will give details whenever such an occasion arises.2.3 De�nitionsLaminar Family. Given a set V , L ⊆ 2V , a collection of subsets of V , is called laminar iffor each A,B ∈ L we have either A∩B = φ or A ⊆ B or B ⊆ A. The following propositionabout the size of a laminar family are standard and will be used in later chapters.Proposition 2.10 A laminar family L over the ground set V without singletons (subsetswith only one element) has at most |V | − 1 distinct members.Proof: The proof is by induction on the size of the ground set. If |V | = 2, clearly theclaim follows. Let n = |V | and the claim be true for all laminar families over ground setsof size strictly smaller than n. Let S be a maximal set in the laminar family which is notequal to V . Each set in L, except for V , is either contained in S or does not intersect
S. The number of sets in L contained in S (including S itself) is at most |S| − 1 by theinduction hypothesis. The sets in L not intersecting with S form a laminar family over theground set V \ S and hence there are at most |V | − |S| − 1 such sets. Along with V , thisgives a total of at most |S| − 1 + |V | − |S| − 1 + 1 = |V | − 1 sets. �
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C

B
A

A B C

A B C(a) (b) (c)Figure 2.1: In Figure (a), the laminar family L over base set U . In Figure (b), the forestcorresponding to L when singletons are not part of L. Here |L| = 5 and |U | = 7. InFigure (c), the forest corresponding to L when singletons are part of L. Here |L| = 12 and
|U | = 7.The following corollary follows immediately from Proposition 2.10 since addition ofsingleton sets to the family can add at most |V | new members.Corollary 2.11 A laminar family L over the ground set V has at most 2|V | − 1 distinctmembers.The laminar family L de�nes a directed forest FL in which nodes correspond to setsin L and there exists an edge from set R to set S if R is the smallest set containing S.We call R the parent of S and S the child of R. A parent-less node is called a root and achildless node is called a leaf. Given a node R, the subtree rooted at R consists of R andall its descendants. We will abuse notation and use L to represent both the set family andthe forest FL.Cross-Free Family. A pair of sets A,B ⊆ V are crossing if all of the sets A ∩ B,A −

B,B−A,V −(A∪B) are nonempty, and a family of sets L = {A1, A2, . . . , A`} is cross-freeif no two of its sets are crossing.Chain. A family L ⊆ 2S is a chain if A ∈ L, B ∈ L, then A ⊆ B or B ⊆ A. Observe thatevery chain is a laminar family but not vice-versa.For subsets A,B ⊆ U we de�ne A∆B = (A \B) ∪ (B \ A).Graph Notation. Given a undirected graph G = (V,E) and a subset of vertices S ⊆ Vwe let δ(S) denote the set of edges with exactly one endpoint in S, i.e., δ(S) = {e ∈ E :

|e ∩ S| = 1}. We also denote δ({v}) by δ(v) for a vertex v ∈ V . For subsets of vertices
S, T ⊆ V , let E(S, T ) denote the set of edges with one endpoint in S and other in T and
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E(S) = E(S, S) be the set of edges with both endpoints in S. For an edge e ∈ E, thegraph G\e denotes the graph obtained after deleting the edge e and the graph G/e denotesthe graph obtained after contracting the endpoints of e (and deleting e). The graph G \ vdenotes the graph obtained after deleting the vertex v from G and each edge incident at
v. For a set F ⊆ E, let χ(F ) denote the vector in R|E|: the vector has an 1 correspondingto each edge e ∈ F , and 0 otherwise. This vector is called the characteristic vector of F ,and is denoted by χ(F ).Given a directed graph D = (V,A) and a subset of vertices S ⊆ V we let δin(S)denote the set of arcs with their head in S and tail in Sc, i.e. δin(S) = {(u, v) ∈ A : u ∈

S, v /∈ S}. We let δout(S) = {(u, v) ∈ A : u /∈ S, v ∈ S}. For subsets S, T ⊆ V we let
E(S, T ) = {(u, v) ∈ A : u ∈ S, v ∈ T}. The graph D \ a denotes the directed graph formedafter deleting arc a and graph D/(u, v) is the graph formed after contracting the arc (u, v)in a single vertex.Function Notation. A function f : 2V → R is called submodular if for each subset
S, T ⊆ V we have

f(S) + f(T ) ≥ f(S ∪ T ) + f(S ∩ T )while it is supermodular if for each subset S, T ⊆ V we have
f(S) + f(T ) ≤ f(S ∪ T ) + f(S ∩ T ).



3Exact Linear Programming Formulations
In this chapter we study various problems where an explicit linear description of all fea-sible integer solutions for the problem is known. In other words, there are explicit linearprogramming relaxations for these problems which are integral. These linear programmingrelaxations are well-studied in literature and have been shown to be integral via di�erentproof techniques. We will use the iterative method to give yet another proof of integral-ity of these relaxations. In later chapters of the thesis, these iterative proofs will act as astepping stone for achieving approximation algorithms for constrained versions of problemsconsidered here.All proofs follow the same overall outline we describe now. First we give the naturallinear programming relaxation for the problem which is known to be integral. The secondstep is to give a characterization of any vertex solution through independent tight con-straints which de�ne the vertex uniquely. This step involves using the uncrossing technique.Although these characterization results are standard, we prove them here for completenessand to illustrate the uncrossing method. The most important ingredient of the proof is the�nal step, where we give a simple iterative procedure which constructs an integral solutionusing the optimum solution to the linear program. The iterative procedure, in each step,either selects an element in the integral solution which the linear program sets to a valueof 1 or, deletes an element which the linear program sets to a value of 0. The technicalheart of the argument involves showing that the procedure can always �nd such an elementwhich the linear program sets to an integral value (0 or 1). This involves crucially usingthe characterization of the vertex solution by tight independent constraints.We consider the bipartite matching problem in Section 3.1, the minimum spanningtree problem in Section 3.2, the minimum arborescence problem in Section 3.3, the mini-mum matroid basis problem in Section 3.4 and the perfect matching problem in Section 3.5.19



20 CHAPTER 3. EXACT LINEAR PROGRAMMING FORMULATIONS3.1 Matching in Bipartite GraphsGiven a graph G = (V,E), a subgraph H of G is called a matching if dH(v) ≤ 1 for all
v ∈ V . The matching is called perfect if dH(v) = 1 for all v ∈ V . Given a weight function
w : E → R the weight of a matching is de�ned to be the sum of the weights of the edgesin the matching. A maximum weight perfect matching is a perfect matching of maximumweight.Finding matchings in bipartite graphs is a fundamental problem which has playeda crucial role in development of combinatorial optimization. Kuhn [67] building on thework of Egerváry [32] gave the famous Hungarian method which gives a polynomial timealgorithm for the problem. Birkho� [8] noted that the linear program for the bipartitematching problem given in Figure 3.1 is integral. Other proofs to show the integrality ofthe linear program have been given by von Neumann [102, 103], Dantzig [22], Ho�manand Wielandt [50], Koopmans and Beckmann [64], Hammersley and Mauldon [46], Tomp-kins [98] and Mirsky [76] (see the survey by Mirsky [77] and Schrijver [91], Chapter 18 andreferences therein). In this section, we use the iterative method to give a new proof that thelinear programming relaxation for the bipartite matching problem is integral. This proofwill serve as a stepping stone for obtaining an approximation algorithm for the GeneralizedAssignment problem in Section 7.1.3.1.1 Linear ProgramGiven a bipartite graph G = (V1 ∪ V2, E) and a weight function w : E → R, the linearprogramming relaxation for the maximum weight bipartite matching problem is given bythe following LPBM (G).maximize w(x) =

∑

e∈E

we xesubject to ∑

e∈δ(v)

xe ≤ 1 ∀ v ∈ V1 ∪ V2

xe ≥ 0 ∀ e ∈ EFigure 3.1: The Bipartite Matching Linear Program.Polynomial Time Solvability. Observe that the linear program LPBM (G) iscompact, i.e., the number of constraints and variables is polynomially bounded in the size



3.1. MATCHING IN BIPARTITE GRAPHS 21of the problem. Hence, the linear program can be solved optimally in polynomial timeusing the Ellipsoid algorithm or interior point algorithms (see Section 2.2.2).We prove the following theorem by an iterative algorithm in the next section.Theorem 3.1 Given any weight function w there exists an integral matching M such that
w(M) ≥ w · x where x is the optimal solution to LPBM (G).Observe that the Theorem 3.1 as a corollary implies the following theorem.Theorem 3.2 The linear programming relaxation LPBM (G) is integral.3.1.2 Characterization of Vertex SolutionsBefore we prove Theorem 3.1 we give a characterization of vertex solutions of LPBM inthe following lemma which follows by a direct application of the Rank Lemma.Lemma 3.3 Given any vertex solution x of linear program LPBM (G) such that xe > 0for each e ∈ E there exists W ⊆ V1 ∪ V2 such that1. x(δ(v)) = 1 for each v ∈W and x is the unique solution to the constraints {x(δ(v)) =

1 : v ∈W}.2. The vectors {χ(δ(v)) : v ∈W} are linearly independent.3. |W | = |E|.3.1.3 Iterative AlgorithmWe now give the algorithm which constructs an integral matching of weight at least theoptimal solution to LPBM (G) proving Theorem 3.1. The algorithm is a simple iterativeprocedure and shown in Figure 3.2.We prove the correctness of the algorithm in two steps. First, we show that thealgorithm returns a matching of optimal weight if the algorithm always �nds an edge ewith xe = 0 in Step 2a or an edge e with xe = 1 in Step 2b . In the second part, we showthat the algorithm will always �nd such an edge completing the proof.



22 CHAPTER 3. EXACT LINEAR PROGRAMMING FORMULATIONSIterative Bipartite Matching Algorithm1. Initialization F ← ∅.2. While E(G) 6= ∅(a) Find a vertex optimal solution x of LPBM (G) and remove every edge e with
xe = 0 from G.(b) If there is an edge e = {u, v} such that xe = 1 then update F ← F ∪ {e},
G← G \ {u, v}.3. Return F . Figure 3.2: Bipartite Matching Algorithm.Claim 3.4 If the algorithm, in every iteration, �nds an edge e with xe = 0 in Step 2aor an edge e with xe = 1 in Step 2b, then it returns a matching F of weight at least theoptimal solution to LPBM (G).Proof: The proof will proceed by induction on the number of iterations of the algorithm.The base case is trivial when the algorithm proceeds for only one iteration.If we �nd an edge e such that xe = 0 in Step 2a of the algorithm, then the residualproblem is to �nd a matching in the graph G′ = G \ {e}. The residual solution xres, xrestricted to G′, is a feasible solution to the linear programming relaxation of the residualproblem. By induction, the algorithm returns a matching F ′ ⊆ E(G′) with weight at leastthe optimal solution to LPBM (G′). Since w(F ′) ≥ w ·xres = w ·x, the induction hypothesisholds in this case.In the other case, if we �nd an edge e = {u, v} such that xe = 1 in Step 2b of thealgorithm then the residual problem is to �nd a matching which contains the edge e. Thisis exactly the matching problem in graph G′ = G \ {u, v}. Moreover xres, x restrictedto edges in G′, is a feasible solution to the linear programming relaxation for the residualproblem. Inductively, the algorithm will return a matching F ′ of weight at least the weightof the optimum solution of LPBM (G′), and hence w(F ′) ≥ w · xres, since xres is a feasiblesolution to LPBM (G′). The algorithm returns the matching F = F ′ ∪ {e} and we have

w(F ) = w(F ′) + we and w(F ′) ≥ w · xreswhich implies that
w(F ) ≥ w · xres + we = w · x



3.1. MATCHING IN BIPARTITE GRAPHS 23since xe = 1. Therefore, the weight of the matching returned by the algorithm is at leastthe weight of the LP solution x, which is a lower bound on the optimal weight. �We now complete the proof of Theorem 3.1 by showing that the algorithm always�nds an edge e such that xe = 0 or xe = 1. The proof of the following lemma cruciallyuses the characterization of vertex solutions given in Lemma 3.3.Lemma 3.5 Given any vertex solution x of LPBM (G) there must exist an edge e suchthat xe = 0 or xe = 1.Proof: Suppose for sake of contradiction 0 < xe < 1 for each edge e ∈ E. Lemma 3.3implies that there exists W ⊆ V1∪V2 such that constraints corresponding to W are linearlyindependent and tight and |E| = |W |.Claim 3.6 We must have degE(v) = 2 for each v ∈W and degE(v) = 0 for each v /∈W .Proof: Firstly, degE(v) ≥ 2 for each v ∈ W else we have xe = 1 or xe = 0 for some edge
e ∈ E since x(δ(v)) = 1 for each v ∈W . But then we have

2|W | = 2|E| =
∑

v∈V

degE(v) =
∑

v∈W

degE(v) +
∑

v/∈W

degE(v)
�

�

�

�3.1
≥ 2|W |+

∑

v/∈W

degE(v)
�

�

�

�3.2which implies that equality must hold everywhere in degE(v) ≥ 2 for each v ∈ W and
degE(v) = 0 for each v /∈W . �Hence, E is a cycle cover of vertices in W . Let C be any such cycle with all vertices in W .Since C is an even cycle because G is bipartite we also have

∑

v∈C∩V1

χ(δ(v)) =
∑

v∈C∩V2

χ(δ(v))which contradicts the independence of constraints in condition (2) of Lemma 3.3. �Thus we obtain from Lemma 3.5 that the Algorithm in Figure 3.2 returns a matchingwhich weighs at least the weight of the linear program. This completes the proof ofTheorem 3.1.



24 CHAPTER 3. EXACT LINEAR PROGRAMMING FORMULATIONS3.2 Minimum Spanning TreesGiven a graph G = (V,E), a spanning tree is a minimal connected subgraph of G. In aninstance of the minimum spanning tree problem, we are given a graph with a cost function
c : E → R on the edges and the goal is to �nd a spanning tree of minimum cost.The minimum spanning tree problem is a fundamental optimization problem andis a poster child problem for illustrating greedy algorithms, many variants of which havebeen obtained, starting from Boruvka [10], Kruskal [66] and Prim [83]. Edmonds [29]gave a linear programming relaxation (see Figure 3.3) for the minimum spanning treeproblem and showed that it is integral. Various other proofs have been given to showthe integrality of the linear program . Indeed, the famous spanning tree algorithms ofBoruvka, Prim and Kruskal [91] can all be interpreted as primal-dual algorithms and thusimply the integrality of the linear program. It follows from Edmonds [27, 29] that the lineardescription in Figure 3.3 is totally dual integral (TDI) and thus as a corollary imply thatthe linear program is integral. Algorithms for decomposing fractional solutions into convexcombination of spanning trees [20, 82] also imply the integrality of the linear program. Werefer the reader to Magnanti and Wolsey [74] for a survey on spanning trees.In this section we will give another proof of the integrality of linear program in Fig-ure 3.3 using the iterative method. Actually, we give two iterative algorithms which showthat the linear program is integral. In Chapter 4, both these algorithms are extended toalgorithms for the degree constrained spanning tree problem . The �rst iterative algorithmextends to the Minimum Bounded-degree spanning tree problem when only upperbounds on the degrees are present in Section 4.1. The second algorithm extends when bothupper and lower degree bounds are present in Section 4.3.3.2.1 Linear ProgramA linear programming relaxation for the minimum spanning tree problem, given by Ed-monds [29], is shown in Figure 3.3. The linear program is also related to the study of theTravelling Salesman Problem. Recall that for a set S ⊆ V , we denote E(S) to be the setof edges with both endpoints in S. The linear program LPST (G) is as follows.Observe that in any spanning tree T and subset S ⊆ V we have E(T )∩E(S) ≤ |S|−1and hence the above linear program is a relaxation to the minimum spanning tree problem.We will show the integrality of the linear program using the iterative method.



3.2. MINIMUM SPANNING TREES 25minimize ∑

e∈E

ce xe

x(E(S)) ≤ |S| − 1 ∀ S ⊂ V

x(E(V )) = |V | − 1

xe ≥ 0 ∀ e ∈ EFigure 3.3: Linear program for minimum spanning tree problem.Theorem 3.7 [29] Every vertex solution to LPST (G) is integral and corresponds to thecharacteristic vector of a spanning tree.Before we give the iterative algorithm and proof of Theorem 3.7, we show that onecan optimize over the linear program LPST (G) in polynomial time. We show this by givinga polynomial time separation oracle for the constraints in the linear program LPST (G) (seeMagnanti and Wolsey [74]). Alternatively, a compact equivalent linear program was givenby Wong [107] thus implying that the linear program LPST (G) is solvable in polynomialtime.Theorem 3.8 There is a polynomial time separation oracle for the constraints in the linearprogram LPST (G).Proof: Given a fractional solution x the separation oracle needs to �nd a set S ⊆ V suchthat x(E(S)) > |S| − 1 if such a set exists. It is easy to check the equality x(E(V )) =

|V | − 1. Thus, checking the inequality for each subset S ⊂ V is equivalent to checking
minS⊂V {|S| − 1 − x(E(S))} < 0. Using x(E(V )) = |V | − 1 we obtain that it is enoughto check minS{|S| − 1 + x(E(V )) − x(E(S))} < |V | − 1}. We show that solving 2|V | − 2min-cut problems su�ce to check the above.Fix a root vertex r ∈ V . For each k ∈ V \ {r}, we construct two minimum cutinstances, one which checks the inequality for all subsets S containing r but not k andthe other checks the inequality for all subsets S containing k but not r. We outline theconstruction for the �rst one, the second construction follows by changing the roles of rand k.We construct a directed graph Ĝ with vertex set V and arcs (i, j) and (j, i) for eachedge {i, j} in G. We let the weight of edges (i, j) and (j, i) to be x{i,j}

2 . We also place arcsfrom each vertex v ∈ V \ {r, k} to k of weight 1 and arcs from r to each vertex v ∈ V \ {r}
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r

k

1 1

S

S
cFigure 3.4: Blue edges into k have cost 1 and red edges between i and j cost x{i,j}

2 . Black edgesfrom r to j cost ∑
e∈δ(j)

xe

2 . The solid edges are part of the cut and the dotted edges are not.of weight ∑
e∈δ(v)

xe

2 = x(δ(v))
2 . Consider any cut (S, V \ S) which separates r from k.Edges of weight one contribute exactly |S| − 1. The edges between i and j of weight xij

2contribute exactly x(δ(S))
2 . The edges from r to rest of the vertices contribute ∑

v/∈S
x(δ(v))

2 .Thus the total weight of the cut is exactly
|S| − 1 +

x(δ(S))

2
+

∑

v/∈S

x(δ(v))

2
= |S| − 1 + x(E(V ))− x(E(S)).Hence, checking whether the minimum cut separating r from k is strictly smaller than

|V | − 1 checks exactly whether there is a violating set S not containing k but containing
r. �3.2.2 Characterization of Vertex SolutionsIn this section we give a characterization of a vertex solution to the linear program LPST (G)by a small set of tight independent constraints. There are exponentially many inequalitiesin the linear program LPST (G), and a vertex solution may satisfy many inequalities asequalities. To analyze a vertex solution, an important step is to �nd a small set of tightinequalities de�ning it. If there is an edge e with xe = 0, this edge can be removed fromthe graph without a�ecting the feasibility and the objective value. So henceforth assumeevery edge e has xe > 0. The characterization is well-known (see Cornuejols et al [19],



3.2. MINIMUM SPANNING TREES 27Goemans [42]) and we include it here for completeness and to illustrate the uncrossingtechnique which will occur at multiple occasions in the thesis.Uncrossing TechniqueWe use the uncrossing technique to �nd a good set of tight inequalities for a vertex solutionin the linear program LPST (G). As mentioned earlier, the uncrossing method is usedextensively in combinatorial optimization and the discussion here will give an illustrationof the method. Recall that E(X,Y ) denotes the set of edges with one endpoint in X andother in Y . The following proposition is straightforward and states the supermodularityof function E(X).Proposition 3.9 For X,Y ⊆ V ,
χ(E(X)) + χ(E(Y )) ≤ χ(E(X ∪ Y )) + χ(E(X ∩ Y )),and equality holds if and only if E(X \ Y, Y \X) = ∅.Proof: Observe that

χ(E(X)) + χ(E(Y )) = χ(E(X ∪ Y )) + χ(E(X ∩ Y ))− χ(E(X \ Y, Y \X))and proof follows immediately. (See Figure 3.5). �

X Y

a

b

c

d

eFigure 3.5: Edges labelled a, b, d and e are counted once both in LHS and RHS while edgeslabelled c are counted twice.Given a vertex solution x of the linear program LPST (G), let F = {S | x(E(S)) =

|S| − 1} be the family of tight inequalities for a vertex solution x in the linear program
LPST (G). The following lemma shows that the family F can be uncrossed.



28 CHAPTER 3. EXACT LINEAR PROGRAMMING FORMULATIONSLemma 3.10 If S, T ∈ F and S∩T 6= ∅, then both S∩T and S∪T are in F . Furthermore,
χ(E(S)) + χ(E(T )) = χ(E(S ∩ T )) + χ(E(S ∪ T )).Proof: Observe that

|S| − 1 + |T | − 1 = x(E(S)) + x(E(T ))

≤ x(E(S ∩ T )) + x(E(S ∪ T )))

≤ |S ∩ T | − 1 + |S ∪ T | − 1

= |S| − 1 + |T | − 1.The �rst equality follows from the fact that S, T ∈ F . The second inequality follows fromProposition 3.9. The third inequality follows from constraints for S ∩ T and S ∪ T in thelinear program LPST (G). The last equality is because |S|+ |T | = |S ∩T |+ |S ∪T | for anytwo sets S, T .Equality must hold everywhere above and we have x(E(S ∩ T )) + x(E(S ∪ T )) =

|S ∩ T | − 1 + |S ∪ T | − 1. Thus, we must have equality for constraints for S ∩ T and
S ∪ T , i.e., x(E(S ∩ T )) = |S ∩ T | − 1 and x(E(S ∪ T )) = |S ∪ T | − 1, which implies that
S ∩ T and S ∪ T are also in F . Moreover, equality holds for Proposition 3.9 and thus
χ(E(S \ T, T \ S)) = ∅ and χ(E(S)) + χ(E(T )) = χ(E(S ∩ T )) + χ(E(S ∪ T )). �Denote by span(F) the vector space generated by the set of vectors {χ(E(S)) | S ∈

F}. The following lemma states that a maximal set of independent tight constraints canbe chosen to form a laminar family.Lemma 3.11 [53] If L is a maximal laminar subfamily of F , then span(L) = span(F).Proof: Suppose, by way of contradiction, that L is a maximal laminar subfamily of Fbut span(L) ( span(F). For any S /∈ L, de�ne intersect(S,L) to be the number ofsets in L which intersect S, i.e. intersect(S,L) = |{T ∈ L | S and T intersect}|. Since
span(L) ⊂ span(F), there exists a set S ∈ F with χ(E(S)) /∈ span(L). Choose such aset S with minimum intersect(S,L). Clearly, intersect(S,L) ≥ 1; otherwise L ∪ {S} isalso a laminar subfamily, contradicting the maximality of L. Let T be a set in L whichintersects S. Since S, T ∈ F , by Lemma 3.10, both S ∩ T and S ∪ T are in F . Also,both intersect(S ∩ T,L) and intersect(S ∪ T,L) are smaller than intersect(S,L), provedin Proposition 3.12. Hence, by the minimality of intersect(S,L), both S ∩ T and S ∪ Tare in span(L). By Lemma 3.10, χ(E(S))+χ(E(T )) = χ(E(S ∩T ))+χ(E(S ∪T )). Since
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R1

S

T

R2

L

Figure 3.6: The �gure illustrates the di�erent cases for sets R, R1 and R2, which intersect
S non-trivially and are in the laminar family L.
χ(E(S ∩ T )), χ(E(S ∪ T )) are in span(L) and T ∈ L, the above equation implies that
χ(E(S)) ∈ span(L), a contradiction. It remains to prove Proposition 3.12.Proposition 3.12 Let S be a set that intersects T ∈ L. Then intersect(S ∩ T,L) and
intersect(S ∪ T,L) are smaller than intersect(S,L).Proof: Since L is a laminar family, for a set R ∈ L with R 6= T , R does not intersect
T (either R ⊂ T , T ⊂ R or T ∩ R = ∅). So, whenever R intersects S ∩ T or S ∪ T , Ralso intersects S. See Figure 3.6 for di�erent cases of R. Also, T intersects S but not
S ∩ T or S ∪ T . Therefore, intersect(S ∩ T,L) and intersect(S ∪ T,L) are smaller than
intersect(S,L) by at at least one (i.e. T ). �This completes the proof of Lemma 3.11. �Thus we obtain the following characterization using the Rank Lemma and the Lemma 3.11.Lemma 3.13 Let x be a vertex solution of the linear program LPST (G) such that xe > 0for each edge e and let F = {S ⊆ V : x(E(S)) = |S| − 1} be the set of all tight constraints.Then there exists a laminar family L ⊆ F such that1. The vectors {χ(E(S)) : S ∈ L} are linearly independent.2. span(L)=span(F).



30 CHAPTER 3. EXACT LINEAR PROGRAMMING FORMULATIONS3. |L| = |E|.3.2.3 Iterative AlgorithmIn this subsection, an iterative procedure to �nd a minimum spanning tree from a vertexoptimal solution of the linear program LPST (G) is presented. The procedure is generalizedin Section 4.1 when degree constraints are present. The algorithm is shown in Figure 3.7.Iterative MST Algorithm1. Initialization F ← ∅.2. While V (G) 6= ∅(a) Find a vertex optimal solution x of the linear program LPST (G) and removeevery edge e with xe = 0 from G.(b) Find a vertex v with exactly one edge e = uv incident on it, and update
F ← F ∪ {e}, G← G \ {v}.3. Return F . Figure 3.7: Iterative MST Algorithm.We �rst show that the algorithm always �nds a leaf vertex in Step 2b. Then weshow that the solution returned by the algorithm is optimal.Lemma 3.14 For any vertex solution x of the linear program LPST (G) with xe > 0 forevery edge e, there exists a vertex v with deg(v) = 1.Proof: Suppose each vertex is of degree at least two in the support E. Then |E| =

1
2

∑
v∈V deg(v) ≥ |V |. Since there is no edge e with xe = 0, every tight inequality is of theform x(E(S)) = |S| − 1. Recall from Lemma 3.13 there there is a laminar family L with

|E| = |L|. By Proposition 2.10, |L| ≤ |V | − 1 and hence |E| ≤ |V | − 1, a contradiction. �The remaining thing to check is the returned solution is a minimum spanning tree,which is proved in the following theorem.Theorem 3.15 The Iterative MST Algorithm returns a minimum spanning tree in poly-nomial time.



