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Abstract

Given a universe U of n elements and a weighted collec-
tion S of m subsets of U, the universal set cover problem is
to a-priori map each element u ∈U to a set S(u) ∈S con-
taining u, so that X ⊆U is covered by S(X) = ∪u∈XS(u).
The aim is finding a mapping such that the cost of S(X) is as
close as possible to the optimal set-cover cost for X. (Such
problems are also called oblivious or a-priori optimization
problems.) Unfortunately, for every universal mapping, the
cost of S(X) can be Ω(

√
n) times larger than optimal if the

set X is adversarially chosen.

In this paper we study the performance on average, when
X is a set of randomly chosen elements from the universe:
we show how to efficiently find a universal map whose ex-
pected cost is O(logmn) times the expected optimal cost. In
fact, we give a slightly improved analysis and show that this
is the best possible. We generalize these ideas to weighted
set cover and show similar guarantees to (non-metric) fa-
cility location, where we have to balance the facility open-
ing cost with the cost of connecting clients to the facilities.
We show applications of our results to universal multi-cut
and disc-covering problems, and show how all these uni-
versal mappings give us stochastic online algorithms with
the same competitive factors.
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P.O. box 68 (Gustaf Hällströmin katu 2b), 00014 Helsinki, Finland.
‖Institute of Informatics, University of Warsaw, ul. Banacha 2, 02097

Warsaw, Poland
∗∗Microsoft Research, New England, Cambridge, USA. Part of the work

was done when the author was at Carnegie Mellon University.

1. Introduction
In the classical set cover problem we are given a set

X , taken from a universe U of n elements, and a col-
lection S ⊆ 2U of m subsets of U , with a cost function
c : S → R≥0. (The pair (U,S ) is sometimes called a set
system). The aim is to compute a sub-collection S ′ ⊆S
which covers X , i.e., X ⊆ ∪S∈S ′S, with minimum cost
c(S ′) := ∑S∈S ′ c(S). Each feasible solution can also be in-
terpreted as a mapping S : U →S which defines, for each
u ∈ X , a subset S(u) which covers u (breaking ties in an ar-
bitrary way). In particular, S(X) := ∪u∈XS(u) provides the
desired sub-collection S ′, of cost c(S(X)) := ∑S∈S(X) c(S).
In the cardinality (or unweighted) version of the problem,
all the set costs are 1, and the goal is minimizing the num-
ber |S(X)| of subsets used to cover X .

In their seminal work, Jia et al. [37] define, among other
problems, a universal variant of the set cover problem. Here
the mapping S has to be provided a-priori, i.e., without
knowing the actual value of X ⊆ U . The problem now is
to find a mapping which minimizes the worst-case ratio
maxX⊆U{c(S(X))/c(opt(X))} between the cost of the set
cover given by S (which is computed without knowing X),
and the cost of the optimal “offline” solution opt(X) (which
is based on the knowledge of X). A universal algorithm is
α-competitive if the ratio above is at most α .

Universal algorithms are useful for applications in dis-
tributed environments, where decisions have to be taken
locally, with little communication overhead. Similarly, in
critical or real-time applications we might not have enough
time to run any approximation algorithm once the actual
instance of the problem shows up. Hence we need to per-
form most of the computation beforehand, even if this might
imply worse competitive factors and higher preprocessing
time. Indeed, we might also think of applications where the
solution computed a-priori is wired on a circuit. Eventu-
ally, universal problems have strong implications to online
problems (where the instance is revealed gradually, and the
solution is computed step-by-step). In particular, any uni-
versal algorithm provides an online algorithm with the same
competitive ratio.

The standard competitive analysis for universal (and on-
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line) algorithms assumes that the input is chosen adversari-
ally, and often this setting is too pessimistic: indeed, for uni-
versal set cover, Jia et al. [37] gave Θ̃(

√
n) bounds. How-

ever, in many situations it is often more reasonable to as-
sume that the input is sampled according to some probabil-
ity distribution. In other words, what if we are competing
against nature and the lack of information about the future,
and not against a malicious adversary out to get us? Can we
give algorithms with a better performance in that case?

1.1. Our Results and Techniques

We formalize the questions above by defining a stochas-
tic variant of the universal set cover problem. Here the input
X is obtained by sampling k times a given probability distri-
bution π : U → [0,1]. Let ω ∈Uk be the random sequence
of elements obtained (possibly with repetitions), and let us
interpret ω as a set of elements when the ordering (and mul-
tiplicity) of elements in the sequence is not relevant. The
aim is minimizing the ratio Eω [c(S(ω))]/Eω [c(opt(ω))]
between the expected cost of the solution computed w.r.t.
S and the expected optimal cost. We sometimes omit ω
when the meaning will be clear from the context.

An algorithm for the universal stochastic set cover prob-
lem is length-aware if it is given the length k of the sequence
in input, and length-oblivious otherwise.

As a warm up for the reader, we present a lower bound
on the quality of the mapping obtained by running on the set
system (U,S ) the standard greedy algorithm, which selects
in each step the subset with the best ratio of cost to number
of uncovered elements. This algorithm defines an order on
the selected sets: let each element be mapped to the first
set in the order covering it. Consider a set Sall = U cover-
ing the whole universe, of cost c(Sall) =

√
n, and singleton

sets Su = {u} for each u ∈U , each of unit cost c(Su) = 1.
The greedy set cover algorithm maps all the elements into
Sall . For a uniform distribution π and k = 1, the cost of this
mapping is

√
n, while the optimal mapping (assigning each

u∈U to the corresponding singleton set Su) has always cost
one. Note that, for k � n, the situation changes drastically:
now the greedy algorithm produces the optimal mapping
with high probability. Indeed, essentially the same example
shows that any length-oblivious universal algorithm for the
(weighted) stochastic set cover problem must be Ω(

√
n)-

competitive (see Section 3).
Motivated by the example above, we developed an al-

gorithm based on the interleaving of standard greedy with a
second, even more myopic, greedy algorithm that selects the
min-cost set which covers at least one uncovered element
(disregarding the actual number of the covered elements).
In each selection step we trust the min-ratio greedy algo-
rithm if a subset with a sufficiently small ratio exists, and
the min-cost one otherwise. The threshold ratio is derived
from the length k of the sequence.

