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ABSTRACT
In the MINIMUM BOUNDED DEGREE SPANNING TREE problem,
we are given an undirected graph with a degree upper bound Bv on
each vertex v, and the task is to find a spanning tree of minimum
cost which satisfies all the degree bounds. Let OPT be the cost
of an optimal solution to this problem. In this paper, we present
a polynomial time algorithm which returns a spanning tree T of
cost at most OPT and dT (v) ≤ Bv + 1 for all v, where dT (v)
denotes the degree of v in T . This generalizes a result of Furer
and Raghavachari [8] to weighted graphs, and settles a 15-year-old
conjecture of Goemans [10] affirmatively. The algorithm general-
izes when each vertex v has a degree lower bound Av and a degree
upper bound Bv , and returns a spanning tree with cost at most OPT

and Av − 1 ≤ dT (v) ≤ Bv + 1 for all v. This is essentially the
best possible. The main technique used is an extension of the it-
erative rounding method introduced by Jain [12] for the design of
approximation algorithms.

Categories and Subject Descriptors
F.2.2 [Analysis of Algorithms and Problem Complexity]: Non
Numerical Algorithms and Problems—Computations on discrete
structures; G.2.2 [Discrete Mathematics]: Graph Theory—Net-
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1. INTRODUCTION
The MINIMUM BOUNDED DEGREE SPANNING TREE problem

(MBDST) is defined as follows: Given a simple undirected graph
G = (V, E), a cost function c : E → R and a degree upper
bound Bv for each vertex v ∈ V , find a spanning tree of minimum
cost which satisfies all the degree bounds. Let OPT be the cost of an
optimal solution to this problem. An (α, f(Bv))-approximation al-
gorithm1 is an algorithm which returns a spanning tree T with cost
at most α ·OPT and dT (v) ≤ f(Bv) for all v, where dT (v) denotes
the degree of v in T . When all degree bounds are 2 (i.e. Bv = 2
for all v), the MBDST problem specializes to the MINIMUM COST

HAMILTONIAN PATH problem, and thus is NP-hard. In unweighted
graphs, Furer and Raghavachari [8] gave an elegant (1, Bv + 1)-
approximation algorithm for the MBDST problem. Goemans [10]
conjectured that this result can be generalized to weighted graphs.

CONJECTURE 1.1. In polynomial time, one can find a spanning
tree of maximum degree at most k + 1 whose cost is no more than
the cost of a minimum cost tree with maximum degree at most k.

Note that the above conjecture is formulated in the special case
where Bv = k for all v. Recently, Goemans [10] made a major step
towards this conjecture by giving a polynomial time (1, Bv + 2)-
approximation algorithm for the MBDST problem. In this paper,
we settle Conjecture 1.1 positively by proving the following result:

THEOREM 1.2. There exists a polynomial time (1, Bv + 1)-
approximation algorithm for the MINIMUM BOUNDED DEGREE

SPANNING TREE problem.

Theorem 1.2 also generalizes to the setting when there is a degree
lower bound Av and a degree upper bound Bv for each vertex v ∈
V . In this case, the algorithm returns a spanning tree T such that
Av − 1 ≤ dT (v) ≤ Bv + 1 and the cost of T is at most OPT,
where OPT is the minimum cost of a spanning tree which satisfies
all degree (upper and lower) bounds. Note that we do not assume
that the cost function satisfies triangle inequalities (or even non-
negativity). With this general cost function, it is not possible to
obtain any approximation algorithm if we insist on satisfying all
the degree upper bounds [9]2. Thus, Theorem 1.2 is essentially the
best possible.

1Notice that the first parameter is used to specify the ratio, while
the second parameter is used to specify the actual bound.
2Assuming P �= NP, there is no (p(n),Bv)-approximation algo-
rithm for any polynomial p(n) of n where n is the number of ver-
tices.
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1.1 Techniques
Polyhedral combinatorics has proved to be a powerful, coherent,

and unifying tool in combinatorial optimization (see [20]). In the
last two decades, polyhedral methods have also been applied very
successfully to the design of approximation algorithms (see [21]).
A standard approach to design approximation algorithms is to first
formulate the problem as an integer program, and then use the lin-
ear relaxation of this program as a way to lower-bound the cost of
an optimal solution. We shall also use this approach. Given an
undirected graph G = (V, E) and a subset S of vertices, we de-
note E(S) = {e ∈ E : |e ∩ S| = 2}, i.e., edges which have
both endpoints in S. We also denote δ(S) the edges which have
exactly one endpoint in S. For x : E → R

+ and U ⊆ E, we de-
note x(U) :=

∑
e∈U x(e). As in Goemans’ result [10], we use the

following natural linear programming relaxation for the MINIMUM

BOUNDED DEGREE SPANNING TREE problem.

minimize c(x) =
∑
e∈E

ce xe (1)

subject to x(E(V )) = |V | − 1 (2)

x(E(S)) ≤ |S| − 1 ∀S ⊂ V (3)

x(δ(v)) ≤ Bv ∀ v ∈ V (4)

xe ≥ 0 ∀ e ∈ E (5)

Using a polyhedral approach, a general strategy is to construct a
spanning tree of cost no more than the optimal value of the above
linear program, and in which the degree of each vertex is at most
Bv + 1. This would prove Theorem 1.2. In fact, this general strat-
egy has been used in previous work, and different techniques have
been proposed to “round” the above linear program. An impor-
tant observation of Goemans is that a basic feasible solution (or
an extreme point solution) of the above linear program is charac-
terized by a laminar family (definitions will be provided later) of
tight constraints (inequalities that are satisfied as equalities), and
he exploited this fact cleverly in [10] to design an (1, Bv + 2)-
approximation algorithm for the MBDST problem.