3.2. MINIMUM SPANNING TREES 31Proof: This is proved by induction on the number of iterations of the algorithm. Ifthe algorithm �nds a vertex v of degree one (a leaf vertex) in Step 2(b) with an edge
e = {u, v} incident at v, then we must have xe = 1 since x(δ(v)) ≥ 1 is a valid inequalityfor the linear program (Subtract the constraint x(E(V − v)) ≤ |V | − 2 from the constraint
x(E(V )) = |V | − 1). Intuitively, v is a leaf of the spanning tree. Thus, e is added tothe solution F (initially F = ∅), and v is removed from the graph. Note that for anyspanning tree T ′ of G′ = G \ {v}, a spanning tree T = T ′ ∪ {e} of G can be constructed.Hence, the residual problem is to �nd a minimum spanning tree on G \ v, and the sameprocedure is applied to solve the residual problem recursively. Observe that the restrictionof x to E(G′), denoted by xres, is a feasible solution to the linear program LPST (G′). Byinduction, the algorithm will return a spanning tree F ′ of G′ of cost at most the optimalvalue of the linear program LPST (G′), and hence c(F ′) ≤ c · xres, as xres is a feasiblesolution to the linear program LPST (G′). Therefore,

c(F ) = c(F ′) + ce and c(F ′) ≤ c · xreswhich imply that
c(F ) ≤ c · xres + ce = c · xas xe = 1. Hence, the spanning tree returned by the algorithm is of cost no more thanthe cost of an optimal LP solution x, which is a lower bound on the cost of a minimumspanning tree. This shows that the algorithm returns a minimum spanning tree of thegraph. �Remark. If x is an optimal vertex solution to the linear program LPST (G) for G, then theresidual LP solution xres, x restricted to G′ = G \ v, remains an optimal vertex solutionto the linear program LPST (G′). Hence, in the Iterative MST Algorithm we only need tosolve the original linear program once and none of the residual linear programs.Theorem 3.15 also shows that the linear program LPST (G) is an exact formulationof the minimum spanning tree problem showing the proof of Theorem 3.7.3.2.4 Iterative Algorithm IIIn this section, we give another iterative procedure to �nd a minimum spanning tree froma vertex optimal solution of the linear program LPST (G) is presented. The alternatemethod is useful is addressing degree constraints in Section 4.3. The algorithm is shownin Figure 3.8.



32 CHAPTER 3. EXACT LINEAR PROGRAMMING FORMULATIONSIterative MST Algorithm II1. Initialization F ← ∅.2. While V (G) 6= ∅(a) Find a vertex optimal solution x of the linear program LPST (G) and removeevery edge e with xe = 0 from G.(b) Find an edge e = {u, v} such that xe = 1 and update F ← F ∪{e}, G← G/e.3. Return F . Figure 3.8: Iterative MST Algorithm II.Following the discussion in Section 3.2.3 it is enough to show that the algorithm willterminate. An argument similar to one in proof of Theorem 3.15 will show that the outputof the algorithm is a minimum spanning tree.Lemma 3.16 For any vertex solution x of the linear program LPST (G) with xe ≥ 0 foreach edge e there exists an edge f such that xf = 1.Proof: Lemma 3.14 already gives one proof of the fact by showing that there exists avertex v such that deg(v) = 1. We give two other alternate proofs of this lemma.Proof 1. Lemma 3.13 and Proposition 2.10 shows that |E| = |V | − 1 and since
x(E) = |V | − 1 and x(e) ≤ 1 for all edges e ∈ E (by considering the constraint x(E(S)) =

|S| − 1 for a size two set S), we must have xe = 1 for all edges e ∈ E proving integrality.Thus we have that directly either xe = 0 or xe = 1 for all edges e rather than for a singleedge. Proof 2. Observe that by Lemma 3.13, there are |L| linearly independent tightconstraints of the form x(E(S)) = |S| − 1 with |E| = |L|. We now show a contradiction tothis through a counting argument.We assign one token for each edge e to the smallest set containing both the endpoints.Thus, we assign a total of |E| tokens. Now, we collect at least one token for each set in Land some extra tokens giving us a contradiction to Lemma 3.13. Actually, we collect twotokens for each set S ∈ L. Let S be any set in L with children R1, . . . , Rk where k ≥ 0.We have
x(E(S)) = |S| − 1



3.3. ARBORESCENCES 33and for each i,
x(E(Ri)) = |Ri| − 1Subtracting, we obtain

x(E(S)) −
∑

i

x(E(Ri)) = |S| −
∑

i

|Ri|+ k − 1

=⇒ x(A) = |S| −
∑

i

|Ri|+ k − 1where A = E(S)\(∪iE(Ri)). Observe that S obtains exactly one token for each edge in A.If A = ∅, then χ(E(S)) =
∑

i χ(E(Ri)) which contradicts the independence of constraints.Moreover, |A| 6= 1 as x(A) is an integer and each xe is fractional. Hence, S receives atleast two tokens. �This completes the proof of Lemma 3.16 showing the correctness of Iterative Algo-rithm II.
3.3 ArborescencesGiven a directed graph D and a root vertex r, a (spanning) r-arborescence is a subgraphof D so that there is a directed path from r to every vertex in V − r. The minimum cost(spanning) arborescence problem is to �nd a spanning r-arborescence with minimum totalcost. The problem generalizes the minimum spanning tree problem and e�cient algorithmsfor computing a minimum cost arborescence were given by Chu and Liu [15], Edmonds [27]and Bock [9]. Edmonds [28] gave an integral linear program for the minimum arborescenceproblem which we state in Figure 3.9. Integrality of the linear program follows directlyfrom the algorithms for the minimum arborescence problem [9, 15, 27]. Edmonds andGiles [31] and Frank [35] used the uncrossing method on the dual of the linear program toshow that the linear description in Figure 3.9 is totally dual integral.In this section we give an iterative algorithm to show that the linear program inFigure 3.9 is integral. The iterative algorithm is then extended in Section 6.2 to give anapproximation algorithm for the degree constrained arborescence problem.



34 CHAPTER 3. EXACT LINEAR PROGRAMMING FORMULATIONS3.3.1 Linear ProgramWe now give a linear program for the minimum arborescence problem given by Ed-monds [28] in Figure 3.9. The linear program LParb(D) requires that there is a directedpath from a �xed vertex r to every vertex in V − r. Or equivalently, by Menger's theo-rem [75], it speci�es that there is at least one arc entering every set which does not containthe root vertex. minimize ∑

a∈A

ca xa

x(δin(S)) ≥ 1 ∀ S ⊆ V − r

x(δin(v)) = 1 ∀ v ∈ V \ {r}

x(δin(r)) = 0

xa ≥ 0 ∀ a ∈ AFigure 3.9: Linear Program for the Minimum Cost Arborescence.Separation OracleAlthough the number of constraints is exponential in the size of the problem, the availabilityof an e�cient separation oracle ensures the polynomial solvability of the linear progrma
LParb(D). The separation oracle is quite straightforward. Given any solution x, theseparation oracle �rst constructs a graph with arc weights as xa. It then computes themin-cut from the root vertex r to every other vertex. If every min-cut is at least 1, it iseasy to see that the solution is feasible. If there exists a min-cut of value less than 1, theviolating constraint is precisely the set of vertices that this cut separates. The equalityconstraints can be checked one by one since there is only one constraint for each vertex fora total of |V | constraints.Compact FormulationWong [107] and Maculan [73] observed that the minimum arborescence problem can beformulated as a compact linear programming problem. We now give the compact linearprogram in Figure 3.10. The basic ideas is to use the equivalence of �ows and cuts. Thiscompact formulation also shows how to solve the equivalent linear program in Figure 3.9in polynomial time.



3.3. ARBORESCENCES 35minimize ∑

a∈A

ca xa

∑

a∈δin(v)

f v
a = 1 ∀ v ∈ V − r,

∑

a∈δin(v)

f v
a −

∑

a∈δout(v)

f v
a = 0 ∀ v ∈ V − r,∀ u ∈ V − r − v,

∑

a∈δin(v)

f v
a −

∑

a∈δout(v)

f v
a = −1 ∀ v ∈ V − r,

xa ≥ f v
a ∀ a ∈ A,∀ v ∈ V − r,

x(δin(v)) = 1 ∀ v ∈ V \ {r}

f v
a , xa ≥ 0 ∀ a ∈ A,∀ v ∈ V − r,Figure 3.10: Compact Linear Program for the Minimum Cost Arborescence.3.3.2 Characterization of Vertex SolutionsAs in the case of the minimum spanning tree problem in Section 3.2, the uncrossing tech-nique is used to �nd a small set of tight inequalities that de�nes a vertex solution ofthe linear program LParb(D). This characterization follows from results of Edmonds andGiles [31] and Frank [35] and we include the proofs here for completeness.Let F = {S | x(δin(S)) = 1} be the family of tight inequalities for a vertex solution

x in the directed LP. The following proposition states the standard fact that cuts in agraph are submodular.Proposition 3.17 For X,Y ⊆ V ,
χ(δin(X)) + χ(δin(Y )) ≥ χ(δin(X ∪ Y )) + χ(δin(X ∩ Y )),and equality holds if and only if E(X \ Y, Y \X) = ∅ and E(Y \X,X \ Y ) = ∅.Proof: Observe that

χ(δin(X))+χ(δin(Y )) = χ(δin(X∪Y ))+χ(δin(X∩Y ))+χ(E(X\Y, Y \X))+χ(E(Y \X,X\Y )),and the proof follows immediately. �The following lemma shows that the family F can be uncrossed.



36 CHAPTER 3. EXACT LINEAR PROGRAMMING FORMULATIONSLemma 3.18 If S, T ∈ F and S∩T 6= ∅, then both S∩T and S∪T are in F . Furthermore,
χ(δin(S)) + χ(δin(T )) = χ(δin(S ∩ T )) + χ(δin(S ∪ T )).Proof:

1 + 1 = x(δin(S)) + x(δin(T ))

≥ x(δin(S ∩ T )) + x(δin(S ∪ T ))

≥ 1 + 1The �rst equality follows from the fact that S, T ∈ F . The second inequality follows fromProposition 3.17. The third inequality follows from the constraints for S ∩ T and S ∪ T inthe linear program LParb(D).Equality must hold everywhere and we have x(δin(S ∩ T )) + x(δin(S ∪ T )) = 2.Thus, we must have equality for constraints for S ∩ T and S ∪ T , i.e., x(δin(S ∩ T )) = 1and x(δin(S ∪ T )) = 1, which implies that S ∩ T and S ∪ T are also in F . Moreover,equality holds for Proposition 3.17 and thus χ(E(S \ T, T \ S)) ∪ χ(E(T \ S, S \ T )) = ∅and χ(δin(S)) + χ(δin(T )) = χ(δin(S ∩ T )) + χ(δin(S ∪ T )). �Denote by span(F) the vector space generated by the set of vectors {χ(δin(S)) | S ∈

F}. The following lemma says that a vertex solution is characterized by tight inequalitieswhose corresponding sets form a laminar family.Lemma 3.19 If L is a maximal laminar subfamily of F , then span(L) = span(F).Proof: The proof follows the same lines as in the case of undirected spanning trees and isomitted. �Thus we get as a corollary our main characterization result.Lemma 3.20 Let x be any vertex solution of the linear program LParb(D) such that xa > 0for each a ∈ A. Then there exists a laminar family L such that x is the unique solution tothe following linear system.
x(δin(S)) = 1 ∀S ∈ L.Moreover, the characteristic vectors {χ(δin(S)) : S ∈ L} are linearly independent and

|L| = |A|



3.3. ARBORESCENCES 373.3.3 Iterative AlgorithmWe now present the iterative algorithm to obtain an integral optimal solution to the LP inFigure 3.9. The algorithm is similar to the Iterative MST Algorithm in Section 3.2. Themain di�erence is that after we pick an arc a = uv with xa = 1, we contract {u, v} into asingle vertex.Iterative Arborescence Algorithm1. Initialization F ← ∅.2. While V (D) 6= ∅(a) Find a vertex optimal solution x of the linear program LParb and removeevery arc a with xa = 0 from D.(b) Find an arc a = uv with xa = 1, and update F ← F ∪ {a}, D ← D/{uv}.3. Return F . Figure 3.11: Iterative Arborescence Algorithm.As in minimum spanning trees, assuming the algorithm terminates successfully, it iseasy to show that the returned solution is a minimum spanning arborescence.Theorem 3.21 The Iterative Arborescence Algorithm returns a minimum cost arbores-cence in polynomial time.Proof: The proof follows the same argument as in for undirected spanning trees. �The key step is to prove that the algorithm will terminate. For the iterative relaxationtechnique to converge, we would need at each stage, to �nd an arc a with either xa = 1 or
xa = 0 which we show in the following lemma.Lemma 3.22 For any vertex solution x of the directed LP, either there is an arc with
xa = 0 or there is an arc with xa = 1.Before we begin the proof, let us recall that there exists a laminar family L such thatit represents a linearly independent set of tight constraints(Lemma 3.20). The proof, bycontradiction, is based on a token argument (as in earlier proofs). The idea of the argumentis to assume that there is no arc with xa = 0 and xa = 1, and then derive a contradiction



38 CHAPTER 3. EXACT LINEAR PROGRAMMING FORMULATIONSby showing that the number of constraints (that is, the number of sets in L) is smallerthan the number of non zero variables (that is, the number of arcs) - contradicting theLemma 3.20.Two di�erent counting arguments will be presented for the contradiction. The �rstargument is quite straightforward but we include a more involved argument which is ex-tended to degree constrained arborescence problem in Section 6.2.Counting Argument 1Suppose for sake of contradiction 0 < xa < 1 for all a ∈ A. But, we have x(δin(v)) ≥ 1 foreach v ∈ V \ {r}. Hence, we must have |δin(v)| ≥ 2 for each v ∈ V \ {r}. Thus
|A| =

∑

v∈V

|δin(v)| ≥
∑

v∈V \{r}

2 = 2|V | − 2But from Lemma 3.20 we have the maximal linearly independent constraints forma laminar family over the ground set V \ {r}. From Corollary 2.11 we have that |L| ≤
2(|V |−1)−1 = 2|V |−3. But this contradicts the Rank Lemma since |A| ≥ 2|V |−2 > |L|.Counting Argument 2We now give another counting argument which is more involved but is useful in extendingto Minimum Bounded-Degree Arborescence problem in Section 6.2.For each arc, one token is assigned to its head. So the total number of tokens assignedis exactly |E|. These tokens will be redistributed such that each subset S ∈ L is assignedone token, and there are still some excess tokens left. This will imply |E| > |L| and thuscontradicts Lemma 3.19. The following lemma shows that such a redistribution is possible.Lemma 3.23 For any rooted subtree of the forest L 6= ∅ with root S, the tokens assignedto vertices inside S can be distributed such that every node in the subtree gets at least onetoken and the root S gets at least two tokens.Proof: The proof is by induction on the height of the subtree. The base case is when Sis a leaf. Since x(δin(S)) = 1 and there is no arc with xe = 1, there are at least two arcsin δin(S), and therefore S gets at least two tokens.



3.4. MATROID BASIS 39For the induction step, let S be the root and R1, . . . , Rk be its children. By theinduction hypothesis, each node in the subtree rooted at Ri gets at least one token and Rigets at least two tokens. Since Ri only needs to keep one token, it can give one token to S.Suppose k ≥ 2, then S can collect two tokens by taking one token from each of its children,as required. So suppose k = 1. If there is an arc e which enters S but not to R1, then Scan collect two tokens by taking one token from R1 and one token from e. Suppose suchan arc does not exist, then δin(S) ⊆ δin(R). Since x(δin(S)) = x(δin(R)) = 1 and there isno arc with xe = 0, this implies δin(S) = δin(R). Hence χ(δin(S)) = χ(δin(R)), but thiscontradicts the linear independence of the characteristic vectors for sets in L (recall that
L can be chosen to satisfy the properties in Corollary 3.20). Therefore, such an arc mustexist, and S can collect two tokens, as required. This completes the proof of the inductionstep. �Applying Lemma 3.23 to each root of the forest L we obtain that the number oftokens is at least |L|+ 1 which implies that |E| > |L|, contradicting Corollary 3.20. Thiscompletes the proof of Lemma 3.22, and hence Theorem 3.21 follows.3.4 Matroid BasisIn this section we consider the minimum cost matroid basis problem. We �rst de�ne thematroid structure, which generalizes spanning trees and a host of other interesting objects.Then, we give the linear programming relaxation, �rst given by Edmonds [30], for theminimum cost matroid basis problem. We then give an iterative algorithm to show theintegrality of the linear program. This iterative algorithm is then extended in Section 7.4to give approximation algorithms for the degree constrained matroid basis problem.Matroids were introduced by Whitney [105] and equivalent systems were consideredby Nakasawa [79], Birkho� and van der Waerden [104].De�nition 3.24 A pair M = (S,I) is a matroid if for A,B ⊆ S,1. A ∈ I and B ⊆ A =⇒ B ∈ I.2. A,B ∈ I and |B| > |A| =⇒ ∃x ∈ B \ A such that A ∪ {x} ∈ I.

S is called the ground set of the matroid M . A set A ⊆ S is independent if A ∈ Ielse it is called dependent. An inclusionwise maximal set A ∈ I is called a basis of M .Observe that Property 2 implies that all bases have the same cardinality.



40 CHAPTER 3. EXACT LINEAR PROGRAMMING FORMULATIONSExamples of Matroids1. Graphic Matroid [8, 105]. Given a connected graph G = (V,E), the graphicmatroid of G is de�ned asMG = (E,IG) where IG = {F ⊆ E|F is a forest }.2. Uniform Matroid. Given a set S and an integer k ≥ 0 the uniform matroid ofrank k is de�ned asMk
S = (S,Ik) where Ik = {T ⊆ S : |T | ≤ k}.3. Linear Matroid [97]. Let A be an m× n matrix and S = {1, . . . , n}. For any 1 ≤

i ≤ n, let Ai denote the ith-column of A. The linear matroid over matrix A is de�nedasMA = (S,IA) where IA = {T ⊆ S : Ai for i ∈ T are linearly independent}.4. Matroid Restriction. LetM = (S,I) be a matroid and T ⊆ S. Then the matroidrestriction of M to the set T is the matroid MT = (T,IT ) where IT = {R : R ∈

I, R ⊆ T}.It is straightforward to verify that the above examples satisfy the properties of ma-troids and we refer the reader to Lawler [71], Schrijver [91, 94] for historical and technicaldetails on matroids.De�nition 3.25 (Rank function) Given a matroidM = (S,I), the rank function rM :

2S → Z of the matroidM is de�ned as rM(T ) = maxU⊆T,U∈I |U |.We will drop the subscript M from the rank function rM when the matroid M isclear from the context. Observe that A ∈ I i� r(A) = |A|. We also use the followingimportant property about the rank function of matroids. Here we include a proof forcompleteness.Lemma 3.26 [105] Let r be the rank function of matroid M = (S,I). Then r is asubmodular function, i.e., for all A,B ⊆ S, we have r(A) + r(B) ≥ r(A ∩B) + r(A ∪B).Proof: Let r(A ∩ B) = k1, r(A ∪ B) = k2. This implies that ∃V ⊆ A ∩ B such that
r(V ) = |V | = k1. Similarly, there exists U ⊆ A ∪B such that r(U) = |U | = k2. Moreover,since every independent set can be extended to a basis, we can assume that V ⊆ U andby de�nition of V we must have U ∩ A ∩ B = V . Since, U is independent, we have
r(A) ≥ |U ∩A| and r(B) ≥ |U ∩B|. Now, we have

|U ∩A|+ |U ∩B| = |U ∩ (A ∪B)|+ |U ∩ (A ∩B)|



3.4. MATROID BASIS 41
=⇒ r(A) + r(B) ≥ r(A ∪B) + r(A ∩B)since |U | ∩ (A ∪B)| = k1 and |U ∩ (A ∩B)| = |V | = k2. �We now de�ne two important operations on matroids and their e�ect on the rankfunction. For details, we refer the reader to Oxley [81].De�nition 3.27 (Deletion) Given a matroidM = (S,I) and x ∈ S we de�ne M \ x =

(S \ {x},I ′) where I ′ = {T \ {x} : T ∈ I} to be the matroid obtained by deleting x from
M . The rank function of M x, r1 is related to the rank function r of M by the formula
r1(T ) = r(T ) for T ⊆ S \ {x}.De�nition 3.28 (Contraction) Given a matroid M = (S,I) and x ∈ S we de�ne
M/x = (S \ {x},I ′′) where I ′′ = {T ⊆ S \ {x} : T ∪ {x} ∈ I} is the matroid obtained bycontracting x in M . The rank function of M/{x}, r2, is related to the rank function of Mby the formula r2(T ) = r(T ∪ {x})− 1 for T ⊆ S \ x.We now consider the problem of �nding a minimum cost basis in a matroid. Givena matroid M = (S,I) and a cost function c : S → R, the task is to �nd a basis of Mof minimum cost. In the special case of graphic matroids the problem generalizes theminimum spanning tree problem which we studied in Section 3.2. Interestingly, the greedyalgorithm gives an e�cient algorithm for the minimum cost matroid basis problem [84]and is precisely the structure where greedy algorithm always work [29, 39].3.4.1 Linear ProgramIn Figure 3.12 we give a linear programming relaxation LPmat(M) for the minimum costmatroid basis problem given by Edmonds [29]. Edmonds [28, 29, 30] also showed that thelinear program is integral.Solving the linear program. Observe that the above linear program is expo-nential in size and hence, an e�cient separation routine is needed to separate over theseconstraints. The separation routine needs to check that x(T ) ≤ r(T ) for each T ⊆ S.The polynomial time solvability follows from submodular minimization [45]. Also, Cun-ningham [20] provides a combinatorial algorithm for such a separation routine which as aninput uses the independence oracle for matroidM.We prove the following theorem of Edmonds [29] via the iterative method.
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�3.6 Figure 3.12: Linear Program for the Minimum Cost Matroid Basis.Theorem 3.29 [29] Every vertex optimal solution to the LPmat(M) is integral.Before we prove the theorem, we characterize vertex solutions via a structured setof tight independent constraints. Again the uncrossing method plays a crucial role. Thecharacterization follows from the results of Edmonds [28] and we include the proof outlinefor completeness.3.4.2 Characterization of Vertex SolutionsWe now give a characterization of the vertex solutions of the linear program LPmat(M) bya small set of tight independent constraints.We now use an uncrossing argument to show that independent set of tight constraintsde�ning a vertex of LPmat(M) can be chosen to form a chain. Given a vertex solution x of
LPmat(M) let F = {T ⊆ S : x(T ) = r(T )} be the set of tight constraints. We now showthat F is closed under intersection and union.Lemma 3.30 If U, V ∈ F , then both U ∩ V and U ∪ V are in F . Furthermore, χ(U) +

χ(V ) = χ(U ∩ V ) + χ(U ∪ V ).Proof:
r(U) + r(V ) = x(U) + x(V )

= x(U ∩ V ) + x(U ∪ V )

≤ r(U ∩ V ) + r(U ∪ V )

≤ r(U) + r(V ).



3.4. MATROID BASIS 43The �rst equality is by the fact that U, V ∈ F . The second equality follows from basic setproperties. The third inequality follows from the constraints in the LPmat(M). The lastequality is because of properties of rank function r as shown in Lemma 3.26.Since there are no elements in U \ V and V \U in the support of x, we have χ(U) +

χ(V ) = χ(U ∩ V ) + χ(U ∪ V ). �Lemma 3.31 If L is a maximal chain subfamily of F , then span(L) = span(F).Proof: The proof follows exactly the same argument as in Lemma 3.11. We show exactlywhere the argument di�ers and why we obtain a chain in this case while we could onlyargue a laminar structure in Lemma 3.11.Lemma 3.30 shows that two tight sets A and B can always be uncrossed and notonly when A and B intersect as was the case in Lemma 3.10. Hence, even if A,B are twotight sets and A ∩B = ∅, we can uncross them and ensure that no such two sets exists infamily of constraints de�ning x. �Thus we have the following characterization given by Edmonds [28].Lemma 3.32 Let x be any vertex solution of the linear program LPmat(M). Then thereexists a chain L such that x is the unique solution to the following linear system.
x(T ) = r(T ) ∀T ∈ L.Moreover, the characteristic vectors {xT : T ∈ L} are linearly independent and |L| = |S|.3.4.3 Iterative AlgorithmWe now give an iterative algorithm which constructs an integral solution from the optimalvertex solution to linear program LPmat(M). The algorithm is shown in Figure 3.13.We now show that the iterative algorithm returns an optimal solution. We �rst showthat the algorithm always �nds an element with xe ∈ {0, 1}. Then we show using a simpleinductive argument that the solution returned by the algorithm is optimal, thus provingTheorem 3.29.Lemma 3.33 For any vertex solution x of the LPmat(M) with xe > 0 for every element

e, there exists an element e with xe = 1.