The main result of this paper can be stated as follows
(see Section 3):

Theorem 1.1 There exists a polynomial-time length-aware
algorithm that returns a universal mapping S to the
(weighted) universal stochastic set cover problem with
E[c(S)] = O(logmn)E[c(opt)].

When m is polynomial in n, this is asymptotically the
best possible due to the o(logn)-inapproximability of set
cover (which extends to the universal stochastic case by
choosing k� n). For values of m� n, the competitive fac-
tor can be improved to O

(
logm

log logm−log logn

)
, and this bound

is tight (see Section 4).
The crux of our analysis is bounding the cost of the

min-cost sets selected by the algorithm when it cannot find
good ratio sets. Here we use a novel counting argument to
show that the number of sampled elements among the still-
uncovered elements is sufficiently small compared to the
number of sets used by the optimal solution to cover those
elements. We then translate this into a convenient lower
bound on the cost paid by the optimum solution to cover
the mentioned elements.

In the unweighted case we can do better: here the stan-
dard greedy algorithm provides a length-oblivious universal
algorithm with the same competitive ratio.

Theorem 1.2 There exists a polynomial-time length-
oblivious algorithm that returns a universal mapping S to
the unweighted universal stochastic set cover problem with
E[|S|] = O(logmn)E[|opt|].

Based on the proof of Theorem 1.2, we also show that the
dependence on n in the competitive factor can be removed
if exponential time is allowed, or when the set system has
a small VC-dimension. The latter result is especially suited
for applications where m
 n, one of which we highlight
in Section 6.3. Additionally, it should be noted that due
to concentration bounds our length-aware mappings can be
used to construct solutions for the independent activation
model introduced in [39, 35] as well. The details will be
given in the full version of this paper.

Our results naturally extend to the stochastic version of
the online set cover problem. Here the random sequence
ω is presented to the algorithm element by element, and,
each time a new element u is given, the algorithm is forced
to define a set S(u) � u. In other words, the mapping S is
constructed in an online fashion. We remark that, once the
value S(u) is chosen, it cannot be modified in the following
steps. Moreover, the length k of the sequence is not given
to the algorithm. Similarly to the universal stochastic case,
the aim is to minimize Eω [c(S(ω))]/Eω [c(opt(ω))].

A length-oblivious universal algorithm would immedi-
ately imply an online algorithm with the same competitive
factor. However, as there is no such algorithm, we achieve
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the same task by combining a family of universal map-
pings, computed via our (length-aware) universal algorithm
for carefully-chosen sequence lengths (see Section 5):

Theorem 1.3 There exists a polynomial-time O(logmn)-
competitive algorithm for the online (weighted) stochastic
set cover problem.

Our techniques are fairly flexible, and can be applied to
other covering-like problems. In Section 6 we describe uni-
versal algorithms for the stochastic versions of (non-metric)
facility location, multi-cut, and disc covering in the plane.

In this paper, logx denotes the logarithm at base 2 of x. In
the remaining of this paper, we assume that π is a uniform
distribution: This assumption is without loss of generality
using the standard reduction described in Appendix A.

1.2. Related Work
Universal, Oblivious and A-Priori Algorithms. These are
algorithms where a single solution is constructed which is
evaluated given multiple inputs—and either the worst-case
or the average-case performance is considered. E.g., the
universal TSP problem, where one computes a permutation
that is used for all possible inputs, has been studied both
in the worst-case scenario for the Euclidean plane [47, 8]
and general metrics [37, 26, 29], as well as in the average-
case [36, 9, 52, 24, 54]. (For the related problem of univer-
sal Steiner tree, see [39, 37, 26, 24].) For universal set cover
and facility location, the previous results are in the worst-
case: Jia et al. [37] introduced the problems, show that the
adversary is very powerful in such models, and give nearly-
matching Ω(

√
n) and O(

√
n logn) bounds. For oblivious

routing [48, 32, 10] (see, e.g., [56, 57] for special cases), a
tight logarithmic competitive result as well as a polynomial-
time algorithm to compute the best routing is known for the
worst case for undirected graphs [6, 49]. For oblivious rout-
ing on directed graphs the situation is similar to our prob-
lem: in the worst case the lower bound of Ω(

√
n) [6] nearly

matches upper bounds [30] but for the average case, [27]
give an O(log2 n)-competitive oblivious routing algorithm
when demands are chosen randomly from a known demand-
distribution; they also use “demand-dependent” routings
and show that these are necessary.
Online Algorithms. Online algorithms have a long his-
tory (see, e.g., [11, 21]), and there have been many attempts
to relax the strict worst-case notion of competitive analy-
sis: see, e.g., [17, 1, 24] and the references therein. On-
line algorithms with stochastic inputs (either i.i.d. draws
from some distribution, or inputs arriving in random or-
der) have been studied, e.g., in the context of optimiza-
tion problems [45, 46, 24], secretary problems [23], mech-
anism design [28, 41, 7], and matching problems in Ad-
auctions [44, 13, 25].