44 CHAPTER 3. EXACT LINEAR PROGRAMMING FORMULATIONSIterative minimum cost matroid basis algorithm1. Initialization B ← ∅.2. While B is not a basis(a) Find a vertex optimal solution x of the LPmat(M) and delete every element
e with xe = 0 fromM, i.e., M ←M \ e.(b) If there is an element e such that xe = 1 then and update B ← B ∪ {e},
M ←M/e.3. Return B.Figure 3.13: Iterative Minimum Cost Matroid Basis Algorithm.Proof: Suppose for contradiction 0 < xe < 1 for each e ∈ S. Then the number of variablesis exactly |S|. Since there is no element e with xe = 0, every tight inequality is of the form

x(T ) = r(T ). By Lemma 3.31, there are |L| linearly independent tight constraints of theform x(T ) = r(T ) for T ∈ L where L is a chain. Since 0 < xe < 1 for each element, thusthere is set of size one in the chain. Therefore, we have |L| ≤ |S| − 1 from Lemma 2.10which is a contradiction to Lemma 3.32. �It remains to check that the returned solution is a minimum cost basis, which isproved in the following theorem.Theorem 3.34 The Iterative Matroid Basis Algorithm returns a minimum cost basis inpolynomial time.Proof: This is proved by induction on the number of iterations of the algorithm. Thebase case is trivial to verify. Let M = (S,I) denote the matroid in the current iteration.If the algorithm �nds an element e such that xe = 0 we update the matroid to M \ e.Observe that x restricted to S \ {e}, say x′, is a feasible solution to LPmat(M \ e). This iseasily checked using the rank function of M \ e which is the same as rank function of Mby De�nition 3.27. By induction, we �nd a basis B of M \ e of cost at most c · x′. Observethat B is also a basis of M and costs at most c · x′ = c · x. Hence, the induction claim istrue in this case.Now, suppose the algorithm selects an element e such that xe = 1. Then the al-gorithm updates the matroid M to M/e and B to B ∪ {e}. Let r denote the rank func-tion of M and r′ denote the rank function of M/e. We now claim that x restricted to
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S \ {e}, say x′, is a feasible solution to LPmat(M/e). For any set T ⊆ S \ {x}, we have
x′(T ) = x(T ∪ {e}) − xe = x(T ∪ {e}) − 1 ≤ r(T ∪ {e}) − 1 = r′(T ). By the inductionhypothesis, we obtain a basis B′ of M/e of cost at most c · x′. Observe that B′ ∪ {e} is abasis of M by De�nition 3.28 and costs at most c ·x′ + c(e) = c ·x as required. This showsthat the algorithm returns a minimum cost basis of matroid M . �

3.5 Perfect Matchings in General GraphsIn this section, we consider the problem of �nding a minimum cost perfect matching ina graph G = (V,E) with even number of vertices. The minimum cost matching problemin bipartite graph, which we considered in Section 3.1, is considerably simpler than ingeneral graphs. Indeed the linear programming relaxation considered in Section 3.1 for thebipartite matching problem has strictly fractional vertex solutions for general graphs. Ed-monds [25] gave a linear programming formulation for the minimum cost perfect matchingproblem which is integral and the famous primal-dual Blossom algorithm which was the�rst polynomial time algorithm for the problem. The Blossom algorithm also provides aproof of the integrality of the linear program. Subsequently, other proofs of integrality weregiven including, �nding a decomposition of a fractional solution into convex combinationof matchings [3, 92], characterizing all the facets of the matching polytope [4], [51]. Werefer the reader to the text by Lovász and Plummer [72] for details about the matchingproblem.In this section, we will show the integrality of the linear program given by Ed-monds [25] using the iterative method.
3.5.1 Linear ProgramGiven a graph G = (V,E) with an even number of vertices and a cost function c : E →

R+, the linear programming relaxation for the perfect matching problem is given by thefollowing LPM (G).
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�3.10 Observe that if G is not bipartite then the above linear program is not integral if wedo not include the odd-set inequalities (3.9) as shown in Figure 3.14.
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Figure 3.14: In the above �gure, if the cost of the cut edge is large, then the all-half solution onthe triangles is an optimal solution to the linear program with degree constraints. Thus the oddset inequalities that cut such solutions o� are necessary.We prove the following theorem showing integrality of the linear program.Theorem 3.35 [25] Every vertex optimal solution to the linear program LPM (G) is in-tegral.We give an iterative algorithm proving Theorem 3.35 but �rst we give a characteri-zation of a vertex solution of LPM (G).3.5.2 Characterization of Vertex SolutionsWe prove the following crucial lemma characterizing vertex solutions. Again the uncrossingtechnique and the rank lemma forms the basis of the argument. The characterizationfollows directly from the results of Cunningham and Marsh [21]. We include the proofshere for completeness.



3.5. PERFECT MATCHINGS IN GENERAL GRAPHS 47Lemma 3.36 Given any vertex solution x of LPM (G) let the set of tight constraints τ =

{S : x(δ(S)) = 1, S ⊂ V, |S| odd}. Then there exists a laminar family L ⊆ τ such that1. χ(δ(S)) for S ∈ L are linearly independent vectors.2. G[S] is connected for each set S ∈ L.3. span({χ(δ(S)) : S ∈ L}) = span({χ(δ(S)) : S ∈ τ}).Before we give the proof of Lemma 3.36, we �rst prove the following claims.Lemma 3.37 If A,B ∈ τ and A ∩B 6= ∅, then one of the following is true1. A ∩B ∈ τ , A ∪B ∈ τ and χ(δ(A)) + χ(δ(B)) = χ(δ(A ∩B)) + χ(δ(A ∪B))2. A \B ∈ τ , B \ A ∈ τ and χ(δ(A)) + χ(δ(B)) = χ(δ(A \B)) + χ(δ(B \A))Proof: Let A,B ∈ τ . First assume A∩B is odd. Then A∪B is also odd. Hence, we have
2 = 1 + 1 ≤ x(δ(A ∩B)) + x(δ(A ∪B)) ≤ x(δ(A)) + x(δ(B)) = 2Hence, all inequalities are satis�ed at equality implying that all cross-edges between A and

B have a value of 0 in x (and hence not present in the support). Therefore, A ∩ B ∈ τ ,
A ∪B ∈ τ and χ(δ(A)) + χ(δ(B)) = χ(δ(A ∩B)) + χ(δ(A ∪B)).A similar argument shows that second case holds when A ∩B is even in which case
|A \B| and |B \ A| are odd. �Claim 3.38 If S ∈ τ such that G[S] is not connected then there exists R ⊆ S such that
R ∈ τ and δ(R) = δ(S).Proof: Let S ∈ τ be a set such that G[S] is not connected. The let R1, . . . , Rk be theconnected components of G[S] where R1 is of odd cardinality (such a component mustexist as |S| is odd). Now, we have δ(R1) ⊆ δ(S) but 1 ≤ x(δ(R1)) ≤ x(δ(S)) = 1. Hence,equality must hold everywhere and in the support graph, we have δ(R1) = δ(S). �Now we prove Lemma 3.36.Proof of Lemma 3.36: From the Rank lemma, it follows that any set of maximallyindependent tight constraints satis�es conditions (1) and (3). Claim 3.38 shows that it is



48 CHAPTER 3. EXACT LINEAR PROGRAMMING FORMULATIONSenough to concentrate on the tight constraints for odd sets which are connected. Let
τ ′ = {S ∈ τ : G[S] is connected}. Then Claim 3.38 implies that span({χ(δ(S)) : S ∈

τ ′}) = span({χ(δ(S)) : S ∈ τ}).We now show that any maximal laminar family in τ ′ is indeed a maximal set of tightindependent constraints proving the lemma. Let L be a maximal independent laminarfamily of τ ′. We claim that L satis�es the properties of Claim 3.36. It is enough to showthat sets in L span all sets in τ ′. Assume that χ(δ(S)) /∈ span(L) for some S ∈ τ ′. Chooseone such set S that intersects as few sets of L as possible. Since L is a maximal laminarfamily, there exists T ∈ L that intersects S. From Lemma 3.37, we have that S ∩ T and
S∪T are also in τ or S \T and T \S are in τ . Assume that we have the �rst case and thuswe have χ(δ(S)) + χ(δ(T )) = χ(δ(S ∩ T )) + χ(δ(S ∪ T )). Since χ(δ(S)) /∈ span(L), either
χ(δ(S ∩ T )) /∈ span(L) or χ(δ(S ∪ T )) /∈ span(L). In either case, we have a contradictionbecause both S∪T and S∩T intersect fewer sets in L than S; this is because every set thatintersects S ∪ T or S ∩ T also intersects S. In the other case, we have a similar argumentshowing a contradiction.3.5.3 Iterative AlgorithmThe following is a simple iterative procedure which returns a matching of optimal costand also shows that the above linear program is integral. The proof is in two parts. FirstIterative Matching Algorithm1. Initialization F ← ∅.2. While V (G) 6= ∅(a) Find a vertex optimal solution x of LPM (G) and remove every edge e with

xe = 0 from G.(b) If there is an edge e = {u, v} such that xe = 1 then update F ← F ∪ {e},
G← G \ {u, v}.3. Return F . Figure 3.15: Iterative Matching Algorithm.assume that we can always �nd an edge e with xe = 1 in Step 2b of the algorithm. Weshow that the solution returned F is a matching of G of cost no more than the initialLP solution x, and hence it is also a minimum cost matching. Then we show that thealgorithm indeed �nds an edge with xe = 1. The proof of the following claim is identical



3.5. PERFECT MATCHINGS IN GENERAL GRAPHS 49to proof of Claim 3.4 and is omitted.Claim 3.39 Assuming that the iterative algorithm �nds an edge e such that xe ∈ {0, 1}then the algorithm returns an optimal matching.It remains to show that the algorithm always �nds an edge e such that xe = 1 inStep 2b.Lemma 3.40 Given any vertex solution x of LPM (G) there must exist an edge e suchthat xe = 0 or xe = 1.Proof: Suppose for sake of contradiction 0 < xe < 1 for each edge e ∈ E. Let L be thelaminar family given by Claim 3.36. We show a contradiction by showing that |E| > |L|.This is done by a token argument. Initially we give two tokens for each edge and whichgives one each to its endpoint for a total of 2|E| tokens. Now, we collect two tokens for eachmember in the laminar family and at least one extra token for total of 2|L|+1 tokens givingus the desired contradiction. The token redistribution is done by an inductive argument.Claim 3.41 For any S ∈ L, using tokens for the vertices in S, we can give two tokens toeach set in L in the subtree rooted at S and |δ(S)| tokens to S.Proof: The proof is by induction on the height of the subtree rooted at S.Base Case. S is a leaf. S can take |δ(S)| tokens for one for each edge incident atsome vertex in S.Induction Case. Let S have children R1, R2, . . . , Rk (where some of the Ri couldbe singletons). From induction hypothesis Ri receives |δ(Ri)| tokens. We use these tokens,one for each edge in δ(Ri), and the tokens assigned to S to give two tokens to each Ri and
|δ(S)| tokens to S.From Lemma 3.36 we have that G[S] is connected. Let H be the connected graphformed from G[S] by contracting each Ri in to a singleton vertex. If H has at least k edgesthen, we use two tokens for each such edge to give two tokens to the children. We stillhave |δ(S)| tokens left, one for each edge in δ(S).Else, we must have that H has exactly k vertices, fewer than k edges and is connected.Hence, H must be a tree. As every tree is a bipartite graph, let H1 and H2 be thebipartition. Now, we prove a contradiction to independence of constraints. Let |H1| > |H2|



50 CHAPTER 3. EXACT LINEAR PROGRAMMING FORMULATIONS(cardinality of S is odd and therefore the number of vertices in H is odd). Let A =

∪Ri∈H1
δ(Ri) and B = ∪Ri∈H2

δ(R2). Then δ(S) = A∆B. But x(A) =
∑

Ri∈H1
x(δ(Ri)) =

|H1| and similarly, x(B) = |H2|. Thus, we have x(A \ B) ≥ |H1| − |H2| ≥ 1. But, thenwe have 1 = x(δ(S)) = x(A∆B) = x(A \ B) + x(B \ A) ≥ 1 implying that x(B \ A) = 0and B \A = ∅. But then the constraints for S and its children in H1 are dependent since
x(δ(S)) = x(A)− x(B). A contradiction. �We apply Claim 3.41 to each root of every tree in L. If |δ(S)| ≥ 3 for any root Sor there is a vertex not in any root then we have an extra token and Lemma 3.40 holds.Else, the graph H formed by contracting each root set of L in to a singleton vertex is acycle cover. If the cycle cover contains an even cycle C then the then the constraints forodd sets in C are dependent which is a contradiction. Else, if there is an odd cycle C let
SC denote the union of sets in C. Observe that SC is disjoint union of odd number of oddcardinality sets and therefore |SC | is odd. But |δ(SC)| = 0 which contradicts the inequality
x(δ(SC )) ≥ 1. �Thus we prove Theorem 3.35 showing the integrality of the linear programmingrelaxation LPM (G) for the perfect matching problem in general graphs.



4Minimum Bounded-Degree Spanning Trees
In this chapter we study the Minimum bounded-degree spanning tree (MBDST)problem. Recall that in an instance of the MBDST problem we are given an undirectedgraph G = (V,E), edge costs given by c : E → R, degree bound Bv ≥ 1 for each v ∈ Vand the task is to �nd a spanning tree of minimum cost which satis�es the degree bounds.We prove the following theorem.Theorem 4.1 There exists a polynomial time algorithm which given an instance of theMBDST problem returns a spanning tree T such that degT (v) ≤ Bv +1 and cost of the tree
T is smaller than the cost of any tree which satis�es the degree bounds.We prove Theorem 4.1 using the iterative relaxation technique. We �rst prove aweaker guarantee where the degree bound is violated by an additive amount of two inSection 4.1. This matches the result of Goemans [42] which was the previous best result forthis problem. The proof in this case is simpler and will illustrate the iterative method. Insection 4.2 we give an algorithm where the degree bound is violated by an additive amountof one using a fractional token argument. In section 4.3 we consider the generalization whenboth upper and lower degree bounds are present and give an algorithm which returns atree of optimal cost which violates the degree bounds by at most an additive amount ofone.4.1 An Additive 2 Approximation AlgorithmIn this section we �rst present an (1, Bv + 2)-approximation algorithm for the MBDSTproblem via iterative rounding. This algorithm is simple, and it illustrates the idea ofiterative relaxation by removing degree constraints. 51



52 CHAPTER 4. DEGREE CONSTRAINED SPANNING TREES4.1.1 Linear Programming RelaxationWe use the following standard linear programming relaxation for the MBDST problem,which we denote by LP-MBDST(G, B,W ). In the following we assume that degree boundsare given for vertices only in a subset W ⊆ V . Let B denote the vector of all degree bounds
Bv, one for each v ∈W .minimize c(x) =
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�4.5 Separation over the inequalities in the above linear program is in polynomial timeand follows from Theorem 3.8. An alternative is to write a compact formulation for theabove linear program [107] which has polynomially many variables and constraints.4.1.2 Characterization of Vertex SolutionsWe �rst give a characterization of a vertex solution of LP-MBDST(G,B,W ). We removeall edges with xe = 0 and focus only on the support of the vertex solution and the tightconstraints from (4.2)-(4.4). Let F = {S ⊆ V : x(E(S)) = |S| − 1} be the set of tightconstraints from (4.2)-(4.3). From an application of Rank Lemma and the characterizationof vertex solutions to the spanning tree polyhedron in Lemma 3.13 we get the following.Lemma 4.2 Let x be any vertex solution of LP-MBDST(G,B, W ) with xe > 0 for eachedge e ∈ E. Then there exists a set T ⊆ W with x(δ(v)) = Bv for each v ∈ T and alaminar family L ⊆ F such that1. The vectors {χ(E(S)) : S ∈ L} ∪ {χ(δ(v)) : v ∈ T} are linearly independent.2. The vector space generated by {χ(δ(v)) : v ∈ T and span(L)=span(F).3. |L|+ |T | = |E|.



4.1. AN ADDITIVE 2 APPROXIMATION ALGORITHM 534.1.3 Iterative Algorithm IIn this section, we give an iterative algorithm which returns a tree of optimal cost andviolates the degree bound within an additive error of two. The algorithm is given inFigure 4.1.MBDST Algorithm1. Initialization F ← ∅.2. While V (G) 6= ∅(a) Find a vertex optimal solution x of LP-MBDST(G,B,W ) and remove everyedge e with xe = 0 from G. Let the support of x be E.(b) If there exists a vertex v ∈ V , such that there is at most one edge e = uvincident at v in E, then update F ← F ∪{e}, G← G\{v}, W ←W \{v},and also update B by setting Bu ← Bu − 1.(c) If there exists a vertex v ∈ W such that degE(v) ≤ 3 then update W ←
W \ {v}.3. Return F . Figure 4.1: MBDST Algorithm.In the next lemma we prove (by a very simple counting argument) that in eachiteration we can proceed by applying either Step 2b or Step 2c; this will ensure that thealgorithm terminates.Lemma 4.3 Any vertex solution x of LP-MBDST(G,B,W ) with xe > 0 for each edge

e ∈ E must satisfy one of the following.(a) There is a vertex v ∈ V such that degE(v) = 1.(b) There is a vertex v ∈W such that degE(v) ≤ 3.Proof: Suppose for sake of contradiction that both (a) and (b) are not satis�ed. Thenevery vertex has at least two edges incident to it and every vertex in W has at least fouredges incident at it. Therefore, |E| ≥ (2(n−|W |)+4|W |)/2 = n+ |W |, where n = |V (G)|.By Lemma 4.2, there is a laminar family L and a set T ⊆ W of vertices such that
|E| = |L|+ |T |. Since L is a laminar family which only contains subsets of size at least two,from Proposition 2.10 we have |L| ≤ n−1. Hence, |E| = |L|+|T | ≤ n−1+|T | ≤ n−1+|W |,a contradiction. �



54 CHAPTER 4. DEGREE CONSTRAINED SPANNING TREESWe now prove the correctness of the algorithm.Theorem 4.4 The iterative algorithm in Figure 4.1 returns a tree T of optimal cost suchthat degT (v) ≤ Bv + 2 for each v ∈ V .Proof: The proof that the cost of tree returned is at most the cost of the linear program-ming solution is identical to the proof of Theorem 3.7.We show that the degree of any vertex v is at most Bv + 2. At any iteration, let Fdenote the set of edges selected and let B′
v denote the current residual degree bound of v.Claim 4.5 While the degree constraint of v is present, degF (v) + B′

v = Bv.Proof: The proof is by induction on the number of iterations of the algorithm. Initially,
F = φ and B′

v = Bv and the claim holds. At any iteration, whenever we include an edge
e ∈ δ(v) in F , we reduce B′

v by one and hence the equality holds true. �When the degree bound for the vertex v is removed then at most 3 edges are incidentat v and B′
v 6= 0. In the worst case, we may select all three edges in the solution. Hence,

degT (v) ≤ Bv −B′
v + 3 ≤ Bv + 2where B′

v ≥ 1 is the degree bound of v when the degree constraint is removed. �4.2 An Additive 1 Approximation AlgorithmIn this section, we give an iterative algorithm which returns a tree of optimal cost andviolates the degree bound within an additive error of one proving Theorem 4.1. Thealgorithm is given in Figure 4.2The algorithm proceeds as follows. The algorithm maintains a subset W of vertices onwhich it places a degree bound. In each iteration, the algorithm �nds a vertex v ∈W suchthat the degree of v in the support is at most Bv +1 and removes the degree constraint for
v. Observe that once all the degree constraints are removed we obtain the linear programfor the minimum spanning tree problem which we showed in Section 3.2 is integral. Hence,when W = ∅ and the algorithm terminates and returns a tree.



4.2. AN ADDITIVE 1 APPROXIMATION ALGORITHM 55MBDST Algorithm1. While W 6= ∅(a) Find a vertex optimal solution x of LP-MBDST(G,B,W ) and remove everyedge e with xe = 0 from G. Let the support of x be E.(b) If there exists a vertex v ∈ W such that degE(v) ≤ Bv + 1 then update
W ←W \ {v}.2. Return E. Figure 4.2: Additive +1 MBDST Algorithm.At each step we only relax the linear program. Hence, the cost of the �nal solution isat most the cost of the initial linear programming solution. Thus the tree returned by thealgorithm has optimal cost. A simple inductive argument as in proof of Theorem 4.4 alsoshows that the degree bound is violated by at most an additive one. The degree bound isviolated only when we remove the degree constraint and then degE(v) ≤ Bv + 1. Thus, inthe worst case, if we include all the edges incident at v in T , degree bound of v is violatedby at most an additive one. Thus we have the following lemma.Lemma 4.6 If in each iteration, the algorithm �nds a vertex to remove a degree boundfor some vertex v ∈W and terminates when W = ∅ then the algorithm returns a tree T ofoptimal cost and degT (v) ≤ Bv + 1 for each v ∈ V .It remains to show that the iterative relaxation algorithm �nds a degree constraintto remove at each step. From Lemma 4.2 we have that there exists a laminar family L ⊆ Fand T ⊆W such that |L|+ |T | = |E| and constraints for sets in L are linearly independent.Observe that if T = φ then only the spanning tree inequalities de�ne the solution x. Hence,

x must be integral by Theorem 3.7. In the other case, we show that there must be a vertexin W whose degree constraint can be removed.Lemma 4.7 Let x be a vertex solution to LP-MBDST(G, B,W ) such that xe > 0 for each
e ∈ E. Let L and T ⊆W correspond to the tight set constraints and tight degree constraintsde�ning x as given by Lemma 4.2. If T 6= φ then there exists some vertex v ∈W such that
degE(v) ≤ Bv + 1.Proof: We present a simple proof given by Bansal et al. [5] based on the a fractional tokenargument. The proof will build on the second proof of Lemma 3.16. Suppose for the sakeof contradiction, we have T 6= φ and degE(v) ≥ Bv + 2 for each v ∈W .



56 CHAPTER 4. DEGREE CONSTRAINED SPANNING TREESClaim 4.8 We can assume that χ(e) ∈ span(L) for each e such that xe = 1.
Proof: Since Lemma 4.2 holds for any maximal laminar family we construct one laminarfamily L′ such that χ(e) ∈ span(L′). Extending L′ to a maximal laminar family L will givethe desired property. Let Et = {e ∈ E : xe = 1} and C be any connected component ofthe graph induced by Et. Order the edges in E(C)∩Et = {e1, . . . , er} such that the graphinduced by {e1, . . . , ei} is connected for each 1 ≤ i ≤ r. Such an ordering exists since C isconnected. Include the set of vertices spanned by Ci = {e1, . . . , ei} in L′. Such a set is tightsince x(Ci) = i and Ci contains i + 1 vertices. Moreover the sets {Ci : 1 ≤ i ≤ r} form alaminar family (actually a chain). Since, χ(ei) = χ(Ci)−χ(Ci−1) for each 1 ≤ i ≤ r where
C0 = φ, χ(e) ∈ span({χ(Ci) : 1 ≤ i ≤ r} for each e ∈ E(C). We repeat this argumentfor each connected component of Et and include the corresponding chains in L′. Since theconnected components are over disjoint set of vertices, the sets included do not intersectand the collection of sets form a laminar family proving the claim. �We now show a contradiction by a token argument. We give one token for each edgein E. We then redistribute the token such that each vertex in T and each set in L gets onetoken and we still have extra tokens left. This will contradict |E| = |T |+ |L| (Lemma 4.2).The token redistribution is as follows. Each edge e ∈ E gives 1−xe

2 to each of its endpointsfor the degree constraints and xe token to the smallest set in L containing both endpointsof e. We now show that each vertex with a tight degree constraint gets one token. Let
v ∈ T be such a vertex. Then v receives 1−xe

2 tokens for each edge incident at v for a totalof ∑

e∈δ(v)

1− xe

2
=

degE(v)−Bv

2
≥ 1where the �rst equality holds since ∑

e∈δ(v) xe = Bv and the inequality holds since degE(v) ≥

Bv + 2.Now we show that each member S ∈ L also obtains one token. S receives xe token foreach edge e such that S is the smallest set containing both endpoints of e. Let R1, . . . , Rk



4.2. AN ADDITIVE 1 APPROXIMATION ALGORITHM 57be the children of S in the laminar family L where k ≥ 0. We have
x(E(S)) = |S| − 1

x(E(Ri)) = |Ri| − 1 for each 1 ≤ i ≤ k

=⇒ x(E(S)) −
k∑

i=1

x(E(Ri)) = |S| − 1−
k∑

i=1

(|R|i − 1)

=⇒ x(A) = |S| − 1−
k∑

i=1

(|Ri| − 1)

R1 R2

S

Figure 4.3: The solid edges are in A while the dotted edges are not.where A = E(S) \ (∪k
i=1E(Ri)) (see Figure 4.3). Observe that S receives exactly x(A)tokens which is an integer by the above equation. But if x(A) = 0 then χ(E(S)) =

∑k
i=1 χ(E(Ri)) which contradicts the independence. Hence, each set also receives at leastone token.Now, we argue that there is an extra non-zero token left for contradiction of Lemma 4.2.If V /∈ L then there exists an edge e which is not contained in any set of L and the xetoken for that edge gives us the contradiction. Similarly, if there is a vertex v ∈W \T then

v also collects one extra token and we get the desired contradiction. Moreover, if there isa vertex v ∈ V \ T then each edge e incident at v must have xe = 1 else 1−xe

2 > 0 tokensare extra giving a contradiction. But then χ(δ(v)) ∈ span(L) for each v ∈ V \ T since
χ(e) ∈ span(L) for each e ∈ δ(v) from Claim 4.8. But we have

∑

v∈V

χ(δ(v)) = 2x(E(V ))where each of the term on the left side is either χ(δ(v)) for v ∈ T or in span(L). But thisis a linear dependence in the set of all tight independent constraints de�ning the vertexsolution x giving a contradiction. �



58 CHAPTER 4. DEGREE CONSTRAINED SPANNING TREESThis completes the proof of Theorem 4.1.4.3 An Additive ±1 Approximation AlgorithmIn this section, we consider the MBDST problem when both lower degree bounds Av andupper degree bounds Bv are given. We present an approximation algorithm which returnsa tree T of optimal cost and Av−1 ≤ degT (v) ≤ Bv+1 for each v ∈ V . We actually presentan algorithm for a more general problem, theMinimum Bounded-Degree ConnectingTree (MBDCT) problem.Connecting Tree ProblemThe Minimum Bounded-Degree Connecting Tree problem is de�ned as follows.We are given a graph G = (V,E), degree lower degree bounds Av for each vertex in
U ⊆ V and upper degree bounds Bv for each vertex v in some subset W ⊆ V , a costfunction c : E → R, and a forest F on V . We assume without loss of generality that
E(F ) ∩ E(G) = ∅. The task is to �nd a minimum cost forest H such that H ∪ F isa spanning tree of G and Av ≤ dH(v) ≤ Bv. We call such a forest H an F -tree of G,and a connected component of F a supernode; note that an isolated vertex of F is also asupernode. Intuitively, the forest F is the partial solution we have constructed so far, and
H is a spanning tree in the graph where each supernode is contracted into a single vertex.We denote this contracted graph by G/F . Formally V (G/F ) = connected components of
F and E(G/F ) = edges between di�erent components of F . Observe that when E(F ) = ∅the MBDCT problem is just the MBDST problem.4.3.1 Linear ProgramWe need some notation to de�ne the linear programming relaxation for the MBDCT prob-lem. For any set S ⊆ V (G) and a forest F on G, let F (S) be the set of edges in F withboth endpoints in S, i.e., {e ∈ F : |e ∩ S| = 2}. Note that F (V ) is just equal to E(F ).We denote C(F ) the sets of supernodes of F . A set S is non-intersecting with F if for each
C ∈ C(F ) we either have C ⊆ S or C ∩ S = ∅. We denote I(F ) the family of all subsetswhich are non-intersecting with F .We assume the lower bounds are given on a subset of vertices U ⊆ V and upperbounds on a subset W ⊆ V . Let A (B) denote the vector of all lower (upper) degree
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(a) (b)Figure 4.4: In Figure (a), the dashed edges correspond to F . In Figure (b), the bold edges
H form an F -tree of G as F ∪H is a spanning tree of G or equivalently, H is a spanningtree of G/F .bounds Av (Bv) for each v ∈ U (v ∈W ). The following is a linear programming relaxationfor the MBDCT problem which we denote by LP-MBDCT(G,A,B, U,W,F ). In the linearprogram we have a variable xe for each edge e which has at most one endpoint in any onecomponent of forest F . Indeed we assume (without loss of generality) that E does notcontain any edge with both endpoints in the same component of F .minimize c(x) =

∑

e∈E

ce xe

�

�

�

�4.6 subject to x(E(V )) = |V | − |F (V )| − 1
�

�

�

�4.7
x(E(S)) ≤ |S| − |F (S)| − 1 ∀S ∈ I(F )

�

�

�

�4.8
x(δ(v)) ≥ Av ∀ v ∈ U

�

�

�

�4.9
x(δ(v)) ≤ Bv ∀ v ∈W

�

�

�

�4.10
xe ≥ 0 ∀ e ∈ E

�

�

�

�4.11 In the linear program, the constraints from (4.7)-(4.8) and (4.11) are exactly thespanning tree constraints for the graph G/F , the graph formed by contracting each com-ponent/supernode of F into a singleton vertex. The constraints from (4.9)-(4.10) are thedegree constraints for vertices in U and W . Hence, from the Theorem 3.8, it followsthat we can optimize over LP-MBDCT(G,A,B, U,W,F ) using the ellipsoid algorithm inpolynomial time.