Alon et al. [2] gave the first online algorithm for set
cover with a competitive ratio of O(logm logn); they used

an elegant primal-dual-style approach that has subsequently
found many applications (e.g., [3, 14, 4]). This ratio is the
best possible under complexity-theoretic assumptions [19];
even unconditionally, no deterministic online algorithm can
do much better than this [2]. Online versions of metric facil-
ity location are studied in both the worst case [45, 22], the
average case [24], as well as in the stronger random per-
mutation model [45], where the adversary chooses a set of
clients unknown to the algorithm, and the clients are pre-
sented to us in a random order. It is easy to show that for
our problems, the random permutation model (and hence
any model where elements are drawn from an unknown dis-
tribution) are as hard as the worst case.
Offline problems: Set Cover and (non-metric) Facility
Location. The set cover problem is one of the poster chil-
dren for approximation algorithms, for which a Θ(lnn)-
approximation has been long known [38, 16, 42], and this
is the best possible [43, 18, 51, 5]. For the special case of
set systems with small VC-dimension, a better algorithm is
known [12]. Other objective functions have also been used,
e.g., the min-latency [20] and min-entropy [31, 15] set cover
problems. The O(logn) approximation for non-metric facil-
ity location is due to Hochbaum [33].
Stochastic Optimization. Research in (offline) stochastic
optimization gives results for k-stage stochastic set cover;
however, the approximation in most papers [35, 50, 53] is
dependent on the number of stages k. Srinivasan [55] shows
how to round an LP-relaxation of the k-stage set cover prob-
lem with only an O(logn) loss, independent of k; this can
be used to obtain an O(logn) approximation to the expected
cost of the best online algorithm for stochastic set cover in
poly(mn) time. In contrast to this, our results get within
O(lognm) of the best expected offline cost.

2. Unweighted Set Cover Problem
In this section, we present a O(logmn)-competitive algo-

rithm for the universal stochastic set cover problem in the
unweighted case (i.e., c(S) = 1 for all sets S ∈S ). More-
over, the proof will introduce ideas and arguments which
we will extend upon for the case of weighted set cover in
the following section.

Our algorithm is the natural adaptation of the standard
greedy algorithm for the set cover problem (see Algo-
rithm 1). However, its analysis is different from the one for
the classical offline greedy algorithm. We remark that our
algorithm is length-oblivious, i.e., the mapping S computed
by the algorithm works for any sequence length k.

For the analysis, fix some sequence length k and let
μ = Eω∈Uk [|opt(ω)|] be the expected optimal cost. We first
show that there are 2μ sets which cover all but δn elements
from U , where δ = μ 3ln2m

k .

Lemma 2.1 (Existence of Small Almost-Cover) Let
(U,S ) be any set system with n elements and m sets. There
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Algorithm 1: Mapping for unweighted set cover.

Data: Set system (U,S ).
while U �= /0 do

let S← set in S maximizing |S∩U |;
S(v)← S for each v ∈ S∩U ;
U ←U \S ;

exists 2μ sets in S which cover all but δn elements from
U, for δ = μ 3ln2m

k .

Proof: Let d denote the median of opt, i.e., in at least half
of the scenarios from Uk, the optimal solution uses at most
d sets to cover all the k elements occurring in that scenario.
By Markov’s inequality, d ≤ 2μ .

There are at most p := ∑d
j=0

(m
j

) ≤ (m
d

)
2d ≤ (2m)d col-

lections of at most d sets from S : let these collections be
C1,C2, . . . ,Cp, and let ∪Ci be the union of the sets in Ci.
We now show that |∪Ci| ≥ n(1−δ ) for some i.

Suppose for contradiction that |∪Ci|< n(1−δ )≤ ne−δ

for each 1 ≤ i ≤ p. Since half of the nk scenarios have a
cover with at most d sets, the k elements for any such sce-
nario can be picked from some collection Ci. Hence,

∑p
i=1|∪Ci|k ≥ 1

2 nk.

Plugging in p ≤ (2m)d = ed ln2m ≤ e2μ ln2m and |∪Ci| <
ne−δ , we get

p(ne−δ )k > 1
2 nk =⇒ e(2μ ln2m)−kδ > 1

2 =⇒ e−μ ln2m > 1
2 .

Since m ≥ 1 and μ ≥ 1, we also get e−μ ln2m ≤ 1
2 , which

gives the desired contradiction. �
We can now use the fact that for the partial coverage

problem (pick the fewest sets to cover some (1− δ ) frac-
tion of the elements), the greedy algorithm is a O(logn)-
approximation [40, Thm 5.15] to get:

Corollary 2.2 Algorithm 1 covers at least n(1− δ ) ele-
ments using the first O(μ logn) sets.

Finally, we can complete the analysis of Algorithm 1. (A
slightly improved result will be described in Section 4.)
Proof of Theorem 1.2: The first O(μ logn) sets picked by
the greedy algorithm cover all except δn elements of U , by
Corollary 2.2. We count all these sets as contributing to
E[|S|]; note that this is fairly pessimistic.

From the remaining at most δn elements, we expect
to see k

n δn = 3μ ln2m elements in a random sequence of
length k. Whenever such an element appears we use at
most one new set to cover it. Hence, in expectation, we
use at most 3μ ln2m sets for covering the elements which
show up from the δn remaining elements, making the total
O(μ(logn+ logm)) as claimed. �

An Exponential-Time Variant. Surprisingly, we can trade
off the lnn factor in the approximation for a worse run-
ning time; this is quite unusual for competitive analy-
sis where the lack of information rather lack of computa-
tional resources is the deciding factor. Instead of running
the greedy algorithm to find the first 4μ lnn sets which
cover (1− δ )n elements we can run an exponential-time
algorithm which finds 2μ sets which cover (1− δ )n ele-
ments (whose existence is shown in Lemma 2.1). Thus
we obtain an exponential-time universal algorithm whose
expected cost is at most O(μ logm). In Section 6.3 we
give a polynomial-time algorithm achieving an O(logm)-
competitiveness when the set system has constant VC-
dimension, and also give an application of this result to the
disc-cover problem.