60 CHAPTER 4. DEGREE CONSTRAINED SPANNING TREES4.3.2 Characterization of Vertex SolutionsWe give a characterization result for any vertex solution to LP-MBDCT(G,A,B,W,F ).The proof of the following is straightforward from Rank Lemma and Lemma 3.13 appliedto the spanning tree linear program for the graph G/F .Lemma 4.9 Let x be any vertex solution of LP-MBDCT(G,A, B, U,W,F ) such that xe >

0 for each edge e ∈ E and let F = {S ∈ I(F ) : x(E(S)) = |S| − |F (S)| − 1}
⋃
{δ(v) :

x(δ(v)) = Av : v ∈ U}
⋃
{δ(v) : x(δ(v)) = Bv : v ∈ W} . Then there exists a set TU ⊆ U ,

TW ⊆W and a laminar family ∅ 6= L ⊆ I(F ) such that1. The vectors {χ(E(S)) : S ∈ L} ∪ {χ(δ(v)) : v ∈ TU ∪ TW } are linearly independent.2. span(L ∪ {δ(v) : v ∈ TU ∪ TW })=span(F).3. |E| = |L|+ |TU |+ |TW |4.3.3 Iterative AlgorithmWe now give an iterative algorithm for the MBDCT problem in Figure 4.5.MBDCT(G,A,B, U,W,F )1. If F is a spanning tree then return ∅ else let F̂ ← ∅.2. Find a vertex optimal solution x of LP-MBDCT(G,A,B, U,W,F ) and removeevery edge e with xe = 0 from G.3. If there exists an edge e = {u, v} such that xe = 1 then F̂ ← {e}, F ← F ∪ {e}and G← G \ {e}. Also update A,B by setting Au ← Au − 1, Bu ← Bu − 1 and
Av ← Av − 1, Bv ← Bv − 1.4. If there exists a vertex v ∈ U ∪W of degree two, then update U ← U \ {v} and
W ← W \ {v}.5. Return F̂

⋃ MBDCT(G,A,B, U,W,F ).Figure 4.5: Connecting Tree Algorithm MBDCT.For the correctness of the algorithm MBDCT, we shall prove the following key lemma,which will ensure that the algorithm terminates.



4.3. AN ADDITIVE ±1 APPROXIMATION ALGORITHM 61Lemma 4.10 A vertex solution x of LP-MBDCT(G,A, B, U,W,F ) with support E mustsatisfy one of the following.(a) There is an edge e such that xe = 1.(b) There is a vertex v ∈ U ∪W such that degE(v) = 2.In MBDCT Algorithm 2, we only remove a degree constraint on v ∈ U ∪W if v isof degree 2 and there is no 1-edge. Since there is no 1-edge, we must have Av ≤ 1. If
v ∈ U , then the worst case is Av = 1 but both edges incident at v are not picked in lateriterations. If v ∈W , then the worst case is Bv = 1 but both edges incident at v are pickedin later iterations. In either case, the degree bound is o� by at most 1. Following the sameapproach in Theorem 4.4, we have the following theorem.Theorem 4.11 There is a polynomial time algorithm for theMinimum Bounded-DegreeConnecting Tree problem which returns a tree T such that c(T ) ≤ c · x and degT (v) ≤

Bv +1 for each v ∈W and degT (v) ≥ Av−1 for each v ∈ U where x is the optimal solutionto the linear program LP-MBDCT(G,A,B, U,W,F ).A Counting ArgumentNow we are ready to prove Lemma 4.10. Let L be the laminar family and T := TU ∪ TWbe the vertices de�ning the solution x as in Lemma 4.9. Suppose that both (a) and (b) ofLemma 4.10 are not satis�ed. We shall derive that |L| + |T | < |E|, which will contradictLemma 4.9 and complete the proof. We will give two tokens to each edge and collecttwo tokens for each set in L and for each vertex in T plus an extra token deriving thecontradiction. We do this by induction on the tree representing L.We call a vertex active if it has degree at least one in the support E. Each componentof F is called a supernode. Notice that if a supernode C has only one active vertex v, we cancontract C into a single vertex c, set Ac := Av and Bc := Bv, and set c ∈ U ⇐⇒ v ∈ U ,and set c ∈ W ⇐⇒ v ∈W . Henceforth, we call a supernode which is not a single vertexa nontrivial supernode. Hence a non-trivial supernode has at least 2 active vertices. Wealso have degE(v) ≥ 3 for each v ∈ T .Each edge receives two tokens which it distributes one each of its endpoints. Hence,each active vertex v ∈ V receives one token for each edge incident at v. Observe that inthe initial assignment each active vertex has at least one excess token, and so a nontrivialsupernode has at least two excess tokens. For a vertex v with only one excess token, if
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Figure 4.6: In the above �gure, the red vertices denote the vertices in T . The blue forest corre-sponds to the forest for laminar family L and vertices in T .
v /∈ T , then v is a degree 1 vertex; if v ∈ T , then v is of degree 3 and Bv = 1 or Bv = 2.Suppose every vertex v which is active (and hence has excess tokens) gives all itsexcess tokens to the supernode it is contained in. We say the number of excess tokensof a supernode is the sum of excess tokens of active vertices in that supernode. Observethat the excess of any supernode is at least one as every supernode has at least one activevertex and each active vertex has at least one excess token.We call a supernode special if its excess is exactly one.Claim 4.12 A supernode C is special only if it contains exactly one active vertex v ∈ Tand degE(v) = 3.Proof: If the supernode C has two or more active vertices then the excess of C is atleast two. Hence, it must contain exactly one active vertex with exactly one excess token.Also, there must be at least two edges incident at the supernode as x(δ(C)) ≥ 1 is a validinequality. Hence, degE(C) ≥ 2. If v /∈ T , then both v and thus C will have at least twoexcess tokens. This implies v ∈ T and degE(v) = 3. �The induction strategy to reach the contradiction works bottom up in L (vertices in
T are leaves) assigning two tokens to each set and three or four tokens to the root of thesubtree depending on its features. We describe this next. We contract a special supernodeinto a single vertex because it contains only one active vertex. Hence, the only specialsupernodes are singleton vertices in T with degree exactly three. Special vertices withdegree bounds at most 2 need careful analysis because some node S ∈ L may now only get



4.3. AN ADDITIVE ±1 APPROXIMATION ALGORITHM 63three tokens. The following de�nition gives a characterization of those sets which only getthree tokens.De�nition 4.13 A set S 6= V is special if:1. |δ(S)| = 3;2. x(δ(S)) = 1 or x(δ(S)) = 2;3. χ(δ(S)) is a linear combination of the characteristic vectors of its descendants in L(including possibly χ(E(S))) and the characteristic vectors χ(δ(v)) of v ∈ S ∩ T ;Observe that special supernodes satisfy all the above properties. Intuitively, a specialset has the same properties as a special supernode. The following lemma will complete theproof of Lemma 4.10, and hence Theorem 4.11.Lemma 4.14 For any rooted subtree of the forest L 6= ∅ with the root S, we can distributethe tokens assigned to vertices inside S such that every vertex in T ∩ S and every node inthe subtree gets at least two tokens and the root S gets at least three tokens. Moreover, theroot S gets exactly three tokens only if S is a special set or S = V .Proof: First we prove some claims needed for the lemma.Claim 4.15 If S 6= V , then |δ(S)| ≥ 2.Proof: Since S 6= V , x(δ(S)) ≥ 1 is a valid inequality of the LP. As there is no 1-edge,
|δ(S)| ≥ 2. �Let the root be set S. We say a supernode C is a member of S if C ⊆ S but C 6⊆ Rfor any child R of S. We also say a child R of S is a member of S. We call a member Rof S special, if R is a special supernode (in which the supernode is a singleton vertex in
T with degree three from Claim 4.12) or if R is a special set. In either case (whether themember is a supernode or set), a member has exactly one excess token only if the memberis special. Special members also satisfy all the properties in De�nition 4.13.Recall that E(S) denotes the set of edges with both endpoints in S. We denote by
D(S) the set of edges with endpoints in di�erent members of S.



64 CHAPTER 4. DEGREE CONSTRAINED SPANNING TREESClaim 4.16 If S ∈ L has r members then x(D(S)) = r − 1.Proof: For every member R of S, we have
x(E(R)) = |R| − |F (R)| − 1,since either R ∈ L, or R is a supernode in which case both LHS and RHS are zero. As

S ∈ L, we have
x(E(S)) = |S| − |F (S)| − 1Now observe that every edge of F (S) must be contained in F (R) for some member R of

S. Hence, we have the following, in which the sum is over R that are members of S.
x(D(S)) = x(E(S))−

∑

R

x(E(R))

= |S| − |S ∩ F | − 1−
∑

R

(|R| − |F (R)| − 1)

= (|S| −
∑

R

|R|) +
∑

R

|F (R)| − |F (S)|+
∑

R

1− 1

= (
∑

R

1)− 1 = r − 1because |S| = ∑
R |R| and |F (S)| =

∑
R |F (R)|. �Claim 4.17 Suppose a set S 6= V contains exactly three special members R1, R2, R3 and

|D(S)| ≥ 3. Then S is a special set.Proof: Note that |δ(S)| = |δ(R1)|+ |δ(R2)|+ |δ(R3)| − 2|D(S)| = 3 + 3 + 3− 2|D(S)| =

9 − 2|D(S)|. Since S 6= V , we have |δ(S)| ≥ 2 by Claim 4.15. As |D(S)| ≥ 3, theonly possibility is that |D(S)| = 3 and |δ(S)| = 3, which satis�es the �rst property ofa special set. Also, we have x(δ(S)) = x(δ(R1)) + x(δ(R2)) + x(δ(R3)) − 2x(D(S)). Aseach term on the RHS is an integer, it follows that x(δ(S)) is an integer. Moreover,as we do not have an 1-edge, x(δ(S)) < |δ(S)| = 3 and thus x(δ(S)) is either equalto 1 or 2, and so the second property of a special set is satis�ed. Finally, note that
χ(δ(S)) = χ(δ(R1))+χ(δ(R2))+χ(δ(R3))+χ(E(R1))+χ(E(R2))+χ(E(R3))−2χ(E(S)).Here, the vector χ(E(Ri)) will be the zero vector if Ri is a special vertex. Since R1, R2, R3



4.3. AN ADDITIVE ±1 APPROXIMATION ALGORITHM 65satisfy the third property of a special member, S satis�es the third property of a specialset. �The proof of Lemma 4.14 is by induction on the height of the subtree. In the basecase, each member has at least one excess token and exactly one excess token when themember is special. Consider the following cases for the induction step.1. S has at least four members. Each member has an excess of at least one. Therefore
S can collect at least four tokens by taking one excess token from each.2. S has exactly three members. If any member has at least two excess tokens, then
S can collect four tokens, and we are done. Else each member has only one excesstoken and thus, by the induction hypothesis, is special. If S = V , then S can collectthree tokens, and this is enough to force the contradiction to prove Lemma 4.10 since
V is the root of the laminar family. Else, we have x(D(S)) = 2 from Claim 4.16.Because there is no 1-edge, we must have |D(S)| > x(D(S)) = 2. Now, it followsfrom Claim 4.17 that S is special and it only requires three tokens.3. S contains exactly two members R1, R2. If both R1, R2 have at least two excesstokens, then S can collect four tokens, and we are done. Else, one of the membershas exactly one excess token say R1. Hence, R1 is special by the induction hypothesis.We now show a contradiction to the independence of tight constraints de�ning x, andhence this case would not happen.Since S contains two members, Claim 4.16 implies x(D(S)) = 1. There is no 1-edge,therefore we have |D(S)| = |δ(R1, R2)| ≥ 2. Also, R1 is special and thus |δ(R1)| = 3.We claim δ(R1, R2) = δ(R1). If not, then let e = δ(R1) \ δ(R1, R2). Then

xe = x(δ(R1))− x(δ(R1, R2)) = x(δ(R1))− x(D(S)).But x(δ(R1)) is an integer as R1 is special and x(D(S)) = 1. Therefore, xe is aninteger which is a contradiction. Thus δ(R1, R2) = δ(R1). But then
χ(E(S)) = χ(E(R1)) + χ(δ(R1)) + χ(E(R2))if R2 is a set (see Figure 4.7) or

χ(E(S)) = χ(E(R1)) + χ(δ(R1))



66 CHAPTER 4. DEGREE CONSTRAINED SPANNING TREESif R2 is supernode.
R1

R2

S

R1

S

R2

(a) (b)Figure 4.7: If δ(R1, R2) = δ(R1). In (a) we have R2 is a set and in (b) R2 is a supernode.
R1 is special implies that χ(δ(R1)) is a linear combination of the characteristic vectorsof its descendants and the characteristic vectors {χ(δ(v)): v ∈ R1 ∩ T}. Hence, ineither case χ(E(S)) is spanned by χ(E(R)) for R ∈ L\{S} and χ(δ(v)) for v ∈ S∩Twhich is a contradiction to the inclusion of S in L.This completes the proof of Lemma 4.10, Lemma 4.14 and Theorem 4.11. �



5Undirected Network Design with DegreeConstraints
In this chapter we consider degree constrained general network design problems in undi-rected graphs and use iterative methods to achieve approximation algorithms. We provethe following results.� In section 5.1 we give a polynomial time algorithm for the Minimum Bounded-Degree Steiner Network Design problem which returns a solution of cost atmost twice the optimal and violates the degree bounds by at most an additive errorof 6rmax + 3, where rmax is the maximum connectivity requirement.� In section 5.2, we consider the special case ofMinimum Bounded-Degree SteinerForest problem when the connectivity requirements are {0, 1} for all pairs of ver-tices. We give a polynomial time algorithm which returns a solution with cost atmost twice the optimal and violates the degree bounds by an additive error of atmost three.5.1 Minimum Bounded-Degree Steiner NetworkGiven connectivity requirements ruv for all pairs of vertices, a Steiner network is a graphin which there are at least ruv edge-disjoint paths between u and v for all pairs u, v. In theMinimum Bounded-Degree Steiner Network problem, we are given an undirectedgraph G with an edge cost for each edge, a connectivity requirement for each pair ofvertices, and a degree upper bound Bv for each vertex v. The task is to �nd a minimumcost Steiner network H of G satisfying all the degree bounds, that is, degH (v) ≤ Bv for67



68 CHAPTER 5. DEGREE CONSTRAINED UNDIRECTED NETWORKSall v. This problem captures many well-studied network design problems as special cases.For instance, a Steiner forest is a Steiner network with ruv ∈ {0, 1} for all pairs; k-edgeconnected subgraph is a special case when ruv = k for all u, v ∈ V . Even the feasibilityproblem of �nding a Steiner network satisfying all the degree bounds is already NP-hardsince it generalizes the Hamiltonian path problem. In this section, we prove the followingresult.Theorem 5.1 There exists a polynomial time algorithm for the Minimum Bounded-Degree Steiner Network problem which returns a Steiner network H of cost at most
2opt with degree violation at most 6rmax + 3. Here opt is the cost of an optimal solutionwhich satis�es all the degree bounds, and rmax := maxu,v{ruv}.This result develops on the iterative rounding algorithm of Jain [53]. In Lau etal. [69], we �rst gave a (2, 2B + 3)-approximation algorithm using the iterative relaxationmethod. Here we achieve an additive violation in the degree bounds.5.1.1 Linear Programming RelaxationWe begin by formulating a linear program for the problem. Set f(S) = maxu∈S,v/∈S ruvfor each subset S ⊆ V . It is known that f is a weakly supermodular function [53], that is,for every two subsets X and Y , either

f(X) + f(Y ) ≤ f(X ∩ Y ) + f(X ∪ Y )or f(X) + f(Y ) ≤ f(X − Y ) + f(Y −X).The following is a linear programming formulation for the Minimum Bounded-Degree Steiner Network problem, in which the degree constraints are on a subset ofvertices W ⊆ V . (LP-MBDSN) minimize ∑

e∈E

ce xesubject to x(δ(S)) ≥ f(S) ∀S ⊆ V

x(δ(v)) ≤ Bv ∀ v ∈W

xe ≥ 0 ∀ e ∈ E



5.1. MINIMUM BOUNDED-DEGREE STEINER NETWORK 69When f is weakly supermodular function of the form discussed above, the abovelinear program can be e�ciently separated and therefore, optimized over [53]. Also, iflower bounds on the degree are present then they can be incorporated with the connectivityconstraints. This is achieved by setting f({v}) ← max{Lv, f({v}) where Lv is the lowerbound on degree of vertex v. It is easy to verify that the updated function f remainsweakly supermodular.5.1.2 Characterization of Vertex SolutionsLet F = {S | x(δ(S)) = f(S)} be the set of tight constraints from the connectivityrequirement constraints. Recall that two sets X,Y are intersecting if X ∩ Y , X − Y and
Y −X are nonempty and that a family of sets is laminar if no two sets are intersecting.Since

x(δ(X)) + x(δ(Y )) ≥ x(δ(X ∩ Y )) + x(δ(X ∪ Y )) and
x(δ(X)) + x(δ(Y )) ≥ x(δ(X − Y )) + x(δ(Y −X))for any two subsets X and Y due to the cut function δ and f is weakly supermodular, itfollows from standard uncrossing arguments (see e.g. [53]) that a vertex solution of theabove linear program is characterized by a laminar family of tight constraints. This canbe shown using an uncrossing argument as in Section 3.2.Lemma 5.2 Let the requirement function f of (LP-MBDSN) be weakly supermodular, andlet x be a vertex solution of (LP-MBDSN) such that 0 < xe < 1 for all edges e ∈ E. Then,there exists a laminar family L of tight sets and a set T ⊆ W with x(δ(v)) = Bv for each

v ∈ T such that:1. The vectors χ(δ(S)) for S ∈ L and χ(δ(v)) for v ∈ T are linearly independent.2. |E| = |L|+ |T |.3. For any set S ∈ L, χ(δ(S)) 6= χ(δ(v)) for any v ∈W .5.1.3 Iterative AlgorithmThe iterative algorithm is given in Figure 5.1. In Step 2a we de�ne a set of high degreevertices Wh = {v ∈ W |
∑

e∈δ(v) xe ≥ 6fmax}, where fmax := maxS f(S). Then in Step 2dwe only pick an edge e with xe ≥
1
2 when both of its endpoints are not high degree vertices.



70 CHAPTER 5. DEGREE CONSTRAINED UNDIRECTED NETWORKSMinimum Bounded-Degree Steiner Network1. Initialization F ← ∅, f ′(S)← f(S) ∀S ⊆ V .2. While F is not a Steiner network(a) Computing a vertex optimal solution:Find a vertex optimal solution x satisfying f ′ and remove every edge e with
xe = 0. Set Wh ← {v ∈ W |

∑
e∈δ(v) xe ≥ 6fmax} and Bv ←

∑
e∈δ(v) xe for

v ∈W .(b) Removing a degree constraint:For every v ∈ W with degree at most 4 in the support E, remove v from
W .(c) Picking an 1-edge:For each edge e = (u, v) with xe = 1, add e to F , remove e from G, anddecrease Bu, Bv by 1.(d) Picking a heavy edge with both endpoints low:For each edge e = (u, v) with xe ≥ 1/2 and u, v /∈Wh, add e to F , remove
e from G, and decrease Bu and Bv by 1/2.(e) Updating the connectivity requirement function:For every S ⊆ V : f ′(S)← f(S)− |δF (S)|.3. Return F .Figure 5.1: Algorithm for the Minimum Bounded-Degree Steiner Network.This is the key step to ensure that the degree bounds are only violated by an additive termand avoid the multiplicative factor of two on the degree bound improving on the previousiterative algorithm in Lau et al. [69].First we show that the algorithm returns the solution with the claimed guarantees forcost and degree in Theorem 5.1 assuming that the algorithm always proceed to completionto return a feasible solution F . Then we show in Lemma 5.5 that for any vertex solutionto the linear program one of the conditions must be satis�ed.Lemma 5.3 If in each iteration one of the conditions in Step 2b, Step 2c or Step 2d issatis�ed then the algorithm returns a Steiner network with cost at most twice the optimallinear programming solution to (LP-MBDSN) and degree bound of each vertex is violatedby at most 6rmax + 3.Proof: The proof is by a standard inductive argument. We give a short explanation. Note



5.1. MINIMUM BOUNDED-DEGREE STEINER NETWORK 71that f ′ is a weakly supermodular function. Since we always pick an edge with xe ≥
1
2 andthe remaining fractional solution is a feasible solution for the residual problem, the cost ofthe solution returned is at most twice the cost of the linear programming solution adaptingthe proof of Theorem 3.15 which we outline below. Let z∗ denote the optimal solution tothe initial linear program before the start of �rst iteration.Claim 5.4 In any iteration, if F denotes the current partial solution and x denotes theoptimum solution to the residual linear program then

c(F ) + 2cx ≤ 2cz∗.Proof: The proof is by induction on the number of iterations. Initially, F = ∅ and x = z∗and the claim holds. Now suppose the claim holds at a beginning of any iteration. If weremove a degree constraint in Step 2b then F does not change while the linear program isrelaxed and hence its optimum can only decrease. Thus the term c(F ) + 2cx decreases atthe end of iteration and the claim still holds true.In the other case, we select an edge e with xe ≥
1
2 in Step (2c) or Step (2d). Let

xres denote the solution x, restricted to edges in G \ e, F ′ = F ∪ {e} and let x′ denote theoptimal solution to the residual linear program formed after this iteration . Since xres is afeasible solution to this linear program we have cxres ≤ cx′. Thus we obtain that
c(F ′) + 2cx′ ≤ c(F ) + ce + 2cxres ≤ c(F ) + 2cx ≤ 2cz∗where ce + 2cxres ≤ 2cx since xe ≥

1
2 . Thus the induction hypothesis also holds inthis case. �For the guarantee on the degree bound, �rstly observe that for any vertex v, we pickat most Bv − 6fmax edges in Step 2c incident at v since the degree bound of v is reducedby one whenever such an edge is picked. In Step 2d, we pick at most 12fmax − 1 edgesincident at v since the degree bound is reduced by 1

2 whenever we include such an edgeand the degree constraint is removed before the bound reaches zero. Moreover, at most 4edges can be picked incident at v once the degree constraint for v is removed. Hence, thenumber of edges picked which are incident at v is at most
Bv − 6fmax + 12fmax − 1 + 4 = Bv + 6fmax + 3,