3. The Weighted Set Cover Problem

We now consider the general (weighted) version of the
universal stochastic set cover problem. As mentioned in the
introduction, and in contrast to the unweighted case where
we could get a length-oblivious universal mapping S, in the
weighted case there is no mapping S that is good for all
sequence lengths k.

Theorem 3.1 Any length-oblivious algorithm for the
(weighted) universal stochastic set cover problem has a
competitive ratio of Ω(

√
n).

Proof: Consider a set Sall = U covering the whole uni-
verse, of cost c(Sall) =

√
n, and singleton sets Su = {u} for

each u ∈U , each of unit cost c(Su) = 1. Take any length-
oblivious algorithm. If this algorithm maps more than half
the elements to Sall then the adversary can choose k = 1
and the algorithm pays in expectation Ω(

√
n) while the op-

timum is 1. Otherwise (the algorithm maps less than half
the elements to Sall), the adversary chooses k = n and the
algorithm pays, in expectation, Ω(n) while the optimum is
at most

√
n. �

Hence, we do the next best thing: we give a O(logmn)-
competitive universal algorithm, which is aware of the input
length k.

We first present an algorithm for computing a universal
mapping S when given the value of E[c(opt)]. This assump-
tion will be relaxed later, by showing that indeed the value
of k is sufficient. In each iteration of Algorithm 2, we either
choose a set with the best ratio of cost to number of uncov-
ered elements (Type I sets), or simply take the cheapest set
which covers at least one uncovered element (Type II sets).
We remark that since the set U is updated at each step, we
may alternate between picking sets of Type I and II in an
arbitrary way. We also observe that both types of sets are
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needed in general, as the proof of Theorem 3.1 shows.

Algorithm 2: Mapping for weighted set cover.

Data: Set system (U,S ), c : S → R≥0, E[c(opt)].
while U �= /0 do

let S← set in S minimizing c(S)
|S∩U | ;

if c(S)
|S∩U | >

64E[c(opt)]
|U | then let S← set in S

minimizing c(S);
S(u)← S for each u ∈ S∩U ;
U ←U \S and S ← all sets covering at least one
element remaining in U ;

We bound the cost of sets of Type I and II separately. The
following lemma shows that the total cost of Type I sets is
small, even in the fairly pessimistic assumption that we use
all such sets to cover the random sequence ω . Since Type I
sets are min-ratio sets, their cost can be bounded using the
standard greedy analysis of set cover.

Lemma 3.2 (Type I Set Cost) The cost of Type I sets se-
lected by Algorithm 2 is O(logn) ·E[c(opt)].

Proof: Let R1, . . . ,Rh be the Type I sets picked by the al-
gorithm in this order. Moreover, let Ui denote the set of
uncovered elements just before Ri was picked. Since the
algorithm picked a Type I set, c(Ri) ≤ |Ri ∩Ui| 64 E[c(opt)]

|Ui| .
Hence, the total cost of the sets Ri can be bounded by

∑h
i=1 c(Ri)≤ ∑h

i=1
64|Ri∩Ui|×E[c(opt)]

|Ui| ≤ 64E[c(opt)]∑n
t=1

1
t ,

which is at most 64E[c(opt)] lnn. �
It remains to bound the expected cost of the Type II

sets, which is also the technical heart of our argument. Let
S1, . . . ,S� be the Type II sets selected by Algorithm 2 in this
order. Observe that, since Type II sets are picked on the ba-
sis of their cost alone, c(Si)≤ c(Si+1) for each 1≤ i≤ �−1.
Before bounding the mentioned cost (Lemma 3.6), we need
a few intermediate results.

Let Ui denote the set of uncovered elements just before
Si was picked. Define ni = |Ui| and let ki = ni

k
n be the ex-

pected number of elements sampled from Ui. Denote by
ωi the subsequence of the input sequence ω obtained by
taking only elements belonging to Ui, and let opt|ωi be the
subcover obtained by taking for each u ∈ ωi the cheapest
set in opt = optω containing u. (Note that this is not the
optimal set cover for ωi.) As usual, c(opt|ωi) and |opt|ωi |
denote the cost and number of the sets in opt|ωi . Let Ωq

i be
the set of scenarios ω’s such that |ωi|= q. The proofs of the
following two technical lemmas are given in Appendix B.

Lemma 3.3 For every i ∈ {1, . . . , �}, if ki ≥ 8log2n then
there exists q ≥ ki/2 such that Prω∈Ωq

i

[
c(opt|ωi) ≤

8E[c(opt)] and |opt|ωi | ≤ 8E[|opt|] ]≥ 1
2 .

Lemma 3.4 For all 1 ≤ i ≤ �, c(Si)E
[|opt|ωi+1 |

] ≤
E
[
c(opt|ωi+1)

]
and c(Si)

(
E[|opt|ωi |] − E

[|opt|ωi+1 |
]) ≤

E[c(opt|ωi)]−E
[
c(opt|ωi+1)

]
.

The next lemma proves that if ki is large enough, the
optimal solution uses many sets to cover the remaining el-
ements. The observation here is similar to Lemma 2.1, but
now the number of sets in the set cover is not equal to its
cost. This is why we needed a careful restriction of the op-
timal solution to subproblems given by opt|ωi .

Lemma 3.5 For every i ∈ {1, . . . , �}, if ki ≥ 8log2n then
ki ≤ 16E[|opt|ωi |] logm.

Proof: For a contradiction, assume that ki >
16E[|opt|ωi |] logm, and use Lemma 3.3 to define q. There
are exactly nq

i equally likely different sequences ωi corre-
sponding to sequences in Ωq

i .
Let Si be the family of sets {S∩Ui | S ∈ S }, and de-

note by C1,C2, . . . ,Cp the collections of at most 8E[|opt|]
sets from Si with total cost at most 8E[c(opt)]; there are
at most (2m)8E[|opt|] of these collections. As previously, let
∪C j denote the union of the sets from C j. Lemma 3.3 says
that with probability at least 1/2, the solution opt|ωi uses at
most 8E[|opt|] sets and costs at most 8E[c(opt)], hence

∑p
j=1|∪C j|q ≥ 1

2 nq
i .

Analogously to the proof of Lemma 2.1, we can infer that
there is a collection C j with

|∪C j| ≥ ni
2(2m)8E[|opt|]/q ≥ ni

2(2m)1/logm ≥ ni
8 ,

due to the assumption q ≥ ki/2 > 8E[|opt|ωi |] logm. Since
the total cost of sets in C j is at most 8E[c(opt)] and they
cover ni/8 elements from Ui, there is a set S ∈ C j with

minS∈C j
c(S)
|S∩Ui| ≤

∑S∈C j
c(S)

∑S∈C j
|S∩Ui| ≤

8E[c(opt)]
ni/8 = 64E[c(opt)]

ni
.

However, the Type II set Si was picked by the algorithm
because there were no sets for which c(S)

|S∩Ui| <
64E[c(opt)]
|Ui| , so

we get a contradiction and the lemma follows. �
Finally, we can bound the expected cost of Type II sets:

recall that we incur the cost of some set Si only if one of the
corresponding elements Si∩Ui is sampled.

Lemma 3.6 (Type II Set Cost) The expected cost of Type
II sets selected by Algorithm 2 is O(logmn)E[c(opt)].

Proof: Recall that the Type II sets were S1,S2, . . . ,S�. Set
k�+1 = 0 and c(S0) = 0 for notational convenience. More-
over, let j be such that k j ≥ 8log2n but k j+1 < 8log2n.
Hence, in expectation we see at most 8 log2n elements from
Uj+1, and since each of these elements is covered by a set
that does not cost more than the one covering it in opt, the
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cost incurred by using the sets S j+1, . . . ,S� is bounded by
8log2nE[c(opt)].

By Lemma 3.5, the expected cost incurred by using the
remaining sets S1, . . . ,S j is at most

∑ j
i=1 c(Si)Pr[ω ∩ (Si∩Ui) �= /0]

≤ ∑ j
i=1 c(Si)E[|ω ∩ (Si∩Ui)|]

≤ ∑ j
i=1 c(Si)E[|ω ∩ (Ui \Ui+1)|]

≤ ∑ j
i=1 c(Si)(ki− ki+1)≤ ∑ j

i=1 ki (c(Si)− c(Si−1))

≤ ∑ j
i=1 16E[|opt|ωi |] logm · (c(Si)− c(Si−1))

= 16logm · (c(S j)E
[
|opt|ω j+1 |

]
+∑ j

i=1 c(Si)
(
E[|opt|ωi |]−E

[|opt|ωi+1 |
]))

.

It follows by Lemma 3.4 that the expected cost due to the
sets S1, . . . ,S j is at most

16logm · (E[c(opt|ω j+1)
]

+∑ j
i=1

(
E[c(opt|ωi)]−E

[
c(opt|ωi+1)

]))
= 16E[c(opt|ω1)] logm≤ 16E[c(opt)] logm,

concluding the proof of the lemma. �
We have all the ingredients to prove the main result of

this section.
Proof of Theorem 1.1: Lemmas 3.2 and 3.6 together imply
that Algorithm 2 is O(logmn)-competitive. We now show
how to adapt the result to the case when we are given as
input the sequence length k, instead of E[c(opt)].

Algorithm 2 uses the value of E[c(opt)] only in compari-

son with c(S)·|U |
|S∩U | for different sets S. This fraction can take at

most mn2 different values, and thus the algorithm can gener-
ate at most mn2 +1 different mappings {Si}mn2+1

i=1 . For any
such map S, computing the expected cost E[c(S)] is easy:
indeed, if S−1(S) is the pre-image of S ∈S , then

E[c(S)] = ∑S∈S c(S) ·Pr[ω ∩S−1(S) �= /0].

The value of k is sufficient (and necessary) to compute the
probabilities above. Hence, we can select the mapping Si

with the minimum expected cost for the particular value k;
this cost is at most the cost of the mapping generated with
the knowledge of E[c(opt)]. �
4. Matching Bounds

In this section we present slightly refined upper bounds
and matching lower bounds for universal stochastic set
cover.

If we stay within polynomial time, and if m = poly(n),
then the resulting O(logmn) = O(logn) competitive fac-
tor is asymptotically the best possible given suitable
complexity-theoretic assumptions. However, for the cases

when m� n, we can show a better dependence on the pa-
rameters.

Let us slightly modify the universal algorithm for
weighted set cover as follows: fixing a value 0 < x ≤
logm, the set S minimizing c(S)/|S ∩ U | is selected
only if c(S)/|S ∩U | > 64 · 2xE[c(opt)]/|U |. By adapt-
ing the analysis, the cost of Type I sets is bounded by
O(2x logn)E[c(opt)], and the expected cost of Type II sets
is O(logn + logm

x )E[c(opt)]. A similar result can be shown
for Algorithm 1, in the unweighted (length-oblivious) case.
Setting x suitably (details appear in the full version), we get:

Theorem 4.1 For m > n, there exists a polynomial-time

length-aware (resp. length-oblivious) O
(

logm
log logm−log logn

)
-

competitive algorithm for the weighted (resp. unweighted)
universal stochastic set cover problem.