72 CHAPTER 5. DEGREE CONSTRAINED UNDIRECTED NETWORKSas required. �For the correctness of the algorithm, we shall prove the following key lemma inSection 5.1.4 which will ensure that the algorithm terminates with a feasible solution andcomplete the proof of Theorem 5.1.Lemma 5.5 Let x be a vertex solution of (LP-MBDSN), and W be the set of vertices withtight degree constraints, and Wh = {v ∈ W |
∑

e∈δ(v) xe ≥ 6fmax}. Then at least one ofthe following holds.1. There exists an edge e with xe = 1.2. There exists an edge e = {u, v} with xe ≥ 1/2 and u, v /∈Wh.3. There exists a vertex v ∈W such that degE(v) ≤ 4.We say a vertex v is owned by a set S if v ∈ S and S is the smallest set in Lcontaining v.5.1.4 A Counting ArgumentWe shall prove Lemma 5.5 by a counting argument. Suppose, by way of contradiction,that none of the conditions in the lemma holds. Then each edge e has 0 < xe < 1, andeach edge e with 1 > xe ≥ 1/2 (we call such an edge a heavy edge) must have at least oneendpoint in Wh, and each vertex in W must have degree at least �ve. We give two tokensfor each edge (the token assignment scheme is explained below) for a total of 2|E| tokens.Then, the tokens will be reassigned so that each member of L gets at least two tokens,each vertex in T gets at least two tokens and we still have some excess token left. Thiswill contradict |E| = |L|+ |T | of Lemma 5.2, and thus completes the proof.The main di�erence from Jain's analysis is the existence of heavy edges (with anendpoint in Wh) which our algorithm is not allowed to pick. In the following, we say avertex in Wh is a high vertex. Since there are heavy edges, a set S ∈ L may only havetwo edges in δ(S), and hence S may not be able to collect three tokens as in the proof ofJain [53]. To overcome this, we use a di�erent token assignment scheme so that a similarinduction hypothesis as Jain's would work.Token assignment scheme: If e = {u, v} is a heavy edge, u ∈ Wh and v /∈ W , then v



5.1. MINIMUM BOUNDED-DEGREE STEINER NETWORK 73gets two tokens from e and u gets zero token. For every other edge e, one token is assignedto each endpoint of e.Co-requirement: We also need to re�ne the de�nition of co-requirement from Jain [53]for the presence of heavy edges. De�ne
coreq(S) =

∑

e∈δ(S), xe<1/2

(1/2 − xe) +
∑

e∈δ(S), xe≥1/2

(1− xe).It is useful to note that this de�nition reduces to Jain's de�nition if every edge ewith xe ≥
1
2 is thought of as two parallel edges aiming to each achieves a value of 1

2 andsharing the current xe value equally (i.e. each gets xe

2 ): summing 1
2 −

xe

2 over the twoparallel edges gives 1− xe, the second term.After this initial assignment, each vertex in V \Wh receives at least as many tokens astheir degree. Moreover, each vertex in W \Wh receive at least �ve tokens (as their degree isat least �ve). Note that a vertex v ∈Wh might not have any tokens if all the edges incidentat it are heavy edges. By exploiting the fact that f(S) ≤ fmax, however, we shall show thatvertices in Wh can get back enough tokens during the inductive counting argument. Nowwe prove the following lemma which shows that the tokens can be reassigned as discussedpreviously.Lemma 5.6 For any subtree of L rooted at S, we can reassign tokens such that each vertexin T ∩S gets at least two tokens, each set in the subtree gets at least two tokens, and the root
S gets at least three tokens. Moreover, root S gets exactly three tokens only if coreq(S) = 1

2 .Proof: We now proceed by induction on the height of the subtree to prove Lemma 5.6.We �rst prove the base case of the induction hypothesis where we also show a crucialClaim 5.7, which handles all sets that own some vertices in W . We then use this claim inthe main induction proof to complete the proof of Lemma 5.6.Base Case of Lemma 5.6: S is a leaf node. First suppose that S ∩Wh = ∅. If thereexists v ∈ S ∩ (W \Wh), then v has at least �ve tokens. Since v only needs two tokens,it has three excess tokens which it can give to S. If there are two such vertices or Sowns another endpoint, then S gets at least four tokens as required. Otherwise, we have
χ(δ(v)) = χ(δ(S)) which is a contradiction to the linear independence of characteristicvectors in Lemma 5.2. Hence, we assume S ∩W = ∅. Then S can get at least δ(S) tokensfrom the vertices owned by S. Note that |δ(S)| ≥ 2, as x(δ(S)) is an integer and there is



74 CHAPTER 5. DEGREE CONSTRAINED UNDIRECTED NETWORKSno 1-edge. If |δ(S)| ≥ 4, then S gets four tokens. If |δ(S)| = 3 and |δ(S)| contains a heavyedge, then S can get four tokens from the vertices it owns, since an endpoint v /∈ W of aheavy edge has 2 tokens by the token assignment scheme. If it does not contain a heavyedge, then S receives three tokens and coreq(S) = 1
2 . If |δ(S)| = 2, then at least one edgeis a heavy edge. If both edges are heavy then S can get four tokens, else if only one edgeis heavy then it gets three tokens and coreq(S) = 1

2 .We now consider the case that S owns a vertex in Wh, and show that S can collectenough tokens for the inductive argument. The following claim is the key to deal withdegree constraints, which uses crucially the parameter fmax. This claim holds even when
S is not a leaf in the laminar family, and will also be used in the induction step.Claim 5.7 Suppose S owns r ≥ 1 vertices in Wh. Then the number of excess tokens fromthe children of S, plus the number of tokens owned by S, plus the number of tokens leftwith vertices in Wh owned by S is at least 2r + 4.Proof: Let S have c children. As each child has at least one excess token by the inductionhypothesis, if c ≥ 6r then we have 6r tokens which is at least 2r + 4. Hence, we assumethat c < 6r.

S
R

Figure 5.2: In this example, red vertices are in Wh which donate tokens for edges incident atthem to the other endpoint. Observe that the tokens for black edges are still available for S whichthe tokens for black edges are not.Let B :=
∑

v Bv ≥
∑

v 6fmax = 6rfmax, where the sum is over all vertices v ∈ Whowned by S. Intuitively, vertices in Wh owned by S would have collected a total of Btokens if the two tokens at each edge is distributed evenly. But by the token assignmentscheme, vertices in Wh owned by S may not get any token for heavy edges incident onthem. We are going to show that these vertices can still �get back� the two tokens theyneed for the inductive argument (see Figure 5.2).



5.1. MINIMUM BOUNDED-DEGREE STEINER NETWORK 75For a child R of S, as x(δ(R)) = f(R) ≤ fmax, at most fmax units of B come fromthe edges in δ(R). Similarly, at most fmax units of B come from the edges in δ(S). Hence,there are at least fmax(6r − c− 1) units of B coming from the edges with both endpointsowned by S. Since there is no 1-edge, there are at least fmax(6r− c−1)+1 such endpointsfrom those edges. Let e = {u, v} be such an edge with v ∈ Wh owned by S. If u ∈ W ,then both u and v get one token from e in the initial assignment. If u /∈ W , then u getstwo tokens from e in the initial assignment, but these two tokens are owned by S. So, thenumber of tokens owned by S plus the number of tokens left with vertices in Wh owned by
S is at least fmax(6r − c − 1) + 1. Furthermore, S can also collect one excess token fromeach child. So, the total number of tokens S can collect is at least fmax(6r− c− 1)+ c+1,which is a decreasing function of c. As c < 6r, the number of tokens is minimized at
c = 6r − 1, which is at least 6r ≥ 2r + 4. �In the base case when S owns a vertex in Wh, using Claim 5.7, S can collect 2r + 4tokens. So these tokens can be redistributed so that S has 4 tokens and each vertex in Whowned by S has 2 tokens, which is enough for the induction hypothesis.Induction Step: The presence of heavy edges with xe ≥

1
2 introduces some di�cul-ties in carrying out the inductive argument in [53]. We need to prove some lemmas whichwork with the new notion of co-requirement and the presence of heavy edges.For any set S, let wdeg(δ(S))

= |{e ∈ δ(S) : 0 < xe <
1

2
}|+ 2|{e ∈ δ(S) : xe ≥

1

2
}|be the weighted degree of S. This de�nition is keeping with the idea that each edge with

xe ≥
1
2 is thought of as two parallel edges. Observe that for any v /∈W , it receives exactly

wdeg(v) tokens in the initial assignment as it gets one token for each edge and two tokensfor all heavy edges incident at it. S can take all the tokens for all the vertices it ownswhich are not in W . We call these the tokens owned by S. Let G′ = (V,E′) be the graphformed by replacing each heavy edge e by two edges e′ and e′′ such that xe′ = xe′′ = xe

2 .Observe that
coreq(S) =

∑

e∈δ(S), xe<1/2

(1/2 − xe) +
∑

e∈δ(S), xe≥1/2

(1− xe)

=
∑

e∈δ(S)∩E′

(1/2 − xe),



76 CHAPTER 5. DEGREE CONSTRAINED UNDIRECTED NETWORKSand wdeg(δ(S)) = |δ′(S)| where δ′(S) = {e ∈ E′ : e ∈ δ(S)}. Observe that coreq(S)is integral or semi-integral (half-integral but not integral) depending on whether δ′(S) iseven or odd. We �rst prove the same technical lemma as in [53] with the new de�nitionsof co-requirements and weighted degrees.Claim 5.8 Let S be a set in L which owns α tokens and has β children where α+β = 3 anddoes not own any vertex of W . Furthermore, each child of S, if any, has a co-requirementof 1
2 . Then the co-requirement of S is 1

2 .Proof: Since each child R of S has a co-requirement of half, this implies that |δ′(R)|is odd. Note that we assume S does not own any vertex of W . Using these facts andthat α + β = 3, a simple case analysis (as in Exercise 23.3 of [99]) can be used to showthat |δ′(S)| is odd. Hence, the co-requirement of S is semi-integral. Now, we show that
coreq(S) < 3

2 proving the claim. Clearly,
coreq(S) =

∑

e∈δ′(S)

(1/2 − xe) ≤
∑

R

coreq(R) +
∑

e

(1/2 − xe),where the �rst sum is over all children R of S and second sum is over all edges for which Sowns a token. Since α+β = 3, there are a total of three terms in the sum. Since, any termin the �rst sum is 1
2 and in the second sum is strictly less than 1

2 , if α > 0, we then have
coreq(S) < 3

2 which proves the claim. So, assume α = 0, i.e. S does not own any tokens.In this case, edges incident to children of S cannot all be incident at S since otherwiseit will violate the linear independence of characteristic vectors in L in Lemma 5.2, andtherefore we have coreq(S) <
∑

R coreq(R) = 3
2 proving the claim. �We are now ready to prove that the induction step holds, in which S has at leastone child. If S owns a vertex in Wh then Claim 5.7 shows that the induction hypothesisholds. Henceforth, we assume that S does not own any vertices of Wh. Suppose S ownssome vertices in W \Wh. Each such vertex gets at least �ve tokens. It needs only twotokens and hence can give three excess tokens to S. As S has at least one child R, R cangive at least one excess token to S, and hence S gets at least four tokens as required.For the rest of the cases, we assume that S does not own any vertex of W , and hencethe remaining case analysis is very similar to that of Jain, with a di�erent de�nition ofco-requirement.� S has at least four children. Then S can take one excess token from each child.



5.1. MINIMUM BOUNDED-DEGREE STEINER NETWORK 77� S has exactly three children. If any child S has two excess tokens or if S owns avertex then S can get four tokens. Else, each of the three children of S has a co-requirement of half and S owns no vertices. Then, by Claim 5.8, we have that S hasco-requirement of 1
2 and it only needs three tokens.� S has exactly two children R1 and R2. If both of them have two excess tokens thenwe are done. Else, let R1 have exactly one token and hence it has co-requirement of

1
2 by the induction hypothesis. We now claim that S owns an endpoint. For the sakeof contradiction suppose S does not own any endpoint. Then, if there are α edgebetween R1 and R2 in E′ (where we replace each heavy edge by two parallel edges),we have

|δ′(S)| = |δ′(R1)|+ |δ
′(R2)| − 2αAs R1 has a co-requirement of half, we have |δ′(R1)| is odd and hence δ′(S) and δ′(R2)have di�erent parity and hence di�erent co-requirements. The co-requirements of Sand R2 can di�er by at most the co-requirement of R1 which is exactly half. Since,

χ(δ′(S)) 6= χ(δ′(R1)) + χ(δ′(R2)), there must be an edge between R1 and R2 andtherefore, coreq(S) < coreq(R2) + 1
2 . Similarly, χ(δ′(R2)) 6= χ(δ′(S)) + χ(δ′(R1))and therefore there is an edge in δ′(S) ∩ δ′(R1) which implies that coreq(R2) <

coreq(S) + 1
2 . Thus, their co-requirements are equal which is a contradiction. Thus

S owns at least one endpoint.If S owns at least two endpoints or R2 has two excess tokens, then we have fourtokens for S. Otherwise, by Claim 5.8, we have that co-requirement of S is half andit needs only three tokens.� S has exactly one child R. Since both sets S and R are tight we have that x(δ(S)) =

f ′(S) and x(δ(R)) = f ′(R). Since χ(δ(S)) and χ(δ(R)) are linearly independent,subtracting the two equations we have that x(δ(S)∆δ(R)) (∆ denotes symmet-ric di�erence) is an positive integer. Also, there are no 1-edges present and so
|δ(S)∆δ(R)| ≥ 2, and each edge in the symmetric di�erence gives one token to
S. Thus S owns at least two endpoints. If S owns three endpoints or R has twoexcess tokens then S can get four tokens. Otherwise, S has exactly two endpointsand exactly one child which has co-requirement of 1

2 . Then by Claim 5.8, S has aco-requirement of 1
2 .This completes the proof of Lemma 5.6, which assigns two tokens to each set in thelaminar family L and each vertex in T which is contained in some set S ∈ L. For verticesin T which are not contained in any set S ∈ L we also have enough tokens. Observe that



78 CHAPTER 5. DEGREE CONSTRAINED UNDIRECTED NETWORKSeach vertex v ∈ W \Wh receives at least �ve tokens. For vertices in Wh not contained inany set S ∈ L, an argument identical to Claim 5.7 with S = V will give at least two tokensto each vertex in Wh.Thus we have that 2|E| > 2|L|+ 2|T |, which contradicts Lemma 5.2. Therefore, oneof the conditions in Lemma 5.5 holds, and hence we have Theorem 5.1. �Integrality Gap Example. In Figure 5.3 we show that the linear program (LP-MBDSN)has an integrality gap of B + Ω(rmax) and therefore Theorem 5.1 is nearly tight.
x1 x2

y1 y2
yky3Figure 5.3: In this example, we have a complete bipartite graphB = (X, Y, E)whereX = {x1, x2}and Y = {y1, . . . , yk}. We set the connectivity requirements between yi and yj to be 1 for all i, j,between x1 and x2 to be k

2 , and 0 otherwise. The fractional solution where all edges have fractionalvalue 1
2 is the optimal solution, in which the degree of x1 and x2 is equal to k

2 = ∆∗

f . On theother hand, it can be seen that in any integer solution, the degree of x1 and x2 must be at least
3
4k = 3

2∆∗

f . This example also shows that the any feasible solution must cost twice the cost ofoptimal LP solution and must violate the degree bounds by at least rmax

2 for some vertex v.5.2 Minimum Bounded-Degree Steiner ForestIn this section we study the Minimum Bounded-Degree Steiner Forest problemwhich is a special case Minimum Bounded-Degree Steiner Network problem with
ruv ∈ {0, 1} for each pair of vertices u, v ∈ V . We show an improved analysis in thisparticular case and prove the following theorem.Theorem 5.9 There exists a polynomial time algorithm for the Minimum Bounded-Degree Steiner Forest problem which returns a Steiner forest F of cost at most 2optwith degree violation at most 3 (i.e. degF (v) ≤ Bv + 3 ∀v ∈ F ). Here opt is the cost ofan optimal solution which satis�es all the degree bounds.The linear program is identical to the linear program in Section 5.1 for theMinimumBounded-Degree Steiner Network problem with the extra restriction that f is a
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{0, 1}-valued function. Moreover, the same characterization of vertex solutions follows asin Lemma 5.2 which we will use in the next section.5.2.1 Improved Iterative AlgorithmOur algorithm is an iterative relaxation algorithm as shown in Figure 5.4. We pick a heavyedge (1 > xe ≥

1
2 ) only if both endpoints do not have degree constraints. Also, by onlypicking edges with no degree constraints, there is no need to update the degree boundsfractionally. Note also that the relaxation step has been generalized to remove a degreeconstraint when a vertex has degree at most Bv + 3.Minimum Bounded-Degree Steiner Forest1. Initialization F ← ∅, f ′(S)← f(S) ∀S ⊆ V .2. While F is not a Steiner forest(a) Computing a vertex optimal solution:Find a vertex optimal solution x satisfying f ′ and remove every edge e with

xe = 0.(b) Removing a degree constraint:For every v ∈W with degree at most Bv + 3 in the current support graph,remove v from W .(c) Picking an 1-edge:For each edge e = {u, v} with xe = 1, add e to F , remove e from G, anddecrease Bu, Bv by 1.(d) Picking a heavy edge with no degree constraints:For each edge e = {u, v} with xe ≥
1
2 and u, v /∈W , add e to F and remove

e from G.(e) Updating the connectivity requirements:Set f ′(S)← f(S)− δF (S).3. Return F .Figure 5.4: Algorithm for Minimum Bounded-Degree Steiner Forest.The following lemma shows that the algorithm will always terminate successfully.Lemma 5.10 Every vertex solution x of (LP) must satisfy one of the following:1. There is an edge e with xe = 0 or xe = 1.



80 CHAPTER 5. DEGREE CONSTRAINED UNDIRECTED NETWORKS2. There is an edge e = {u, v} with xe ≥
1
2 and u, v /∈W .3. There is a vertex v ∈W with deg(v) ≤ Bv + 3.Note that the updated connectivity requirement function f ′ is also a weakly super-modular function. With Lemma 5.10, using a simple inductive argument as in the previoussection, it can be shown that the algorithm returns a Steiner forest of cost at most twicethe optimal cost and the degree of each vertex is at most Bv + 3. The rest of this sectionis devoted to the proof of Lemma 5.10.5.2.2 A Re�ned Counting ArgumentThe proof of Lemma 5.10 is by contradiction. Let L be the laminar family and T ⊆ Wbe the set of tight vertices de�ning the vertex optimal solution x as in Lemma 5.2. Thecontradiction is obtained by a counting argument. Each edge in E is assigned two tokens.Then the tokens will be redistributed such that each member of L and each vertex in Tget at least two tokens, and there are still some extra tokens left. This will give us acontradiction to Lemma 5.2 that |E| = |L|+ |T |.As before we say an edge is heavy if xe ≥

1
2 . If all conditions of Lemma 5.10 donot hold, we must have that there is no 0-edge and no 1-edge, every heavy edge has anendpoint in W , and each vertex v ∈W has at least Bv + 4 edges incident at it.Token assignment scheme: The two tokens for an edge e = {u, v} are assigned by thefollowing rules.1. One token of e is assigned to u and the other token of e is assigned to v.2. If e = (u, v) is a heavy edge with v ∈ W and u is not contained in the smallest setin L containing v, then the token of e for v is reassigned to the smallest set S ∈ Lcontaining both u and v (see Figure 5.5).Classes: Let R be a set in L. An edge e = {u, v} is an out-heavy edge of R if u ∈ R \Wand v ∈ W \ R and xe ≥

1
2 . The following de�nition is important to the analysis. For aset R ∈ L, we de�ne R to be of� Class Ia: if |δ(R)| = 2 and R has one out-heavy edge e with xe > 1

2 .� Class Ib: if R has two out-heavy edges. (Note that |δ(R)| = 2 in this case and eachhas value 1
2).
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v

u

+1

+1

SFigure 5.5: Rule (2) of the token assignment scheme. This is a new rule which is useful incollecting an extra token for S. Here, the degree constraint for vertex u has been removed but thedegree constraint for vertex v is present.� Class IIa: if |δ(R)| = 3 and xe < 1
2 for each edge e ∈ δ(R).� Class IIb: if R has one out-heavy edge.� Class III: otherwise.
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IIbIIa IIIIaFigure 5.6: The �gure shows examples of sets of each class. A vertex without degree constraint iswhite, otherwise it is black. (An endpoint without a vertex shown means that this information isnot important.) A heavy edge is represented by a thick line. Note the de�nition of Class Ia, ClassIb and Class II require out-heavy edges. The rightmost example is a Class III set, although it hasa heavy edge.The following lemma shows that the tokens can be redistributed so that each memberof L and each vertex in W gets at least two tokens. The proof is by induction on the laminarfamily.Lemma 5.11 For any subtree of the laminar family L rooted at S, we can redistributetokens in S such that1. Every vertex in T ∩ S gets at least two tokens.2. Class I sets in the subtree get at least two tokens.



82 CHAPTER 5. DEGREE CONSTRAINED UNDIRECTED NETWORKS3. Class II sets in the subtree get at least three tokens.4. Class III sets in the subtree get at least four tokens.Proof: Here is a brief outline of the proof. First we show in Claim 5.12 that a set owningat least two vertices in W can collect enough tokens; this uses the fact that f is a 0-1function. Then a series of claims, Claim 5.13, Claim 5.14, Claim 5.15 and Claim 5.16are used to show that a set owning exactly one vertex in W can collect enough tokens.Then the remaining cases consider sets which do not own any vertex in W , which relycrucially on Claim 5.17. We remark that Rule (2) of the token assignment scheme and theasymmetry in the de�nition of out-heavy edges are used in Claim 5.17. Now we start theproof by proving Claim 5.12.Claim 5.12 If S ∈ L owns two or more vertices in W then the induction claim holds.Proof: Suppose S owns w1, . . . , wr ∈ W . Since Bv ≥ 1 for all v ∈ W , by Step 2b ofthe algorithm, each vertex wi is of degree at least 5. Since f(S) = 1, δ(S) can have atmost two heavy edges. Hence, by the token assignment scheme, there are at least 5r − 2tokens assigned to w1, . . . , wr which have not be reassigned by Rule (2). Since each vertexin W ∩ S needs only two tokens, there are still 3r − 2 extra tokens left. If r ≥ 2, then Scan collect at least 4 tokens, as required. �

S

w1

w2Figure 5.7: Here w1 and w2 are vertices in W owned by S. The red edges are heavy edges andthere can be at most two such edges in δ(T ) for any tight set T (here S and its children). Observethat vertices in W still retain tokens for 2 ∗ 3− 2 = 4 tokens (for the black edges).Hence suppose w is the only vertex in W owned by S.Claim 5.13 Let S be the set that owns w ∈ W . Then w is assigned at least four tokens,and is assigned exactly four tokens only if:



5.2. MINIMUM BOUNDED-DEGREE STEINER FOREST 831. deg(w) = 5, Bw = 1, and there is one heavy edge of δ(S) in δ(w).2. deg(w) = 6, Bw = 2, and there are two heavy edges of δ(S) in δ(w). In this case,
δ(S) = δ(S) ∩ δ(w).Proof: Since f(S) = 1, δ(S) can have at most two heavy edges. So w receives one tokenfor each edge incident at w except for the heavy edges in δ(w) ∩ δ(S). By Step 2b of thealgorithm, w is of degree at least �ve. Hence, if there is no heavy edge in δ(S)∩ δ(w), then

w receives �ve tokens. Suppose that δ(S)∩ δ(w) has only one heavy edge. Thus w receives
deg(w) − 1 ≥ 4 tokens and exactly four tokens only if deg(w) = 5 and Bw = 1.Suppose δ(w) ∩ δ(S) has two heavy edges, then Bw = x(δ(w)) ≥ 2 since there areno 0-edges. Therefore, deg(w) ≥ 6 by Step 2b of the algorithm. Thus, w receives atleast deg(w) − 2 ≥ 4 tokens and exactly four tokens only if deg(w) = 6, Bw = 2 and
δ(S) = δ(w) ∩ δ(S) contains two heavy edges. �We now show via a series of claims that when S owns exactly one vertex in W , thereare enough tokens for S and the vertex w ∈W it owns.Claim 5.14 If S owns one vertex in W and has one Class III child or two Class II childrenthen there are enough tokens for w and S.Proof: Let w be the vertex in W that S owns. From Claim 5.13, it follows that w receivesat least four tokens and therefore it has two extra tokens. Each Class III child also receivestwo extra tokens by the induction hypothesis and each Class II child receives one extratoken. Hence, S can collect two tokens from w and two tokens from its Class III child orthe two class II children whichever the case. �Now, we show that induction hypothesis holds even when S owns exactly one ClassII child.Claim 5.15 If S owns one vertex in W and has no Class III child and exactly one ClassII child then there are enough tokens for w and S.Proof: Following the argument in Claim 5.14, S can receive at least two extra tokens from
w and one extra token from its class II child, say R1. Let R2, . . . , Rl be the class I childrenof S where l ≥ 1 (l = 1 implies that there are no class I children) . If w has another extra