The following theorem (which extends directly to online
stochastic set cover) shows that the bounds above are tight.

Theorem 4.2 There are values of m and n such
that any mapping S for the (unweighted) univer-
sal stochastic set cover problem satisfies E[|S|] =
Ω
(

logm
log logm−log logn

)
E[|opt|].

Proof: Consider an n element universe U = {1, . . . ,n} with
the uniform distribution over the elements, and S con-
sisting of all m =

( n√
n

)
subsets of U of size

√
n; hence

logm = Θ(
√

n logn) and loglogm− log logn = Θ(logn).
Let the sequence length be k =

√
n/2. Consider any map-

ping. The sets included in the solution covering the first i el-
ements cover at most i

√
n≤ n

2 of the total elements. Hence,
with probability at least half, the mapping must pick a new
set to cover the (i + 1)-th element. Hence, in expectation

the mapping picks
√

n
4 sets while it is enough to select one

set, proving the lemma. �

5. Online Stochastic Set Cover
The universal algorithm for (weighted) stochastic set

cover can be turned into an online algorithm with the same
O(logmn) competitive ratio. The basic idea is using the uni-
versal mapping from Section 3 to cover each new element,
and update the mapping from time to time. The main dif-
ficulty is choosing the update points properly: indeed, the
standard approach of updating the mapping each time the
number of elements doubles does not work here.

Let ω i denote a random sequence of i elements, and let
Si be the mapping produced by the universal algorithm from
Section 3 for a sequence of length i. Our algorithm works
as follows. Let k be the current number of samplings per-
formed. The algorithm maintains a variable k′, initially
set to 1, which is larger than k at any time. For a given
value of k′, the mapping used by the online algorithm is

352352

Authorized licensed use limited to: MICROSOFT. Downloaded on May 12, 2009 at 14:24 from IEEE Xplore.  Restrictions apply.



the universal mapping Sk′ . When k = k′, we update k′ to
the smallest value k′′ > k′ which satisfies E[c(Sk′′(ωk′′))] >
2E[c(Sk′(ωk′))] and modify the mapping consequently (we
set k′ = ∞ if such value k′′ does not exist). We remark that
the algorithm above takes polynomial time per sample, and
does not assume any knowledge of the final number of sam-
plings.
Proof of Theorem 1.3: Let k ≥ 1 be the final number of
samplings performed, and S be the actual mapping com-
puted by the algorithm. Let moreover 1 = k1,k2, . . . ,kh > k
be the sequence of different values of k′ computed by the
algorithm. The analysis is trivial for k1, so assume h ≥ 2
and hence kh ≥ 2. By the choice of the ki’s,

E
[
c(S(ωk))

]
≤ E

[
c(Sk1(ω

k1))
]
+E

[
c(Sk2(ω

k2−k1))
]
+

. . .+E
[
c(Skh(ω

k−kh−1))
]

≤ E
[
c(Sk1(ω

k1))
]
+E

[
c(Sk2(ω

k2))
]
+

. . .+E
[
c(Skh(ω

kh))
]

≤ 2E
[
c(Skh−1(ω

kh−1))
]
+E

[
c(Skh(ω

kh))
]
.

By definition, E
[
c(Skh−1(ωkh−1))

]≤ 2E
[
c(Skh−1(ω

kh−1))
]
:

this is trivially true for kh = ∞ and holds by the minimality
of kh otherwise.

We need the following technical Lemma.

Lemma 5.1 We have E
[
c(Si(ω i))

] ≤ E
[
c(Si+1(ω i+1))

]
and E

[
c(Si(ω i))

]≤ 2E
[
c(S�i/2�(ω�i/2�))

]
, for all i≥ 1.

Proof: We observe that the pool of possible universal
mappings from which each Si is chosen is the same for
every value of i (i.e. one for every possible breaking
point). Moreover, the expected cost of each such map-
ping is an increasing function of the length of the sequence.
As a consequence, E

[
c(Si(ω i))

] ≤ E
[
c(Si+1(ω i))

] ≤
E
[
c(Si+1(ω i+1))

]
. The second claim follows along the

same line. �
It follows from Lemma 5.1 that

E
[
c(Skh(ω

kh))
]
≤ 2E

[
c(S�kh/2�(ω�kh/2�))

]
≤ 2E

[
c(Skh−1(ωkh−1))

]
≤ 4E

[
c(Skh−1(ω

kh−1))
]
.

We can conclude by the properties of the universal stochas-
tic set cover algorithm that

E
[
c(S(ωk))

]
≤ 6E

[
c(Skh−1(ω

kh−1))
]

= O(logmn)E
[
c(opt(ωkh−1))

]
= O(logmn)E

[
c(opt(ωk))

]
.

�

6. Extensions and Applications

Our techniques can be applied to other covering-like
problems. In this section we sketch three such applications.

6.1. Universal Stochastic Facility Location

In this section we consider the universal stochastic ver-
sion of (non-metric) facility location, a generalization of set
cover. For this problem, we provide a O(logn)-competitive
length-aware algorithm, where n is the total number of
clients and facilities.

The universal stochastic facility location problem is de-
fined as follows. An instance of the problem is a set of
clients C and a set of facilities F , with a (possibly non-
metric) distance function d : C×F → R≥0. Each facility
f ∈ F has an opening cost c( f ) ≥ 0. We let n = |F |+ |C|.
Given a mapping S : C→ F of clients into facilities, and a
subset X ⊆C, we define c(S(X)) as the total cost of open-
ing facilities in S(X) = ∪u∈XS(u) plus the total distance
from each u ∈ X to the closest facility in S(X). We also
denote by |S(X)| the number of facilities in S(X). With the
usual notation, the aim is finding a mapping which mini-
mizes Eω [c(S(ω))]/Eω [c(opt(ω))], where ω is a random
sequence of k clients.

Our algorithm is an extension of the algorithm from Sec-
tion 3, where the new challenge is to handle the connection
costs for clients. As for weighted set cover, we first assume
that the algorithm is given as input E[c(opt)]; we later show
how to remove this assumption.

Algorithm 3: Algorithm for the (weighted) stochastic
facility location problem.

Data: C, F , d : C×F→R≥0, c : F→R≥0, k, E[c(opt)].
while C �= /0 do

let f ∈ F and S⊆C minimize

avg := c( f )+min{1, k
n }∑v∈S d(v, f )

|S∩C| ;

if avg > 192E[c(opt)]
|C| then let f ∈ F and

S = {v} ⊆C minimize c( f )+d(v, f );
S(u)← S for each u ∈ S∩C ;
C←C \S ;

The first step in the while loop can be implemented in
polynomial time even if the number of candidate sets S is
exponential, since it suffices to consider, for each facility
f , the closest i clients still in C, for every i = 1, . . . , |C|.
The proof of the following lemma follows on similar lines
to proof of Theorem 1.1 given in Section 3. Due to space
limitations, the proof is omitted and will appear in the full
version of the paper.

Lemma 6.1 Algorithm 3 returns a universal mapping S
to the universal stochastic facility location problem with
E[c(S)] = O(logn)E[c(opt)]. The same claim holds if a
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constant approximation to E[c(opt)] is given as input in-
stead of E[c(opt)].

Using the above lemma it is easy to prove the main theorem.

Theorem 6.2 There exists a polynomial-time length-aware
algorithm that returns a universal mapping S to the uni-
versal stochastic facility location problem with E[c(S)] =
O(logn)E[c(opt)].

Proof: First, note that the value of Eω∈C1 [c(opt(ω))] can
be easily computed, by finding for each v ∈C the facility f
minimizing c( f ) + d(c, f ). Trivially, Eω∈C1 [c(opt(ω))] ≤
Eω∈Ck [c(opt(ω))] ≤ Eω∈Cn [c(opt(ω))] for 1 ≤ k ≤
n. Moreover, by subadditivity, Eω∈Cn [c(opt(ω))] ≤
nEω∈C1 [c(opt(ω))]. Hence one of the values xi :=
2iEω∈C1 [c(opt(ω))] for 0 ≤ i ≤ logn is a 2-approximation
for Eω∈Ck [c(opt(ω))] = E[c(opt)]. Therefore, we run Al-
gorithm 3 for all logn values xi to obtain logn different
mappings. Afterwards, we choose the one with the smallest
expected cost, which is guaranteed to be O(logn) approxi-
mate. The expected costs above is computed analogously to
the set cover case. �

The same reduction as in Section 5 leads to an O(logn)-
competitive algorithm for the online version of the problem.

Theorem 6.3 There is an O(logn)-competitive algorithm
for the online stochastic facility location problem.

6.2. Universal Stochastic Multi-Cut
In an instance of the universal multi-cut problem we are

given a graph G = (V,E) with edge costs c : E→ R≥0, and
a set of demand pairs D = {(si, ti) : 1≤ i≤ m}. The task is
to return a mapping S : D→ 2E so that S((si, ti)) ⊆ E dis-
connects si from ti. The cost of the solution for a sequence
ω ∈ Dk is defined as usual to be c(S(ω))—the total cost of
edges in S(ω). The universal and online stochastic versions
are defined analogously, and again the goal is to minimize
the ratio Eω [c(S(ω))]/Eω [c(opt(ω))].

Notice first, that multi-cut in trees (i.e., G is a tree) is a
special case of weighted set cover: each demand pair (si, ti)
is an element in U , each edge e corresponds to a set Se, and
an element (si, ti) is contained in a set Se if e is in the unique
path from si to ti. Thus we can use the algorithm from
Section 3 to obtain a O(logn)-competitive algorithm for
stochastic universal multi-cut in trees. Using results from
Räcke [49], we can generalize this result to general graphs
obtaining a O(log2 n)-competitive algorithm. The proof of
the following theorem is omitted due to space constraints.

Theorem 6.4 There exists an O(log2 n)-competitive
polynomial-time algorithm for the online multi-cut prob-
lem, and a polynomial-time algorithm that, given the length
of the input sequence, is O(log2 n)-competitive for the
universal multi-cut problem.

6.3. Disc Covering in the Plane

Consider a region U ⊆ R
2 of the 2-dimensional plane,

and a set of m “base-stations” vi ∈R
2, each with a coverage

radius ri, such that U ⊆ ∪iB(vi,ri); i.e., the discs cover the
entire region. Given a set X ⊆U , the goal is to find a small
set cover, i.e., to map each point x∈ X to a base-station cov-
ering it so that not too many base-stations are in use. This
problem was studied by Hochbaum and Maas [34], and by
Bronnimann and Goodrich [12]: among other results, they
gave a constant-factor approximation for the problem based
on set cover for set systems with small VC-dimension.