84 CHAPTER 5. DEGREE CONSTRAINED UNDIRECTED NETWORKStoken or S owns an endpoint or δ(S) has an out-heavy edge then the claim holds. Thusany out-heavy edge incident in δ(Ri) is in δ(w) or is an in-heavy edge in δ(R1). In thelatter case R1 is of Class IIb. Moreover, w satis�es one of the two cases in Claim 5.13. Wenow consider the two cases depending on which of the conditions hold.1. deg(w) = 5, Bw = 1, and there is one heavy edge of δ(S) in δ(w). Thus, w cannothave another heavy edge incident at it. If R1 is of Class IIb then the out-heavy edgein δ(Ri) must also be in δ(S) which contradicts that S needs four tokens. Thus R1is of Class IIa and also S does not have any Class I children. But we have
x(δ(R1)) = x(δ(R1) ∩ δ(w)) + x(δ(R1) ∩ δ(S)) = 1

x(δ(S)) = x(δ(S) ∩ δ(R1)) + x(δ(S) ∩ δ(w)) = 1

x(δ(w)) = x(δ(w) ∩ δ(R1)) + x(δ(w) ∩ δ(S)) = 1

=⇒ x(δ(w) ∩ δ(R1)) = x(δ(w) ∩ δ(S)) = x(δ(R1) ∩ δ(S)) =
1

2But |δ(R1)| = 3 thus either |δ(R1) ∩ δ(w)| = 1 or |δ(R1) ∩ δ(S)| = 1. In either case,there is a heavy edge in δ(R1) contradicting that R1 is of Class IIa.2. deg(w) = 6, Bw = 2, and there are two heavy edges of δ(S) in δ(w). In this case,
δ(S) = δ(S) ∩ δ(w). Thus w can have at most one more heavy edge incident at it.Thus S has at most one class I child R2. Therefore we have

x(δ(R1)) = x(δ(R1) ∩ δ(w)) + x(δ(R1) ∩ δ(R2)) = 1

x(δ(S)) = x(δ(S) ∩ δ(w)) = 1

x(δ(R2)) = x(δ(w) ∩ δ(R2)) + x(δ(w) ∩ δ(R2)) = 1

x(δ(w)) = x(δ(w) ∩ δ(S)) + x(δ(w) ∩ δ(R1)) + x(δ(w) ∩ δ(R2)) = 2

=⇒ x(δ(w) ∩ δ(R1)) = x(δ(w) ∩ δ(R2)) = x(δ(R1) ∩ δ(R2)) =
1

2Thus again there is a heavy edge in δ(R1) and R1 must be of Class IIb. Also R2 is ofclass Ib, since there is no edge e in δ(R2) with xe > 1
2 . Thus, there is a single heavyedge between R1 and R2. But this edge gives one token to S by Rule 2 giving fourtokens to S.This completes the proof of Claim 5.15 �



5.2. MINIMUM BOUNDED-DEGREE STEINER FOREST 85We now assume that S only has class I children and prove that S can collect enoughtokens.Claim 5.16 If S has only class I children and own one vertex w in W , then S can collectenough tokens.Proof: If S is of class I then it only needs two tokens which it can take from w. Similarly,if S is of Class IIa then w must have three extra tokens since there is no heavy edge in
δ(S) and therefore the two condition in Claim 5.13 cannot hold. Thus S is of either ClassIIb or Class III. Let R1, . . . , Rl be the Class I children of S. There is no heavy edge withone endpoint in one Class I child and another endpoint in another Class I child, by thede�nition of Class I child. Let h be the number of out-heavy edges of R1∪ . . .∪Rl that arealso in δ(S). The goal now is to collect two tokens for w and 4− h tokens for S. Observethat h ≤ 1 since S is of Class IIb or Class III.1. Suppose h = 1. Let e1 be an out-heavy edge in δ(S) ∩ δ(R1). Then S is of ClassIIb, and only needs three tokens. If w has at least �ve tokens, then there are enoughtokens. So assume w has exactly four tokens. Since f(S) = 1 and there is alreadya heavy edge e1 ∈ δ(S), Case (2) of Claim 5.13 cannot happen. So, by Claim 5.13,the only possibility is that Bw = 1, deg(w) = 5 and there is one heavy edge f in

δ(w) ∩ δ(S). Hence δ(S) = {e1, f}. Since Bw = 1, w does not have any other heavyedges incident at it. Therefore S has only one child since the out-heavy edge ofanother class I child, say R2, must be incident at δ(w). Since |δ(w)| = 5, |δ(R1)| = 2,and |δ(w) ∩ δ(S)| = 1, there must be an edge {w, x} with x ∈ S − R1 for which Sowns a token as required.2. Suppose h = 0. Then every out-heavy edge of Ri is incident on w and S is of ClassIII. If deg(w) ≥ 8, then w has at least six tokens, and it can give four tokens to S.Else we have the the following cases.(a) Suppose deg(w) = 7. Then by Step 2b of the algorithm, Bw ≤ 3. If thereis at most one heavy edge in δ(w) ∩ δ(S), then w loses only one token andhas at least six tokens by the token assignment scheme, and this is enough. Soassume that there are two heavy edges in δ(w)∩δ(S), and hence |δ(w)∩δ(S)| =

|δ(S)| = 2. If S owns an endpoint, then S can collect one more token, and thisis enough. So further assume that S does not own an endpoint. Therefore
δ(w) \ δ(S) = δ(w,∪l

i=1Ri). We shall prove that this would not happen. Note



86 CHAPTER 5. DEGREE CONSTRAINED UNDIRECTED NETWORKSthat |δ(w,∪l
i=1Ri)| = |δ(w) \ δ(S)| = |δ(w)| − |δ(w) ∩ δ(S)| = 7− 2 = 5. Since

δ(Ri) = 2 for each Class I child, this implies that l ≥ 3. Each Ri has an out-heavy edge ei incident on w. Suppose l ≥ 4. Since deg(w) = 7, this implies that
Bw = x(δ(w)) > x(δ(w)∩ δ(S)) + xe1

+ xe2
+ xe3

+ xe4
≥ 3, a contradiction. So

S must have exactly three children R1, R2, R3. Since |δ(w,∪l
i=1Ri)| = 5, thereare exactly two children with |δ(Ri)| = |δ(w,Ri)| = 2, say R1 and R2. But then

Bw = x(δ(w)) = x(δ(w)∩δ(S))+x(δ(R1))+x(δ(R2))+xe3
≥ 1+1+1+ 1

2 > 3,a contradiction.(b) Suppose deg(w) = 6. Then by Step 2b of the algorithm, Bw ≤ 2. If there is noheavy edge in δ(w) ∩ δ(S), then w has at least six tokens, and this is enough.So assume that there is at least one heavy edge in δ(w) ∩ δ(S).Suppose there are two heavy edges in δ(w) ∩ δ(S), and hence |δ(w) ∩ δ(S)| =

|δ(S)| = 2. If there are two edges in δ(w) with the other endpoint in S−∪l
i=1Ri,then S can collect two more tokens, as required. Otherwise, since deg(w) = 6and δ(Ri) = 2, S must have at least two children R1 and R2. Each Ri has aheavy edge ei incident at w. So, since deg(w) = 6, this implies Bw = x(δ(w)) >

x(δ(w) ∩ δ(S)) + xe1
+ xe2

≥ 2, a contradiction.Henceforth, we assume that there is exactly one heavy edge f in δ(w) ∩ δ(S).So, w has at least �ve tokens, and we need to collect one more token. Each
Ri has a heavy edge ei incident at w. If S has at least three children, then
Bw > xf + xe1

+ xe2
+ xe3

≥ 2, a contradiction. So S has at most two children.On the other hand, since S has at least one child, and so Bw > xf + xe1
≥ 1and hence Bw = 2. If S owns an endpoint, then S can collect one more token,as required. So further assume that S does not own an endpoint.Suppose S has exactly two children R1 and R2. If δ(w,R1) = δ(R1), then

Bw > xf + x(δ(R1)) + xe2
≥ 2, a contradiction. Hence δ(w,R1) = {e1} and

δ(w,R2) = {e2}. Suppose δ(R1, R2) 6= ∅. Let δ(R1, R2) = {e}. Then xe +xe1
=

x(δ(R1)) = f(R1) = 1, and xe + xe2
= x(δ(R2)) = f(R2) = 1, and xe1

+ xe2
=

x(δ(w)) − x(δ(w) ∩ δ(S)) = Bw − f(S) = 1. Therefore, xe = xe1
= xe2

= 1
2 .But then e is a heavy edge between two Class I children, a contradiction. So

δ(R1, R2) = ∅. Let R1 = {e1, f1} and R2 = {e2, f2}. The only possibility leftis f1 ∈ δ(S) and f2 ∈ δ(S). Note that xe1
+ xf1

= x(δ(R1)) = f(R1) = 1,and xe2
+ xf2

= x(δ(R2)) = f(R2) = 1, and xe1
+ xe2

+ x(δ(w) ∩ δ(S)) =

x(δ(w)) = Bw = 2, and xf1
+ xf2

+ x(δ(w) ∩ δ(S)) = x(δ(S)) = f(S) = 1.Hence x(δ(w) ∩ δ(S)) = 1
2 . Since f ∈ δ(w) ∩ δ(S) is a heavy edge, this implies



5.2. MINIMUM BOUNDED-DEGREE STEINER FOREST 87that f is the only edge in δ(w) ∩ δ(S). But then δ(w) = {e1, e2, f} and hence
deg(w) = 3, a contradiction.Henceforth assume that S has exactly one child R1. If S owns an endpoint, then
S can collect one more token, as required. So further assume that S does notown an endpoint. We prove that this case would not happen. Then x(δ(w) ∩

δ(S)) + x(δ(w,R1)) = x(δ(w)) = Bw = 2, and x(δ(w,R1)) + x(δ(R1) ∩ δ(S)) =

x(δ(R1)) = f(R1) = 1, and x(δ(w)∩δ(S))+x(δ(R1)∩δ(S)) = x(δ(S)) = f(S) =

1. Therefore, δ(w,R1) = δ(R1), and hence χ(δ(w)) = χ(δ(R1)) + χ(δ(S)),contradicting the linear independence of these vectors.(c) Suppose deg(w) = 5. Then by Step 2b of the algorithm, Bw ≤ 1 and hence
Bw = 1. Each child Ri has a heavy edge ei incident on w. So S can have onlyone child R1. We cannot have δ(w,R1) = δ(R1); otherwise Bw > 1. Also, thereis no heavy edge in δ(w)∩δ(S); otherwise Bw > 1. So w has at least �ve tokens.If S owns an endpoint, then S can collect one more token, as required. So furtherassume that S does not own an endpoint. Then x(δ(w)∩ δ(S))+x(δ(w,R1)) =

x(δ(w)) = Bw = 1, and x(δ(w,R1)) + x(δ(R1) ∩ δ(S))x(δ(R1)) = f(R1) = 1,and x(δ(w) ∩ δ(S)) + x(δ(R1) ∩ δ(S)) = x(δ(S)) = f(S) = 1. Therefore,
x(δ(R1) ∩ δ(S)) = x(δ(w,R1)) = x(δ(w) ∩ δ(S)) = 1

2 . Since δ(R1) = 2, there isonly one edge e ∈ δ(R1) ∩ δ(S), having xe = 1
2 . So, e is an out-heavy edge of

R1 in δ(S), contradicting h = 0.This completes the proof of Claim 5.16. �We now show that the induction hypothesis holds when S does not own a vertex of
W .Base Case of Lemma 5.11: S ∈ L is a leaf node in the laminar family. S gets one tokenfor each edge in δ(S) since S does not own a vertex in W . Therefore, it gets two tokensonly if S is of Class I, three tokens only if it is of Class II, and at least four tokens in anyother case, as required.Induction step of Lemma 5.11: The proof is by induction on number of children of
S. Let h be the number of out-heavy edges in S, and let t be the number of tokens that
S can collect. In the following we say a child R is of Type A if R is of Class Ia or of ClassIIa. Note that we need h + t ≥ 4 if S is not of Type A, and h + t ≥ 3 if S is of Type A.The following Claim 5.17 is crucial and needs the de�nition of out-heavy edges and Rule(2) of the token assignment scheme.



88 CHAPTER 5. DEGREE CONSTRAINED UNDIRECTED NETWORKSClaim 5.17 Each Class Ib, Class IIb, or Class III child R of S can contribute at least 2to h + t. Also each Class Ia, Class IIa child can contribute at least 1 to h + t.Proof: If R is of Class III, then it has 2 excess tokens. If R is of Class IIb, then it has1 excess token and one out-heavy edge e ∈ δ(R). If e ∈ δ(S), then it contributes 1 to h.Otherwise if both endpoints of e are in S, then it contributes 1 to t by Rule (2) of thetoken assignment scheme. Note that, by de�nition, an edge can be an out-heavy edge ofat most one child of S, and so its contribution to t will not be double counted. If R is ofClass Ib, then it has 2 out-heavy edges. By the same argument, these edges contributes 2to h + t. Similarly, if R is of Class Ia, then it has 1 out-heavy edge, and thus contributes1 to h + t. Finally, if R is of Class IIa, then it has 1 excess token. �For the remaining argument we use the following claim which follows from Jain [53]and is similar to Claim 5.8.Claim 5.18 [53] If S does not own any vertices in W and owns α tokens and has βchildren all of Class IIa and α + β = 3 then S is of Class IIa.We now prove a claim which helps us prove the various cases of the induction. Theproofs are similar to proofs in Jain [53].Claim 5.19 Suppose S is a set which does not own any vertices in W , has α ≥ 1 childrenall of which are Type A, owns β endpoints and has no out-heavy edges in δ(S) for whichone endpoint is owned by S. If α + β = 3 then S is of Type A.Proof: We prove the claim by a case analysis on di�erent values of α.1. α = 1. Thus β = 2. Let R be the child of S. Since χ(δ(R)) and χ(δ(S)) areindependent, there must exist edges e ∈ δ(R) \ δ(S) and f ∈ δ(S) \ δ(R) and Sreceives one token for both these edges. Moreover there is no other edge in δ(S)\δ(R)or δ(R) \ δ(S) since β = 2. Now, if R is of Class Ia then the out-heavy edge in δ(R)must also be in δ(S) since S does not own a vertex in W . In this case S is also ofClass Ia. If R is of Class IIa then xe = xf < 1
2 and δ(S) = δ(R)∪ {f} \ {e} and S isalso of Class IIa.2. α = 2. Thus β = 1. Let R1 and R2 be the children of S. R1 and R2 cannot bothbe of Class Ia since the out-heavy edge in δ(Ri) must be in δ(S) for i = 1, 2, but



5.2. MINIMUM BOUNDED-DEGREE STEINER FOREST 89then x(δ(S)) > 1, a contradiction. First suppose R1 is of Class Ia and therefore
R2 is of Class IIa. We cannot have |δ(R1, R2)| ≥ 2 since |δ(R1)| = 2, and alsocannot have |δ(R2) ∩ δ(S)| ≥ 2 since f(S) = x(δ(S)) = 1. So the only possibility is
|δ(R1, R2)| = |δ(v,R2)| = |δ(R2)∩δ(S)| = 1. Hence |δ(S)| = 2 and thus S is of ClassIa, as required. Finally, suppose both R1 and R2 are of Class IIa and δ(S) does notcontain any heavy edges, then from Claim 5.18 S is of Class IIa, as required.3. α = 3. Let R1, R2 and R3 be the children of S. As previously argued in thecase of α = 2, at most one of R1, R2, R3 can be of Class Ia. First suppose that
S has exactly one Class Ia child, say R1. Let δ(R1) = {e1, f1}, where e1 is theout-heavy edge of R1. Assume, without loss of generality, that f1 ∈ δ(R2). Since
f(S) = 1, we must have |δ(R2, R3)| = 2; otherwise |δ(R3) ∩ δ(S)| ≥ 2 and thus
x(δ(S)) = xe1

+ x(δ(R3) ∩ δ(S)) > 1
2 + 1

2 = 1, since |δ(R3)| = 3 and each edge e in
δ(R3) has xe < 1

2 by the de�nition of a Class IIa child. Since |δ(R2, R3)| = 2, thisimplies that δ(S) = 2, and hence S is of Class Ia and therefore Type A. In the othercase, we have that all three children of S are of Class IIa. Then from Claim 5.18 itfollows that S must also be of Class IIa.Thus the claim follows. �Now we complete the inductive argument based on the number of children of S.1. S has at least four children. Then each child can contribute at least 1 to h + t, andso h + t ≥ 4.2. S has exactly three children. If there is a child which is not of Type A, then h+ t ≥ 4by Claim 5.17, as required. So assume S has exactly three Type A children R1, R2, R3.If S owns an endpoint then also h + t ≥ 4. So further assume that S does not ownan endpoint. Then S satis�es the conditions of Claim 5.19 and must be of Type A.Thus h + t ≥ 3 su�ces for S.3. S has exactly two children R1 and R2. If both R1 and R2 are not of Type A, sinceeach can contribute 2 to h + t by Claim 5.17, then we are done.Suppose R1 is of Type A and R2 is not of Type A. If S owns an endpoint then weare done. So further assume that S does not own an endpoint. We shall prove that



90 CHAPTER 5. DEGREE CONSTRAINED UNDIRECTED NETWORKSthis would not happen. In this case
x(δ(R1) ∩ δ(S)) + x(δ(R1, R2)) = x(δ(R1)) = 1,

x(δ(R1) ∩ δ(S)) + x(δ(R2) ∩ δ(S)) = x(δ(S)) = 1,

x(δ(R2) ∩ δ(S)) + x(δ(R1, R2)) = x(δ(R2)) = 1,Thus we have,
x(δ(R1) ∩ δ(S)) = x(δ(R1, R2)) = x(δ(R2) ∩ δ(S)) =

1

2
.

R1 cannot be of Class Ia, since otherwise it has an edge with xe > 1
2 . Also, R1 cannotbe of Class IIa, since |δ(R1)| = 3, either δ(R1, R2) or δ(R2) ∩ δ(S) is a single edge ewith xe = 1

2 , contradicting R2 is of Class IIa.So suppose R1 and R2 are of Type A. If S owns two endpoints, then we are done.By the above argument, S must owns at least one endpoint, and thus h + t ≥ 3. If
S has an out-heavy edge for which S owns one endpoint then we have h + t ≥ 4 andwe are done. Hence assume that S owns exactly one endpoint v and each out-heavyedge in δ(S) is in δ(Ri) for some i. Thus S satis�es the condition of Claim 5.19 andis of Type A. Thus t ≥ 3 su�ces for S.4. S has exactly one child R. By linear independence of χ(δ(S)) and χ(δ(R)), S mustown at least two endpoints, and thus h+ t ≥ 3. If R is not of Type A, then h+ t ≥ 4,and we are done. If δ(S) \ δ(R) has an out-heavy edge or S owns more than twoendpoints then also we have h + t ≥ 4 as required. In the remaining case S satis�esconditions of Claim 5.19 and S is of Type A. Therefore, h + t ≥ 3 su�ces.This completes the proof of Lemma 5.11. If some root S of the laminar family isnot of Class I, then there is some excess token left at S by Lemma 5.11. If every root isof Class I, then there must exist a vertex w ∈W that is not contained in any root, and sothere is some excess token left at w. This completes the proof of Theorem 5.9. �



6Directed Network Design with Degree Constraints
In this chapter we present bi-criteria approximation algorithms for bounded-degree networkdesign problems in directed graphs.� In section 6.1, we consider bounded-degree network design problem in directed graphswhere the connectivity requirements can be speci�ed by a crossing supermodular func-tion. An example of such network design problems is the k-arc connected spanningsubgraph problem. We give a (2, 3B + 5)-approximation algorithm for the problem.� In section 6.2, we consider the special case of bounded-degree network design problemin directed graphs here the connectivity requirements are speci�ed by a {0, 1}-valuedintersecting supermodular function. This family of problems includes the MinimumBounded-Degree Arborescence problem. We give an improved (2, 2B + 2)-approximation algorithm for this case.6.1 Minimum Degree-Bounded Directed NetworksIn this section, we consider a general network design problem with degree constraintswhere the connectivity requirement is given by a crossing supermodular function. Aninteger function on sets of vertices f : 2V → Z+ is called crossing supermodular if theinequality

f(A) + f(B) ≤ f(A ∩B) + f(A ∪B)holds for every pair of sets A,B ⊆ V such that A ∩ B 6= ∅ and A ∪ B 6= V . Theconnectivity requirement of k-edge-connected spanning subgraph can be formulated via thecrossing supermodular function f(S) = k, ∀∅ 6= S ( V . 91



92 CHAPTER 6. DEGREE CONSTRAINED DIRECTED NETWORKS(DLP) minimize zDLP =
∑

e∈E

ce xesubject to ∑

e∈δin(S)

xe ≥ f(S), ∀S ⊆ V, r /∈ S

∑

e∈δin(v)

xe ≤ Bin
v , ∀ v ∈W1

∑

e∈δout(v)

xe ≤ Bout
v , ∀ v ∈W2

0 ≤ xe ≤ Ue, ∀ e ∈ EFigure 6.1: Linear Program for Directed Connectivity.First we address the Minimum Bounded-degree directed network designproblem of �nding a minimum cost subgraph satisfying crossing supermodular connec-tivity requirements f and degree bounds Bin
v and Bout

v on the in-degree and out-degree,respectively, for each v ∈ V . We prove the following theorem.Theorem 6.1 There is a polynomial time algorithm which given an instance of the Min-imum Bounded-degree directed network design problem returns a solution H ofcost ≤ 3c(OPT ) and δout
H (v) ≤ 3Bout

v + 5 and δin
H (v) ≤ 3Bin

v + 5 for all v ∈ V where OPTis the optimal solution.6.1.1 Linear ProgramFigure 6.1 shows the linear program (DLP) for the problem. As before Ue is the upperbound on the multiplicity of edge e. We place out-degree bounds for vertices in W1 ⊆ Vand in-degree bounds for vertices in W2 ⊆ V both of which can be initialized to V initially.The linear program (DLP) can be optimized in polynomial time (see Frank [35] andMelkonian-Tardos [101]).6.1.2 Characterization of Vertex SolutionsRecall that a pair of sets A,B are crossing if all of the sets A∩B,A−B,B−A,V −(A∪B)are nonempty, and a family of sets L = {A1, A2, . . . , A`} is cross-free if no two of its setsare crossing. For any set A ⊆ V , let χ(A) denote the incidence vector of the set of arcs



6.1. MINIMUM DEGREE-BOUNDED DIRECTED NETWORKS 93
δin(A).By an extension of a result in Frank [35] and Melkonian-Tardos [101] the followinglemma is immediate.Lemma 6.2 Let the requirement function f be crossing supermodular, and let x be a vertexsolution of the linear program (DLP) such that 0 < xe < 1 for all edges e ∈ E. Then thereexists a cross-free family Q of tight sets and tight degree constraints for T1 ⊆ W1 and
T2 ⊆W2 such that(i) |Q|+ |T1|+ |T2| = |E|.(ii) The vectors χ(A) for A ∈ Q, χ(v) for v ∈ T1 and χ(V \ v) for v ∈ T2 are linearlyindependent.(iii) x is the unique solution to {x(δin(v)) = Bin

v ,∀v ∈ T1}
⋃
{x(δout(v)) =

Bout
v ,∀v ∈ T2}

⋃
{x(δin(A)) = f(A),∀A ∈ Q}.6.1.3 Iterative AlgorithmThe algorithm is presented in Figure 6.2. The following lemma ensures that we alwaysmake progress either in Step 2b or Step 2c. Observe that the proof of Theorem 6.1 followsfrom Lemma 6.3.Lemma 6.3 Given a vertex solution x of (DLP) in Figure 6.1 where f is a crossingsupermodular function, one of the following conditions must be true.1. There exists v ∈W1 with |δin(v)| ≤ 6,2. There exists v ∈W2 with |δout(v)| ≤ 6,3. There exists an edge e such that xe ≥

1
3 .To prove Lemma 6.3, we �rst introduce some notation and preliminaries. The crossfree family Q corresponds to a laminar family L = I ∪ O with |L| = |Q| such that

x(δin(S)) = f(S) for each S ∈ I and x(δout(S)) = x(δin(V − S)) = f(V − S) for each
S ∈ O (see Melkonian-Tardos [101]). Also, we augment the family L by including in itsingleton sets corresponding to tight degree constraints in T1 and T2 to obtain L′ = I ′∪O′



94 CHAPTER 6. DEGREE CONSTRAINED DIRECTED NETWORKS1. Initialization F ← ∅, f ′ ← f , and ∀v ∈ W1: B′in
v = Bin

v and ∀v ∈ W2 : B′out
v =

Bout
v .2. While f ′ 6= ∅ do(a) Find a vertex solution x with cut requirement f ′ and remove every edge ewith xe = 0.(b) If there exists a vertex v ∈W1 with indegree at most 6, remove v from W1;if there exists a vertex v ∈ W2 with outdegree at most 6, remove v from

W2. Goto (a).(c) For each edge e = (u, v) with xe ≥ 1/3, add e to F and decrease B′out
u and

B′in
v by 1/3.(d) For every S ⊆ V : f ′(S)← f(S)− |δin

F (S)|.3. Return H = (V, F ).Figure 6.2: Bounded-Degree Directed Graph Algorithm.where I ′ = I ∪ {v}v∈T1
and O′ = O∪{v}v∈T2

. Observe that |L′| = |Q|+ |T1|+ |T2| = |E|.We call members of I ′ square sets and members of O′ round sets.We now prove Lemma 6.3. The proof is an extension of a similar result (Theorem3.1) in Gabow [38] where the existence of an edge xe ≥
1
3 is proved when degree constraintsare not present. In the presence of degree constraints we show that either we have an edgewith xe ≥

1
3 or the condition where a degree constraint is removed in Lemma 6.3 is satis�ed.The laminar family L′ corresponds to a forest F over the sets in the laminar family where

B ∈ L′ is a child of A ∈ L′ if A is the smallest set containing B. A node A of L′ is a leaf,chain node or branching node depending on whether it has 0, 1 or > 1 children. A chainnode is a 1-chain node (or 1-node) if it belongs to same family I ′ or O′ as its unique child,else it is a 2-chain node (2-node).Proof of Lemma 6.3: The proof is by contradiction. Suppose neither of the threeconditions holds. We show this leads to the contradiction to the fact that |Q|+|T1|+|T2| =

|L′| = |E|. The argument proceeds by assigning two tokens for each edge (one to eachendpoint of e), and showing by a counting argument that we can collect two tokens foreach member in the laminar family and are still left with some excess tokens.The token assignment is a detailed argument following Gabow [38] depending on thedi�erent cases of the sets. We point out some simple cases from the argument in Gabow [38]



6.1. MINIMUM DEGREE-BOUNDED DIRECTED NETWORKS 95and where the presence of degree constraints leads us to give a di�erent argument.Firstly, we give the following de�nitions following Gabow [38]. Consider a chain node
S with unique child A. Let e be an edge with an end in S \A. We will call e p-directed (forparent-directed) if it is oriented consistent with S's family (I ′ or O′). We call e c-directed(for child-directed) if it is oriented consistent with A's family.The following rule is used to assign the token for endpoint v of edge e.De�nition 6.4 The token for the endpoint v of an edge e is given to node S of L′ if oneof the following holds:1. When S is a leaf, v ∈ S, and e is directed consistent with S's family, i.e., either

S ∈ I ′ and e ∈ δin(S) or S ∈ O′ and e ∈ δout(S).2. When S is a 1-chain node, v ∈ S \ A for A child of S and e is p-directed (orequivalently, c-directed).Observe that each leaf node which corresponds to a degree constraint obtains at least
7 tokens otherwise the degree constraint can be removed. They only need two tokens forthemselves for the counting argument. The �ve extra tokens are assigned to other nodesin three di�erent steps, the �rst of which is the the following lemma.Lemma 6.5 The number of ends available to leaves of L′ can be redistributed to give twotokens to each leaf and branching node of L′ and �ve tokens to each leaf node which is adegree constraint.Proof: A leaf node not corresponding to a degree constraint gets at least four tokens,for example, S ∈ I receives one token for each edge e ∈ δin(S) and |δin(S)| ≥ 4 since
x(δin(S)) = f(S) ≥ 1 and there is no edge e with xe ≥

1
3 . Leaf nodes which correspond todegree constraint receive at least seven tokens. Since, the number of branching nodes inany tree is strictly less than the number of leaves, we can assign two tokens from each ofthe leaves to branching nodes giving the claim. �Now, we still have three extra tokens with the sets corresponding to the degreeconstrained leaves, one of which we use in the following lemma.Lemma 6.6 Each 1-chain node has at least two available ends if each set in L′ corre-sponding to a degree constraint donates one token.