However, one might want to hard-wire this mapping
from locations in the plane to base-stations, so that we
do not have to solve a set-cover problem each time a de-
vice wants to access a base-station; i.e., we want a uni-
versal map. For ease of exposition, let us discretize the
plane into n points by placing a fine-enough mesh on
the plane. Using arguments in Section 2 and in Broni-
mamm and Goodrich [12] we can show that for the case
of points chosen randomly from some known distribution
from the plane (or more precisely, from this mesh), there
exists a universal map whose expected set-cover cost is at
most O(logm) times the expected optimum. Moreover, us-
ing the k-coverage algorithm for set systems of finite VC-
dimension from the same section, we can also find such a
universal map in randomized polynomial-time. The details
are omitted and will appear in the full version of the paper.
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A Non-Uniform Probability Distributions

We show that given an arbitrary distribution we can con-
vert it to the uniform distribution. The only assumption that
we need is that the algorithms have polynomial approxima-
tion ratios in the worst case, which is the case for all al-
gorithms presented here. Assume we are given an α(n,m)-
competitive algorithm that is nβ -worst-case competitive, for
some function α and a constant β . We replace each el-
ement u ∈ U with �nβ+1π(u)� copies of u in all the sets
containing u. Denote the set system obtained this way by
(U ′,S ′). Note that a uniform distribution on U ′ simulates
the given distribution π in such a way that elements with
π(u) ≥ 1

nβ+1 are generated with probability changed only
by a factor of at most 2. Hence, the algorithm gives an
2α(n,m) approximation on the sequences when only such
elements are generated. The cost of all other sequences can
be bounded by nβ ×n 1

nβ+1 E[c(optω)] = E[c(optω)]. Hence,

finally we get an 2α(nβ+1,m)+1 competitive algorithm. In
particular, for α(n,m) = O(log(mn)) the competitive factor
is O(log(mn)). The following lemmas show how the reduc-
tion above applies to our algorithms.

Lemma A.1 Any universal mapping for the unweighted set
cover problem is n-approximate in the worst case.

Proof: The optimal solution needs at least one set whereas
the mapping returns at most n sets. The claim follows. �

Lemma A.2 The universal mapping S generated by Algo-
rithm 2 is n2-approximate in the worst case for the set cover
problem.

Proof: Consider any sequence ω . Let cheap(x) be the
minimum cost of a set covering x. Observe that optω ≥
1
n ∑x∈ω cheap(x). For any element x ∈ ω covered by a Type
I set, it holds c(S(x)) ≤ n · cheap(x). For the remaining
elements x ∈ ω , c(S(x)) = cheap(x). As a consequence
the cost of the solution returned by the algorithm is at most
∑x∈ω n · cheap(x). The claim follows. �

A similar argument holds for the facility location prob-
lem as well. This justifies our assumption that π is a uni-
form probability distribution.

Lemma A.3 The universal mapping S generated by Algo-
rithm 3 is n3-approximate in the worst case for the facility
location problem.

Proof: Consider any sequence ω . For any x ∈ ω , let
cheap(x) = min f∈F{c( f )+ d(x, f )}. Observe that optω ≥
1
n ∑x∈ω cheap(x). The cost paid by S for any x ∈ ω cov-
ered by a facility of Type II is at most cheap(x). Consider
now any x ∈ω covered by a facility f = S(x) of Type I. Let

S = S−1( f ). S pays for x at most

c( f )+d(x, f )≤ c( f )+ ∑
v∈S

d(v, f )

≤ n ·
(

c( f )+min{1,
k
n
}∑

v∈S

d(v, f )

)

≤ n2 ·
(

c( f )+min{1, k
n}∑v∈S d(v, f )

|S∩C|

)
≤ n2 · cheap(x).

Altogether, the cost of the solution returned by the algo-
rithm is at most n2 ∑x∈ω cheap(x). The claim follows. �
B Proofs from Section 3
Proof of Lemma 3.3: We restrict our attention to sce-
narios in Ω≥ki/2

i := �p≥ki/2 Ωp
i , i.e., scenarios where the

sampled k elements contain at least ki
2 elements from Ui.

Let di be the upper quartile of |opt|ωi |, i.e., in at least
three-quarters of the scenarios in Ωi, the optimal solution
opt = opt(ω) uses at most di sets to cover the elements
in the scenario. A Chernoff’s bound implies that Pr[|ωi| <
ki/2] ≤ exp

(
− (1/2)2 8 log2n

2

)
≤ 1

2n . Hence, conditioning on

the event ω ∈Ω≥ki/2
i = {ω : |ωi| ≥ ki/2} and observing

that 1
1−(1/2n) ≤ 2, we obtain By the above equations and

the definition of opt|ωi , di ≤ 4E
[
|opt|ωi | | ω ∈Ω≥ki/2

i

]
≤

8E [|opt|ωi |] ≤ 8E[|optω |].
An analogous argument shows that the cost c(opt|ωi) is

at most 8E[c(optω)] with probability at least 3/4. Hence,
a trivial union bound implies that Pr

ω∈Ω≥ki/2
i

[
c(opt|ωi) ≤

8E[c(opt)] ∧ |opt|ωi | ≤ 8E[|opt|] ] ≥ 1
2 . Since Ω≥ki/2

i =
�p≥ki/2Ωp

i , an averaging argument implies that some q ≥
ki/2 satisfies the lemma. �
Proof of Lemma 3.4: The set Si+1 is the cheapest set cov-
ering any element of Ui+1, and hence c(Si+1) is a lower
bound on the cost of the sets in opt|ωi+1 . Since by definition
c(Si)≤ c(Si+1),

c(Si)|opt|ωi+1 | ≤ c(Si+1)|opt|ωi+1 | ≤ c(opt|ωi+i).

Analogously, the number of sets opt uses to cover the
elements Ui \Ui+1 covered by Si is given by |opt|ωi | −
|opt|ωi+1 |, and to cover each of those elements opt pays at
least c(Si). Thus,

c(Si)(|opt|ωi |− |opt|ωi+1 |)≤ c(opt|ωi)− c(opt|ωi+1).

Taking expectations on the inequalities gives the lemma. �
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