96 CHAPTER 6. DEGREE CONSTRAINED DIRECTED NETWORKSProof: Consider a 1-chain node S with a child A where wlog S,A ∈ I ′. If both S,A ∈ Ithen we have x(δin(S)) = f(S) and x(δin(A)) = f(A). Observe that each edge in thedi�erence with a non-zero (+1 or −1) co-e�cient gives one token to S. Independence ofthe constraints implies that there must be at least one such edge and the integrality of
f(S) and f(A) implies that there cannot be exactly one such edge. Hence, S obtains twotokens in this case.In the other case, we may have that A corresponds to a degree constraint. Thenwe do not have integrality since x(δin(A)) = Bin

v where A = {v} and Bin
v need not be aninteger. But, independence of constraints implies that S receives at least one token and itborrows another token from A for the induction claim to hold. �The rest of the proof involves analysis of 2-nodes. Lemma 6.3 follows from Lemma 6.5and Lemma 6.6 if we can show that 2-chains can collect two tokens each for themselvesfrom the remaining unassigned tokens and two extra tokens with each degree constraint.We start the analysis by de�ning a subtree FS for each 2-chain node S. FS is theminimal subtree of F having S as its root and each leaf either a leaf of L′ or a 2-chain nodeother than S. In particular, S is always a internal node of tree FS and not a leaf node.The various trees FS can overlap: A 2-chain node S occurs at the root in FS andalso as a leaf in FT for T the �rst 2-chain node that is a proper ancestor of S. It is easyto see that these are the only 2-possibilities. Also observe that a set corresponding to adegree constraint can only occur in one tree since it can never be a root in such a tree.The token assignment is as follows. Each set A corresponding to a degree constraintgives two its excess tokens to the 2-chain node S where A ∈ FS . Thus, each 2-chain node Sreceives two tokens whenever there is a degree constraint in FS . In the remaining case wehave that there is no degree constraint in FS . Then we use the following token assignmentfrom Gabow [38] (pages 120-125) which states that 2-chain nodes can pay for themselves.

Lemma 6.7 [38] The total number of tokens available for the 2-chain nodes in the aboveassignment equals twice the number of such nodes.
We omit the proof of the lemma. This completes the proof of Lemma 6.3.



6.2. MINIMUM BOUNDED-DEGREE ARBORESCENCE 976.2 Minimum Bounded-Degree ArborescenceWe now show how to improve the bounds in the case of intersecting supermodular con-nectivity requirements. An integer function on sets of vertices f : 2V → Z+ is calledintersecting supermodular if the inequality
f(A) + f(B) ≤ f(A ∩B) + f(A ∪B)holds for every pair of sets A,B ⊆ V such that A∩B 6= ∅. This is a stronger requirementthan crossing supermodularity; for example the connectivity requirements of a strongly k-edge-connected subgraph cannot be formulated as an intersecting connectivity requirementfunction since when A∪B = V , f(A∪B) = 0. The intersecting supermodular connectivityrequirement nonetheless captures the problem of �nding an arborescence rooted at r where

f(S) = 1 if r /∈ S and 0 otherwise. The linear programming relaxation is identical to thelinear program in Figure 6.1. We prove the following theorem.Theorem 6.8 There exists a polynomial time algorithm which, given a directed graph G,a {0, 1}-valued intersecting supermodular function f as the connectivity requirement anddegree bounds Bin
v and Bout

v for each vertex, returns a solution H of cost ≤ 2 · c(OPT )where c(OPT ) is the cost of the optimum solution. Moreover, degout
H (v) ≤ 2Bout

v + 2 and
degin

H (v) ≤ 2Bin
v + 2 for all v ∈ V .Before we prove Theorem 6.8 we give a stronger characterization of vertex solutionsthan in Section 6.1.2.6.2.1 Linear ProgramWe use the same linear program (DLP) in Figure 6.1 with the special case that the function

f is intersecting supermodular. Since, intersecting supermodular functions are special casesof crossing supermodular function, polynomial time solvability follows from the discussionin the previous section.6.2.2 Characterization of Vertex SolutionsThe following lemma is immediate from Frank [35] and Lemma 6.2.



98 CHAPTER 6. DEGREE CONSTRAINED DIRECTED NETWORKSLemma 6.9 Let the requirement function f be intersecting supermodular, and let x be avertex solution of (DLP) such that 0 < xe < 1 for all edges e ∈ E. Then there exists alaminar family Q of tight sets and tight degree constraints for T1 ⊆ W1 and T2 ⊆ W2such that(i) |Q|+ |T1|+ |T2| = |E|.(ii) The vectors χ(A) for A ∈ Q, χ(v) for v ∈ T1, and χ(V \ v) for v ∈ T2 are alllinearly independent.(iii) x is the unique solution to {x(δin(v)) = Bin
v ,∀v ∈ T1}

⋃
{x(δout(v)) =

Bout
v ,∀v ∈ T2}

⋃
{x(δin(A)) = f(A),∀A ∈ Q}.Observe that Lemma 6.9 di�ers from Lemma 6.2 in the fact that, in case of a in-tersecting supermodular function, we can ensure that the independent set of inequalitiescorrespond to a laminar family while in the case of a crossing supermodular function wecould only ensure that the independent set of inequalities correspond to a cross-free family.6.2.3 Iterative AlgorithmThe algorithm is identical to the algorithm in Figure 6.2 except that in Step 2c, we onlypick an edge e if xe ≥

1
2 and decrease the degree bounds by 1/2, and also in Step 2b, weremove an indegree or outdegree constraint if a vertex's indegree or outdegree is at most3. We remark that the half-integrality of degree bounds will be useful later. We now provethe following lemma which gives Theorem 6.8.Lemma 6.10 Given a vertex solution x of (DLP) in Figure 6.1 where f is an intersectingsupermodular function, one of the following must be true.1. There exists {v} ∈ T1 with |δin(v)| ≤ 3,2. There exists {v} ∈ T2 with |δout(v)| ≤ 3,3. There exists an edge e such that xe ≥

1
2 .Proof: Suppose neither of the above conditions hold. Then each vertex with a tight in-degree constraint must have at least four in-edges and a vertex with a tight out-degreeconstraint must have at least four out-edges and each edge e must have xe < 1

2 . Now,



6.2. MINIMUM BOUNDED-DEGREE ARBORESCENCE 99we argue this leads to a contradiction to the fact that |Q| + |T1| + |T2| = |E|. We provethis by the following counting argument. For each edge we assign three tokens. We thenredistribute these tokens such that each constraint gets assigned at least three tokens andwe still have extra tokens.In the initial assignment, each edge gives one token to the head and two tokens tothe tail of the edge. Hence each vertex gets two tokens for each out-edge incident at it andone token for each in-edge incident at it. For a vertex v ∈ T2, we use one token for eachout-edge at v for the out-degree constraint of v. We use rest of the tokens for in-degreeconstraints and connectivity constraints.Observe that each vertex with an out-degree constraints must have at least four out-edges incident at it. Hence, when we take one token for each out-edge, we obtain at leastfour tokens for the out-degree constraint, i.e., they have one excess tokens.For each vertex, we have one token for each in-edge and out-edge incident at itremaining. Moreover, if v /∈ T2 we still have two tokens for each out-edge incident at v.We re-assign these tokens such that we collect at least three tokens for each tight in-degreeconstraint in T1 and three tokens for each connectivity constraint in Q. We outline thisbelow.Observe that Q′ = Q ∪ {v}v∈T1
is a laminar family where we have the constraints

x(δin(S)) = g(S) where g(S) = f(S) if S ∈ Q and g(S) = Bin
v if S = {v} for v ∈ T1. Forthe laminar family Q′, let L′ be the forest on the members of the laminar family. Observethat each member of T1 in L′ is a leaf and any non-leaf node corresponds to a connectivityconstraint. We use this fact crucially when we use the fact the connectivity requirementsare integral. We say that a vertex v is owned by S ∈ Q if S is the smallest set in Qcontaining v. Now, we prove the following lemma.Lemma 6.11 Given a subtree of L′ rooted at S, we can assign three tokens to each tight-degree constraint in S and three tokens to each set R in the subtree. Moreover, we canassign 3 + |δout(S)| tokens to the root S if S corresponds to a connectivity constraint and

4 + |δout(S)| tokens if S corresponds a degree constraint.Proof: The proof is by induction on the height of the subtree.Base Case. S is a leaf. If S corresponds to a tight-indegree constraint, we musthave four in-edges incident at S. Else if S corresponds to a tight connectivity constraintwe have x(δin(S)) = f(S) where f(S) is a positive integer. The assumption that there isno edge with xe ≥
1
2 implies that there must be three edges in δin(S). For each out-edge



100 CHAPTER 6. DEGREE CONSTRAINED DIRECTED NETWORKSincident at S, S can collect one token. Hence, there must be at least three in-edge tokens(four if S corresponds to a tight degree constraint) and |δout(S)| out-edge tokens whichcan be assigned to S.Induction Case. S is not a leaf. Hence, S must correspond to a tight connectivityconstraint. By induction, we assign 3+ |δout(R)| tokens to each child R of S (4+ |δout(R)|if R corresponds to a tight degree constraint). Each child R of S donates one token to Sfor each edge in δout(R). First observe that we can assign one token to S for each out-edge
e ∈ δout(S). If the tail of e is in some child R of S, then R has already donated onetoken for this edge. Else, the tail has been assigned one token for this edge in the initialassignment and can give one token to S. Thus S can be assigned one token for each edgein δout(S).Case 1. S has at least two children R1, R2 ∈ Q. Since each tight set has connectivityrequirement exactly 1, we have ∑

R∈Q f(R)− f(S) ≥ 1. Let F1 = δin(S) \ (∪Rδin(R)) and
F2 = (∪Rδin(R)) \ δin(S). The above inequality implies that x(F2) ≥ 1. But then we have
|F2| ≥ 3, as there is no edge e with xe ≥

1
2 . So S can collect one token for each edge in

F1 (token assigned to head) and F2 (one of the two tokens assigned to tail) to get threetokens.
S

R1 R2

Figure 6.3: Here the solid edges are in F1, dashed edges are in F2 and the dotted edges are in
δout(S). S can collect one token for each edge in F1 and F2.Case 2. S has exactly one child R ∈ Q. Since f(S) = f(R) and χ(S) and χ(R) arelinearly independent, we have |F1| ≥ 1 and |F2| ≥ 1, where F1 and F2 are de�ned as inprevious case. So S can collect one token for each edge in F1, and one token for each edgein F2. If S also has a child which is a degree constraint, then we can also collect one excesstoken from it. Otherwise, the tail of any edge in F2 does not have a tight degree constraint,



6.2. MINIMUM BOUNDED-DEGREE ARBORESCENCE 101and thus can contribute two tokens to S. In either case S can collect the desired threetokens.Case 3. S has no child in Q. Hence, each child of S must be in T1. If S has at leasttwo children or if S owns a vertex in T2 then S can collect at least one excess token fromeach child in T1 and each vertex in T2 owned by S. Moreover, it can collect one more tokenfrom either an edge in F1 or in F2 by linear independence (where F1 and F2 are de�ned asbefore), and we are done.Thus the only case left is that S has only one child R which is a singleton vertexfrom T1 and S does not own any vertices in T2. S can collect one excess token from R andneeds two more. If f(S) = g(R) (Here g(R) = Bv where R = {v}), by the argument incase 2, |F1| ≥ 1 and |F2| ≥ 1, and S can collect two more tokens. If f(S) 6= g(R), then
|f(S)− g(R)| is half-integral since f(S) is an integer and g(R) is half-integral. Therefore,since there is no edge e with xe ≥

1
2 , either |F1| ≥ 2 or |F2| ≥ 2, and thus S can collecttwo more tokens. �Lemma 6.11 reassigns the tokens such that we have three tokens for each memberin Q and three tokens for each vertex in T1 and T2. To prove Lemma 6.10 it remains tobe shown that some tokens are still left in excess. If any root S of the forest L′ has atleast one out-edge, then S has been assigned at least four tokens and one excess tokenwith S gives us the contradiction. Else, consider any root S. Any e ∈ δin(S) must haveits tail at a vertex not owned by any set in Q′. If the tail of e has an out-degree constraintpresent, it has at least one excess token. Else the out-token for e has not been used in theabove assignment and is the excess token which gives us the contradiction. This provesLemma 6.10. �





7Further Applications
In this chapter, we consider more applications of the iterative method. We will extend theintegrality results developed in Chapter 3 and show approximation algorithms for threeproblems. The �rst problem is the generalized assignment problem where we present analternate proof of the result of Shmoys and Tardos [95] achieving a 2-approximation. Wethen give a PTAS for multi-criteria spanning trees and multi-criteria matroids. We thenconsider generalizations of the minimum bounded degree spanning tree problem to degreeconstrained matroids.7.1 Generalized AssignmentIn the section, we use the iterative relaxation method to obtain an approximation algorithmfor the generalized assignment problem. The generalized assignment problem models theproblem of scheduling jobs on unrelated parallel machines with costs is de�ned as follows.We are given a set of Jobs J and machines M , for each job j and machine i there isa processing time pij and cost cij; each machine i is available for Ti time units and theobjective is to assign each job to some machine such that the total cost is minimized andno machine is scheduled for more than its available time. A job j assigned to machine iis said to use time pij on machine i. A machines is said to used for time T if all the jobsassigned to it use a total time of T .Shmoys and Tardos [95] gave an algorithm which returns an assignment of cost atmost C and each machine is used at most 2Ti time units where C is the cost of theoptimal assignment which uses machine i for at most Ti time units (if such an assignmentis possible). In this section, we prove the result of the Shmoys and Tardos [95] using theiterative relaxation method. This proof develops on the iterative proof of the integrality103



104 CHAPTER 7. FURTHER APPLICATIONSof the linear program LPBM (G) for the bipartite matching matching given in Section 3.1.We prove the following theorem.Theorem 7.1 [95] There exists a polynomial time algorithm which, given an instance ofthe generalized assignment problem, returns a solution of cost at most C and any machine iis used for 2Ti time units where C is the cost of the optimal assignment which uses machine
i for at most Ti units.
7.1.1 Linear Programming RelaxationBefore we write the linear program for the problem, we �rst model the problem as amatching problem. We start with a complete bipartite G with jobs J and machines Mas the two sides of the bipartite graph. The edge between job j and machine i has cost
cij . The generalized assignment problem can be reduced to �nding a subgraph F of Gsuch that degF (j) = 1 for each job j ∈ J . The edge incident at j denotes to whichmachine job j is assigned. The time constraint at machines can be modelled by specifyingthat ∑

e∈δ(i)∩F pij ≤ Ti for each machine i. We now strengthen this model by disallowingcertain assignments using the following observation. If pij > Ti then no optimal solutionassigns job j to i. Hence, we remove all such edges from graph G.We now model the matching problem by the following natural linear programmingrelaxation LPGA(G,M ′) where M ′ ⊆ M to prove Theorem 7.1. Observe that we do notplace time constraints for all machines but a subset M ′ ⊆ M which can be initialized to
M . We have a variable xe for each e = {i, j} denoting whether job j is assigned to machine
i. minimize c(x) =

∑

e∈E

ce xe

�

�

�

�7.1 subject to ∑

e∈δ(j)

xe = 1 ∀ j ∈ J
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�7.2
∑

e∈δ(i)

pexe ≤ Ti ∀ i ∈M ′
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�7.3
xe ≥ 0 ∀ e ∈ E
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7.1. GENERALIZED ASSIGNMENT 1057.1.2 Characterization of Vertex solutionsThe following lemma follows from a direct application of the Rank Lemma.Lemma 7.2 Let x be an optimum vertex solution to the linear program LP (G,M ′) suchthat 0 < xij < 1 for each {i, j} ∈ E(G). Then there exists a subset J ′ ⊆ J and M ′′ ⊆M ′such that1. ∑
e∈δ(j) xe = 1 for each j ∈ J ′ and ∑

e∈δ(i) pexe = Ti for each i ∈ M ′′ and x is theunique solution to the these equalities.2. The constraints corresponding to J ′ and M ′′ are linearly independent.3. |J ′|+ |M ′′| = |E(G)|7.1.3 Iterative AlgorithmThe following is a simple iterative procedure which returns a assignment of optimal cost.Observe that it generalizes the iterative procedure for �nding optimal bipartite matchingsin Section 3.1. The bipartite graph F with vertex set in M ∪ J returns the assignmentfound by the algorithm.Iterative Generalized Assignment Algorithm1. Initialization E(F )← ∅, M ′ ←M .2. While J 6= ∅(a) Find a vertex optimal solution x of LPGA(J,M,M ′) and remove every variable
xij with xij = 0.(b) If there is a variable xij = 1 such that then update F ← F ∪{ij}, J ← J \{j},
Ti ← Ti − pij.(c) Let Ji = {j ∈ J : xij > 0} for each i ∈ M . If there is a machine i such that
|Ji| = 1 or a machine i such that |Ji| = 2 and ∑

j∈Ji
xij ≥ 1 then update

M ′ ←M ′ \ {i}.3. Return F . Figure 7.1: Generalized Assignment Algorithm.The following lemma is the crucial lemma which shows that the algorithm makesprogress at each step of the algorithm.



106 CHAPTER 7. FURTHER APPLICATIONSLemma 7.3 Consider any vertex solution x of LPGA(G,M ′) with support E. One of thefollowing must hold.1. There exists e ∈ E such that xe ∈ {0, 1}.2. There exists an i ∈M ′ such that degE(i) = 1 or degE(i) = 2 and ∑
e∈δ(i) xe ≥ 1.Proof: Suppose for the sake of contradiction both the conditions do not hold. Then each

0 < xe < 1. Each job j ∈ J in the graph G has degree at least two as ∑
e∈δ(j) xe = 1.Moreover, each machine in M ′ has degree at least two, else there is a machine i such that

degE(i) = 1. Hence, the total number of edges is at least |M ′|+ |J |. From Lemma 7.2 wehave that |E| = |J ′| + |M ′′|. But this possible only if J = J ′ and M ′ = M ′′. Moreover,if there is a machine i ∈ M \ M ′ with some edge incident at it then also we have acontradiction since then |E| > |M ′|+ |J |.
j1

j2

j3

m1

m2

m3

0.7

0.3

0.6

0.4

0.5

0.5Figure 7.2: Here {j1, j2, j3} are the jobs assigned fractionally to {m1, m2, m3}. Observe that m1is a machine to which two jobs are assigned fractionally and xj1m1
+ xj2m1

≥ 1 as required.Hence, each job and each machine in M ′ must have degree exactly two and theremust be no edges incident at any machine in M \ M ′. Hence, G is a union of cycles.Consider any cycle C in the graph G. The total number of jobs in C is exactly equal to thetotal number of machines in C. All jobs in C are completely assigned (though fractionally)to machines in C. Hence, there must be a machine i which is assigned exactly two jobsfractionally, i.e., degE(i) = 2 and ∑
j∈δ(i) xij ≥ 1. This is a contradiction to part 2 ofcondition 2. �We now show the proof of Theorem 7.1 by a simple induction argument.Proof of Theorem 7.1: We �rst prove that the algorithm returns an assignmentof optimal cost. We claim that at any iteration of the algorithm the cost of assignmentgiven by F plus the cost of the current linear programming solution to LPGA(G,M ′) isat most the cost of the initial linear programming solution. This we show by a simpleinductive argument on the number of iterations. Observe that the claim holds trivially



7.2. MULTI-CRITERIA SPANNING TREES 107before the �rst iteration. In any iteration, if we assign job j to machine i in Step 2b thenthe cost of F increases by cij and the current linear programming solution decreases by
cijxij = cij as xij = 1. Hence, the claim holds true. If we remove a constraint in Step 2cthe cost of F remains same while we relax the linear program further and the cost of thecurrent linear program can only decrease. Hence, in this case as well the claim holds. Thus,�nally when F is a feasible assignment, the cost of assignment given by F is at most thecost of the initial linear programming solution which is at most C.Now, we show for each i that machine i is used at most 2Ti units. Fix any machine
i. We �rst argue the following claim. If i ∈ M ′, then at any iteration we must have
T ′

i + Ti(F ) ≤ Ti where T ′
i is the residual time left on the machine at this iteration and

Ti(F ) is the time used by jobs assigned to machine i in the current F . The proof of theclaim is by a standard inductive argument identical to the argument for the cost. Considerthe step when the machine i is removed from M ′. There can be at most two jobs assignedto machine i in later iterations and furthermore, fractionally machine i must be assignedat least one job. Hence, in either case, we have total time needed by all jobs assigned tomachine i is at most T ′
i + Ti(F ) ≤ Ti + maxjpij ≤ 2Ti. This claim completes the proof ofTheorem 7.1.7.2 Multi-Criteria Spanning TreesIn this section, we give an approximation algorithm for the multi-criteria spanningtree problem. In this problem, we are given a graph G = (V,E) and (non-negative) costfunctions c0, c1, . . . , ck on the edges and bounds L1, L2, . . . , Lk for the total edge cost of thetree under each of the cost functions ci for each 1 ≤ i ≤ k. The goal is to �nd a minimum

c0-cost tree which has ci-cost at most Li.Ravi and Goemans [85] gave an algorithm for two cost functions c0 and c1 which,given a positive ε, returns a tree T with optimal c0 cost and c1(T ) ≤ (1 + ε)L1. Therunning time of the algorithm is polynomial for any �xed ε. We generalize their result andprove the following result.Theorem 7.4 Given a graph G = (V,E) and cost functions c0, c1, . . . , ck on the edges andbounds L1, L2, . . . , Lk for each of the cost function except c0 and given any �xed ε > 0,there exists a algorithm which returns a tree of optimal c0-cost and has ci-cost at most
(1 + ε)Li. The running time of the algorithm is polynomial for �xed k and ε.



108 CHAPTER 7. FURTHER APPLICATIONS7.2.1 Linear ProgramWe formulate the following linear programming relaxation for the problem which is astandard extension of the linear program for minimum spanning tree problem consideredin Section 3.2.(LP-MCST) minimize zLP =
∑

e∈E

c0
e xesubject to x(E(V )) = |V | − 1,

x(E(S)) ≤ |S| − 1, ∀S ⊂ V
∑

e∈E

ci
exe ≤ Li, ∀ 1 ≤ i ≤ k

xe ≥ 0 ∀ e ∈ E7.2.2 Characterization of Vertex SolutionsWe now give a characterization of any vertex solution of the linear program (LP-MCST).This follows directly from the Rank Lemma and the characterization of vertex solutions ofthe spanning tree linear program LPST (G) in Section 3.2 (Lemma 3.13).Lemma 7.5 Let x be a vertex solution of the linear program (LP-MCST) such that xe > 0for each edge e and let F = {S ⊆ V : x(E(S)) = |S| − 1} be the set of all tight subsetconstraints. Then there exists a laminar family L ⊆ F and J = {1 ≤ i ≤ k :
∑

e∈E ci
exe =

Li} a subset of tight cost constraints such that1. The vectors {χ(E(S)) : S ∈ L} are linearly independent.2. span(L)=span(F).3. |L|+ |J | = |E|.7.2.3 Iterative AlgorithmThe algorithm proceeds in two phases. The �rst phase is the pruning step which we describebelow. Observe that no feasible solution can include an edge whose ci-cost is more than
Li. We extend this step further and guess all edges in the solution whose ci-cost is at most
ε
kLi. For any i there can be at most k

ε such edges in the optimal solution. Hence, tryingall such possibilities for inclusion in a partial initial solution takes time m
k
ε where m is



7.2. MULTI-CRITERIA SPANNING TREES 109Algorithm for Multi-Criteria Spanning Tree1. Guess all edges in the optimal solution such that ci
e ≥

ε
kLi. Include all such edges inthe solution and contract all such edges. Delete all other edges with ci

e ≥
ε
kLi from

G. Update Li.2. Find a vertex solution x and remove every edge e with xe = 0.3. Pick any minimum c0-cost tree in the support graph.Figure 7.3: Algorithm for Multi-criteria Spanning Trees.the number of edges in G. There are k cost function to try which amounts to the totalnumber of choices being at most O(m
k2

ε ). After guessing these edges correctly, we throwaway all other edges which have ci cost more than εLi and contract the guessed edges inthe optimal solution. Clearly, the rest of the edges in the optimal solution form a spanningtree in the contracted graph. Also, now we have an instance where ci
e ≤ εLi for each eand i. We also update the bound Li by subtracting the costs of the selected edges. Let

L′
i denote the residual bounds. We solve the linear program (LP-MCST) with updatedbounds L′

i. The algorithm is given in Figure 7.3.Now we prove Theorem 7.4.Proof of Theorem 7.4: We �rst prove the following simple claim which followsfrom Lemma 7.5.Claim 7.6 The support of (LP −MCST ) on a graph with n vertices has at most n+k−1edges.Proof: From Lemma 7.5, we have |E| = |L| + |J |. But |L| ≤ n − 1 since L is a laminarfamily without singletons (see Proposition 2.10) and |J | ≤ k proving the claim. �Observe that the c0-cost of the tree is at most the cost of the LP-solution and henceis optimal for the correct guess of heavy edges. Now, we show that the ci-cost is at most
L′

i + εLi. Observe that any tree must contain n − 1 edges out of the n + k − 1 edges inthe support. Hence, the costliest ci-cost tree costs no more than k · ε
kL′

i = εL′
i more thanthe minimum ci-cost tree. But that the fractional solution picks n− 1 edges whose ci-costis at most L′

i. Thus the cost of the minimum ci-cost tree is at most L′
i and the fractionalsolution which is at most L′

i and the cost of the costliest ci-cost tree in the support costsno more than L′
i + εLi. Adding the cost of edges guessed in the �rst step we obtain that
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∑

e∈V

c0
e xesubject to x(V ) = r(V ),

x(S) ≤ r(S), ∀S ⊂ V
∑

e∈V

ci
exe ≤ Li, ∀ 1 ≤ i ≤ k

xe ≥ 0 ∀ e ∈ VFigure 7.4: Linear Program for Multi-Criteria Matroid Basis Problem.the tree returned by the algorithm costs at most L′
i + εLi + Li − L′

i = (1 + ε)Li.7.3 Multi-Criteria Matroid BasisIn this section we generalize the result of Section 7.2 to multi-criteria matroid basisproblem. In an instance of the multi-criteria matroid basis problem, we are givena matroid M = (V,I), cost functions ci : V → R+ for 0 ≤ i ≤ k, bounds Li for each
1 ≤ i ≤ k and the task is to the �nd the minimum c0-cost basis of M such that ci-cost is atmost Li. When M is the graphic matroid, this problem reduces to the Multi-criteriaspanning tree problem which we considered in the previous section. We prove thefollowing theorem.Theorem 7.7 Given any ε > 0 there exists a polynomial time algorithm which given aninstance of the multi-criteria matroid problem returns a basis B of M of optimal c0-cost and ci(B) ≤ (1 + ε)Li for each 1 ≤ i ≤ k. The running time of the algorithm ispolynomial for �xed ε and k.We prove Theorem 7.7 using the iterative method.7.3.1 Linear Programming RelaxationWe now formulate the following linear programming relaxation (LP-MCMB) for the prob-lem which is a straightforward extension of the linear program for the minimum costmatroid basis problem considered in Section 3.4. Here r denotes the rank function ofthe matroid M .



7.3. MULTI-CRITERIA MATROID BASIS 111The polynomial time solvability of the linear program (LP-MCMB) follows frompolynomial time separation for the linear program LPmat(M) as discussed in Section 3.4.7.3.2 Characterization of Vertex SolutionsThe following characterization is immediate from Lemma 3.31.Lemma 7.8 Let x be a vertex solution of the linear program (LP-MCMB) such that xe > 0for each e ∈ V and let F = {S ⊆ V : x(S) = r(S)} be the set of all tight subset constraints.Then there exists a chain C ⊆ F and J = {1 ≤ j ≤ k :
∑

e∈V ci
exe = Li} a subset of tightcost constraints such that1. The vectors {χ(S) : S ∈ C} are linearly independent.2. span(C)=span(F).3. |C|+ |J | = |V |.7.3.3 Iterative AlgorithmThe algorithm generalizes the algorithm given in Section 7.2.3 for the multi-criteriaspanning tree problem. We �rst perform a pruning step to guess all elements in theoptimal solution with ci-cost at most εLi

k for any 1 ≤ i ≤ k. Then we solve the linearprogram (LP-MCMB) for the residual problem and remove all elements which the linerprogram sets to a value of zero. We then select the minimum cost basis under cost function
c0 ignoring the rest of the cost functions.Now we prove Theorem 7.7.Proof of Theorem 7.7: We �rst prove the following simple claim which followsfrom Lemma 7.8.Claim 7.9 The support to the LPmatroid on a matroid with r(V ) = n has at most n + kelements.Proof: From Lemma 7.8, we have |V | = |C| + |J |. But |C| ≤ r(V ) since C is a chain and
x(C) equal a distinct integer between 1 and r(V ) for each C ∈ C. Also |J | ≤ k provingthe claim. �



112 CHAPTER 7. FURTHER APPLICATIONSAlgorithm for Multi-Criteria Matroid Basis1. Guess all elements in the optimal solution such that ci
e ≥

ε
kLi.� Include all such elements in the solution and update the matroid by contractingthese elements (see De�nition 3.28).� Delete all other heavy elements e with ci

e ≥
ε
kLi for any i from M (see De�ni-tion 3.27).� Update Li.2. Find a vertex solution x of (LP-MCMB) for the residual problem and remove everyelement e with xe = 0.3. Pick any minimum c0-cost basis in the support.Figure 7.5: Algorithm for Multi-criteria Matroid Basis.Observe that the c0-cost of the basis returned is at most the cost of the LP-solutionand hence is optimal. Now, we show that the ci-cost is at most L′

i + εLi. Observe that anybasis must contain r(V ) elements out of the r(V ) + k elements in the support. Hence, thecostliest ci-cost basis di�ers from the minimum ci-cost basis by at most k · ε
kL′

i = εL′
i. Butthe minimum ci-cost basis has ci-cost at most the cost of fractional basis L′

i thus provingTheorem 7.7.7.4 Degree Constrained MatroidsWe consider the Minimum Bounded-Degree Matroid Basis problem, which is a gen-eralization of the Minimum Bounded-Degree Spanning Tree problem. We are givena matroid M = (V,I), a cost function c : V → R, a hypergraph H = (V,E), and lowerand upper bounds f(e) and g(e) for each hyperedge e ∈ E(H). The task is to �nd a basis
B of minimum cost such that f(e) ≤ |B ∩ e| ≤ g(e) for each hyperedge e ∈ E(H). Onemotivation for considering the matroid generalization was the following problem posed byFrieze [36]: �Given a binary matroid MA over the columns of a 0, 1-matrix A and bounds
gi for each row i of A, �nd a basis B of matroid MA such that there are at most gi onesin any row among columns in B�. Our main result is the following:Theorem 7.10 There exists a polynomial time algorithm for the Minimum Bounded-Degree Matroid Basis problem which returns a basis B of cost at most opt such that
f(e) − 2∆ + 1 ≤ |B ∩ e| ≤ g(e) + 2∆ − 1 for each e ∈ E(H). Here ∆ = maxv∈V |{e ∈



7.4. DEGREE CONSTRAINED MATROIDS 113
E(H) : v ∈ e}| is the maximum degree of the hypergraph H and opt is the cost of anoptimal solution which satis�es all the hyperedge intersection bounds.This theorem can be improved if only upper bounds (or only lower bounds) arepresent. The proof of the improvement uses the proof technique of Bansal et al. [5], whoworked independently on theMinimum Crossing Spanning Tree problem and obtainedthe following result for that special case.Theorem 7.11 There exists a polynomial time algorithm for the Minimum Bounded-Degree Matroid Basis problem with only upper bounds which returns a basis B of costat most opt such that |B ∩ e| ≤ g(e) + ∆ − 1 for each e ∈ E(H). An analogous resultholds when only lower bounds are present.It should be noted that this does not match the result in Section 4.3 on minimumbounded-degree spanning trees, since that result violates the degree bounds by at most 1even when both upper and lower bounds are present.First we show some applications of the main results. Then we present the proofs ofthe main results.ApplicationsIn this section we highlight some applications of the main results.Minimum Crossing Spanning TreeIn the Minimum Crossing Spanning Tree problem, we are given a graph G =

(V,E) with edge cost function c, a collection of cuts (edge subsets) C = {C1, . . . , Cm}and bound gi for each cut Ci. The task is to �nd a tree T of minimum cost such that
T contains at most gi edges from cut Ci where Ci = δ(Si) for some Si ⊂ V . See [7] forvarious applications of this problem. TheMinimum Bounded-Degree Spanning Treeproblem is the special case where C = {δ(v) : v ∈ V }. The following result (see also[5]) can be obtained as a corollary of Theorem 7.11. Note that d = 2 for the MinimumBounded-Degree Spanning Tree problem.Corollary 7.12 [5] There exists a polynomial time algorithm for theMinimum CrossingSpanning Tree problem that returns a tree T with cost at most opt and such that Tcontains at most gi + d− 1 edges from cut Ci for each i where d = maxe∈E |{Ci : e ∈ Ci}|.Here opt is the cost of an optimal solution which satis�es all the cut intersection bounds.



114 CHAPTER 7. FURTHER APPLICATIONSProof: Let M = (E,I) denote the graphic matroid over the graph G. The hypergraph
H is de�ned with V (H) = E(G) and E(H) = {Ci : 1 ≤ i ≤ m}. Note that ∆ =

maxv∈V (H) |{e ∈ E(H) : v ∈ e}| = maxe∈E(G) |{Ci : e ∈ Ci}| = d. So, using Theorem 7.11,we obtain a basis T of matroid M (which is a spanning tree), such that |T ∩Ci| ≤ gi+d−1.
�Minimum Bounded-Ones Binary Matroid BasisFor the Minimum Bounded-Ones Binary Matroid Basis problem posed byFrieze [36], we are given a binary matroid MA over the columns of a 0, 1-matrix A andbounds gi for each row i of A. The task is to �nd a minimum cost basis B of matroid MAsuch that there are at most gi ones in any row among columns in B. The following resultis obtained as a corollary of Theorem 7.11.Corollary 7.13 There exists a polynomial time algorithm for the Minimum Bounded-Ones Binary Matroid Basis problem which returns a basis B of cost at most opt suchthat there are at most gi + d− 1 ones in any row restricted to columns of B. Here d is themaximum number of ones in any column of A and opt is the cost of an optimal solutionsatisfying all the row constraints.Proof: Let M = MA and de�ne a hypergraph H where the vertex set is the columns of

A. The hyperedges correspond to rows of A where ei = {Aj : Aij = 1} where Aj is the jthcolumn of A. Note that ∆ = maxv∈V (H) |{e ∈ E(H) : v ∈ e}| = maxj |{i : aij = 1}| = d,which is the maximum number of ones in any column of A. So, using Theorem 7.11, weobtain a basis of M = MA such that number of ones in any row is at most gi + d− 1. �Minimum Bounded-Degree Spanning Tree UnionIn theMinimum Bounded-Degree Spanning Tree Union problem, we are givena graph G = (V,E) with edge cost function c, a positive integer k, and lower and upperdegree bounds f(v) and g(v) for each vertex v. The task is to �nd a subgraph H which isthe union of k edge-disjoint spanning trees and the degree of v in H is between f(v) and
g(v). The Minimum Bounded-Degree Spanning Tree problem is a special case when
k = 1. Theorem 7.11 implies the following result, which is optimal in terms of the degreeupper bounds.Corollary 7.14 There exists a polynomial time algorithm for the Minimum Bounded-Degree Spanning Tree Union problem which returns a subgraph G of cost at most opt



7.4. DEGREE CONSTRAINED MATROIDS 115which is the union of k edge-disjoint spanning trees and the degree of v in H is at most
g(v) + 1. Here opt is the cost of an optimal solution which satis�es all the degree upperbounds given by the function g.Proof: Let M = (E,I) denote the union of k graphic matroids over the graph G, whichis a matroid by the matroid union theorem (see Chapter 43 in [91]). The hypergraph
H is de�ned with V (H) = E(G) and E(H) = {δ(v) : v ∈ V (G)}. Note that ∆ =

maxv∈V (H) |{e ∈ E(H) : v ∈ e}| = maxe∈E(G) |{δ(v) : v ∈ V (G)∧ e ∈ δ(v)}| = 2. So, usingTheorem 7.11, we obtain a basis T of matroid M (which is the union of k edge-disjointspanning trees), such that |T ∩ Ci| ≤ gi + 1. �7.4.1 Linear ProgramWe now give the linear programming relaxation LPmat(M,H) for theMinimum bounded-degree Matroid Basis problem. Let r : 2V → Z+ denote the rank function of matroid
M . minimize c(x) =

∑

v∈V

cv xv

�

�

�

�7.5 subject to x(V ) = r(V )
�

�

�

�7.6
x(S) ≤ r(S) ∀S ⊆ V

�

�

�

�7.7
f(e) ≤ x(e) ≤ g(e) ∀ e ∈ E(H)

�

�

�

�7.8
0 ≤ xv ≤ 1 ∀ v ∈ V

�

�

�

�7.9This linear program is exponential in size but can be separated over in polynomial timeif given an access to the independent set oracle [20]. Given a matroid M = (V,I) and anelement v ∈ V , we denote by M \v the matroid obtained by deleting v, i.e., M \v = (V ′,I ′)where V ′ = V \{v} and I ′ = {S ∈ I : v /∈ S}. We also denote by M/v the matroid obtainedby contracting v, i.e., M/v = (V ′,I ′) where V ′ = V \{v} and I ′ = {S\{v} : S ∈ I, v ∈ S}.7.4.2 Characterization of vertex solutionsWe have the following characterization of an extreme point of the linear program whichfollows directly from the Rank Lemma and Lemma 3.31.



116 CHAPTER 7. FURTHER APPLICATIONS1. Initialization B ← ∅,2. While B is not a basis do(a) Find a vertex optimal solution x to LPmat(M,H). Delete v such that xv = 0.Update each edge e ∈ E(H) let e← e \ {v}. Update Matroid M ←M \ v.(b) For each element v with xv = 1, include v in B and decrease f(e) and g(e) by
1 for each e 3 v. Update M ←M/v.(c) For every e ∈ E(H) such that |e| ≤ 2∆, remove e from E(H).3. Return B.Figure 7.6: Algorithm for the Minimum Bounded-Degree Matroid Basis.Claim 7.15 Let T = {S ⊆ V : x(S) = r(S)} be the collection of all tight sets at solution

x. There is a set E′ ⊆ E of tight hyperedges and a chain L ⊆ T such that1. {χ(S) : S ∈ L} ∪ {χ(e) : e ∈ E′} are linearly independent vectors2. span({χ(S) : S ∈ L}) = span({χ(S) : S ∈ T }).3. |V | = |E′|+ |L|.7.4.3 Iterative AlgorithmThe algorithm is given in Figure 7.6. Suppose that the algorithm terminates successfully.Then Theorem 7.10 follows from a similar argument as in [96], which is sketched as follows.Firstly, observe that the matroid M is updated to M \ v whenever we remove v such that
xv = 0 and updated to M/v whenever we pick v such that xv = 1. A simple veri�cationshows that the residual linear programming solution (current LP solution restricted to
V \ {v}) remains a feasible solution for the modi�ed linear program in the next iteration.In Step2c we remove a degree constraint hence, the current linear programming solutionremains a feasible solution. Now, a simple inductive argument shows that by only pickingelements with xv = 1, the cost of the returned basis is no more than the cost of the originalvertex optimal solution. Also, since we only remove a degree constraint of a hyperedgewhen it contains at most 2∆ elements, the degree constraints are violated by at most
2∆ − 1. Therefore, it remains to show that the algorithm always terminates successfully.That is, it can always �nd an element v with xv = 1 in Step 2b or it can �nd a hyperedge
e with |e| ≤ 2∆ in Step 2c.



7.4. DEGREE CONSTRAINED MATROIDS 117Suppose for contradiction neither of the above conditions hold. Hence, 0 < xv < 1for each v ∈ V and |e| > 2∆ for each e ∈ E(H). From Lemma 7.15 there is a set E′ ⊆ Eof tight hyperedges such that {χ(S) : S ∈ L} ∪ {χ(e) : e ∈ E′} are linearly independentvectors and |V | = |E′|+|L|. We now derive a contradiction to this by a counting argument.We assign 2∆ tokens to each vertex v ∈ V for a total of 2∆|V | tokens. We then redistributethe tokens so that each hyperedge in E′ collects at least 2∆ tokens, each member of Lcollects at least 2∆ tokens, and there are still at least one extra token. This implies that
2∆|V | > 2∆|E′|+ 2∆|L|, which gives us the desired contradiction.Proof of Theorem 7.10: The reassignment is as follows. Each element v gives ∆tokens to the smallest member in L it is contained in and one token to each edge e ∈ E′ itis present in. As any element is contained in at most ∆ edges, thus the distribution is validand we distribute at most 2∆ tokens per element. Now, consider any set S ∈ L and let
R be the largest set in L contained in S. We have x(S) = r(S) and x(R) = r(R). Thus,we have x(S \ R) = r(S) − r(R). As constraints for R and S are linearly independentand xv > 0 for each v ∈ V , this implies r(S) 6= r(R). Since r is a matroid rank function,
r(S) − r(R) ≥ 1 as they are both integers. Since 0 < xv < 1, this implies |S \ R| ≥ 2.Thus, S can collect at least 2∆ tokens, ∆ tokens from each element in S \R, as required.Consider any hyperedge e ∈ E′. As |e| ≥ 2∆ and it can collect one token from each elementin e, there are at least 2∆ tokens for each edge e, as required.Now, it remains to argue that there is an extra token left. If V /∈ L or any of theelements is in strictly less than ∆ hyperedges of E′ then we have one extra token. Else,
∑

e∈E′ χ(e) = ∆ · χ(V ) which gives dependence among the constraints as V ∈ L. Hence,we have the desired contradiction, and the proof of Theorem 7.10 follows.Now we show how to use the proof technique of Bansal et al [5] to obtain Theo-rem 7.11.Proof of Theorem 7.11: The proof for upper bounds is similar to the proof ofTheorem 7.10 except for the counting argument. The only important di�erence is that weremove a hyperedge e if g(e) + ∆ − 1 ≥ |e|; this is possible since in that case the degreeupper bound on e can be violated by at most ∆ − 1. It follows that we may assume that
|e| − g(e) ≥ ∆ for all hyperedges.The proof that |V | > |E′| + |L| if 0 < x < 1 goes as follows. Let L = {S1, . . . , Sk},where S1 ( S2 ( · · · ( Sk, and let S0 := ∅. Then |e| − x(e) ≥ ∆ for every e ∈ E′, and
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x(Si \Si−1) = r(Si)−r(Si−1) ≥ 1 for i = 1, . . . , k. Using these inequalities, we obtain that
|E′|+|L| ≤

∑

e∈E′

|e| − x(e)

∆
+

k∑

i=1

x(Si\Si−1) =
∑

v∈V

1− x(v)

∆
|{e ∈ E′ : v ∈ e}|+x(Sk) ≤ |V |,and if equality holds, then |{e ∈ E′ : v ∈ e}| = ∆ for every v ∈ V and Sk = V . But then

∆ · χ(Sk) =
∑

e∈E′ χ(e), which contradicts the linear independence of E′ and L.If only lower bounds are present, then we can delete a hyperedge e if f(e) ≤ ∆− 1,so we may assume that f(e) ≥ ∆ for all hyperedges. To show |V | > |E′|+ |L| we use that
x(e) ≥ ∆ for every e ∈ E′ and |Si \ Si−1| − x(Si \ Si−1) ≥ 1 for i = 1, . . . , k, where thelatter holds because x(Si \ Si−1) < |Si \ Si−1| and both are integer. Thus

|E′|+ |L| ≤
∑

e∈E′

x(e)

∆
+

k∑

i=1

(|Si \ Si−1| − x(Si \ Si−1))

=
∑

v∈V

x(v)

∆
|{e ∈ E′ : v ∈ e}| + |Sk| − x(Sk) ≤ |V |,and the claim follows similarly as for upper bounds.



8Conclusion
In this thesis, we showed that iterative techniques give a general methodology to dealwith degree constraints in network design problems. The techniques enable us to obtainalmost optimal results for a large class of degree constrained network design problems. Inundirected graphs, we obtained �rst additive approximation algorithms for a large class ofbounded-degree network design problems which violate the degree bounds by only a smalladditive amount. Moreover, the cost of the solution returned is close to optimal. Some ofour main results that we obtained are the following.� We give a polynomial time algorithm for the Minimum Bounded-Degree Span-ning Tree problem which returns a tree of optimal cost and such that degree ofany vertex v in the tree is at most Bv + 1.� We obtain bi-criteria approximation algorithm for theMinimum Bounded-DegreeSteiner Tree problem, Minimum Bounded-Degree Steiner Forest problem,Minimum Bounded-Degree Steiner Network problem. The solution returnedby the algorithm costs at most twice the optimal solution and the degree of anyvertex violates its degree bound by an additive error which depends on the maximumconnectivity requirement.� As a corollary to the previous results, we also obtain �rst additive approximation al-gorithms for Bounded-Degree Steiner Forest problem and Bounded-Degreek-edge connected subgraph problem for bounded k.� We obtain constant factor bi-criteria approximation algorithm for the MinimumBounded-Degree Arborescence problem where both the cost and the maxi-mum degree of the solution is within constant multiplicative factor of the optimalsolution. 119



120 CHAPTER 8. CONCLUSION� We use the iterative method for various other problems to obtain a polynomial timeapproximation scheme (PTAS) for the multi-criteria spanning tree problem and themulti-criteria matroid basis problem, 2-approximation for the generalized assignmentproblem and additive approximation algorithm for degree constrained matroid basisproblem.8.1 Further WorkIn directed graphs, we gave constant factor bi-criteria approximation algorithms for degreeconstrained network design problems which violate both the cost and the degree by aconstant multiplicative factor. Subsequently, using iterative methods, Bansal, Khandekarand Nagarajan [5] obtained an (1
ε ,

Bv

1−ε + 4)-approximation algorithm for the MinimumBounded Degree Arborescence problem for 0 < ε ≤ 1
2 . Moreover, they obtain the�rst additive approximation algorithm for the bounded-degree arborescence problem withdegree violation at most 2. In order to obtain additive guarantees on the degree bounds,however, the cost of the solution becomes unbounded. They show that this cost-degreetradeo� in their result is actually best possible using the natural linear programmingrelaxation [5], which is an exact formulation when degree constraints are absent.Lau and Király [57] used the iterative method to obtain additive approximationalgorithms for the degree constrained submodular �ow problem.8.2 Future DirectionIterative techniques are quite versatile and we showed its application to a wide variety ofdegree constrained network design problems and other problems including multi-criteriaspanning tree, multi-criteria matroids, degree constrained matroids and the generalizedassignment problem. A natural question is whether they will have other major applications.We highlight two problems where these techniques might be useful. The �rst problem is theTraveling Salesperson Problem. The TSP problem is essentially a network design problemswith degree constraints and our results on the Minimum bounded degree spanningtree problem do lead to better polyhedral results about the TSP in both the symmetricand the asymmetric case. A connected graph is called a 1-tree if it contains exactly onecycle including a special vertex v. Held and Karp [47, 48] showed that any fractionalsolution to the well-known subtour elimination LP for the TSP problem can be written asa convex combination of 1-trees. The following theorem (a weaker version of it was shown



8.2. FUTURE DIRECTION 121by Goemans [42]) follows using the ideas in Section 4.2.Theorem 8.1 Any fractional solution to the subtour elimination LP for the STSP problemcan be expressed as a convex combination of 1-trees where the maximum degree of each 1-tree is at most three.A similar polyhedral result also follows for the asymmetric TSP problem where thefractional solution can be represented as a convex combination of weakly connected 1-tree each having a maximum in-degree and out-degree of three. Whether these results orfurther extensions using iterative methods can lead to better approximation algorithms forasymmetric TSP or symmetric TSP is open.The second problem we state is the Single source Unsplittable min-cost flowproblem. In the single source unsplittable min-cost flow problem, commoditiesmust be routed simultaneously from a common source vertex to certain destination verticesin a given graph with edge capacities and costs; the demand of each commodity must berouted along a single path so that the total �ow through any edge is at most its capacity.Moreover, the total cost must not exceed a given budget. Skutella [78] gives an algorithmwhich �nds an unsplittable �ow whose cost is bounded by the cost of the initial �ow fand the �ow value on any edge e is less than 2f(e) + dmax where f is a the minimumcost fractional �ow satisfying all capacity constraints and dmax is the maximum demand.Goemans [78] conjectures that there is an unsplittable �ow where the �ow value on theedge is at most f(e) + dmax and the �ow is of optimal cost. Dinitz et al. [24] provethis in the version without costs. A special case for the unsplittable �ow problem is therestricted assignment problem. The restricted assignment problem is also a special case ofthe generalized assignment problem considered in Section 7.1 where pij ∈ {pj ,∞} for eachmachine i and job j. The conjecture holds true for the restricted assignment problem andthis also follows from the result on generalized assignment problem discussed in Section 7.1.Whether the iterative techniques can be used to prove the conjecture of Goemans [78] isopen. The introduction of the iterative rounding technique by Jain [53] led to its applica-tions on various network design problems [14, 34, 38, 101]. Our work adds new relaxationideas to iterative techniques and allows us to apply it to a larger set of problems. Webelieve that the iterative methods will be further extended and established as a generaltechnique to achieve approximation algorithms for combinatorial optimization problems.
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