We note that a very similar observation was made by Jain [12]
in his breakthrough work on the SURVIVABLE NETWORK DESIGN

problem, where he first introduced the idea of iterative rounding to
the design of approximation algorithms. This potential connection
initiated our approach to the BOUNDED DEGREE SURVIVABLE

NETWORK DESIGN problem. Recently, in joint work [15] with
Naor and Salavatipour, we have extended Jain’s iterative round-
ing method to give the first constant factor (bi-criteria) approxima-
tion algorithm for bounded degree network design problems includ-
ing the MINIMUM BOUNDED DEGREE STEINER TREE problem,
BOUNDED DEGREE SURVIVABLE NETWORK DESIGN problem,
etc. Inspired by these results, we attempted Conjecture 1.1 using
the iterative rounding method.

The basic setting of the iterative rounding method for network
design problems goes as follows. First we solve the linear pro-
gram to obtain a basic optimal solution x∗. We proceed by adding
the edges with the highest fractional value to the integral solution.
Then we construct the residual problem where the edges added pre-
viously are fixed, and update the linear program appropriately. A
key feature of the iterative rounding method is to repeat this pro-
cedure: solve again the linear program for the residual problem to
obtain a basic optimal solution (instead of using x∗), and add the
edges with the highest fractional value in this new fractional so-
lution to the integral solution. This procedure is iterated until the
integral solution constructed is a feasible solution. In the SURVIV-
ABLE NETWORK DESIGN problem, the crucial theorem in Jain’s

approach is that the edges picked in each iteration have fractional
value at least 1/2, which ensures that the above algorithm has an
approximation ratio of 2. This theorem relies heavily on the prop-
erties of a basic solution, as in Goemans’ theorem.

The iterative rounding method can also be applied to solve prob-
lems optimally. For this purpose, we could only pick an edge e
with x∗

e = 1 (we call such an edge e an 1-edge). The above linear
program without the degree constraints (constraints from (4)) is the
standard linear programming formulation of the MINIMUM SPAN-
NING TREE problem, and this iterative rounding approach (by only
picking 1-edges) can be used to construct a minimum spanning tree,
as we will show in Section 2.

For the MINIMUM BOUNDED DEGREE SPANNING TREE prob-
lem, however, both approaches would not work directly. The for-
mer approach of picking an edge e with x∗

e ≥ 1
2

would not work
because we could not guarantee the optimality (with respect to the
cost of the linear program) of the solution, while the latter approach
of picking 1-edges would not work because the algorithm may not
make progress in case there is no 1-edge.

We propose a way to combine and extend the ideas of these re-
sults. In particular, we show that only adding 1-edges to the so-
lution can also be used to design approximation algorithms via the
iterative rounding method. Thus our algorithm does not round. Our
algorithm would keep adding 1-edges to the solution whenever pos-
sible. Of course, we cannot always guarantee the existence of an
1-edge, for otherwise we would have solved the problem optimally
and satisfied all the degree bounds. The key insight is that if an
1-edge does not exist, then there must be a vertex with degree up-
per bound Bv and with at most Bv + 1 edges incident at it in the
support of a basic feasible solution. We call such a vertex a spe-
cial vertex. To proceed, we remove the degree constraints of all
special vertices and re-solve the linear program again. The heart of
our analysis is to show that there is an 1-edge if there is no special
vertex. This is proved by a counting argument similar to that of
Jain [12], which relies heavily on the fact that a basic feasible so-
lution is characterized by a laminar family of tight constraints (as
in [12, 10]). In this way, eventually we construct a spanning tree
by picking only 1-edges, which ensures the optimality of the cost.
Observe that by removing the degree constraint of a special ver-
tex, the degree constraint at this vertex could only be violated by
at most an additive constant of one, and so Theorem 1.2 follows.
We remark that the idea of removing the degree constraint of a spe-
cial vertex comes from the joint work on bounded degree network
design problems [15]. These results demonstrate that the iterative
rounding method is quite general and powerful, and we hope that
our results will shed light on further applications of this method.

1.2 Related Work
The MINIMUM BOUNDED DEGREE SPANNING TREE problem

is a well studied problem and has been attacked using a variety of
techniques. Initial efforts on the problem were concentrated on ob-
taining bi-criteria approximation algorithms. Ravi et al [18] gave an
(O(log n), O(Bv log n))-approximation for the MBDST problem
using a matching-based augmentation technique. Konemann and
Ravi [13, 14] used a Lagrangian-relaxation based approach to ob-
tain an (O(1), O(Bv + log n))-approximation algorithm. Chaud-
huri et al [1, 2] presented an (1, O(Bv + log n))-approximation
algorithm, and an (O(1), O(Bv))-approximation algorithm based
on the push-relabel framework developed for the maximum flow
problem. Ravi and Singh [19] considered a variant of the prob-
lem in which the tree returned must be a minimum spanning tree.
They gave an algorithm that returns an MST in which the degree
of any vertex v is at most Bv + p, where p is the number of
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distinct costs in any MST. Recently, Goemans [10] presented an
(1, Bv + 2)-approximation algorithm using matroid intersection
techniques. This was the previous best guarantee for the MBDST
problem. In the special case where the graph is unweighted, Furer
and Raghavachari [8] developed an algorithm, based on a variant of
local search, to return a spanning tree in which the degree of each
vertex v is at most Bv + 1.

The iterative rounding technique that we use in our algorithm
was developed by Jain [12] for the SURVIVABLE NETWORK DE-
SIGN problem and has later been successfully applied to various
problems [4, 7]. Recently, this technique has been extended to give
constant factor bi-criteria approximation algorithm for the BOUND-
ED DEGREE SURVIVABLE NETWORK DESIGN problem [15].

1.3 Organization
The rest of the paper is organized as follows. In Section 2, we

give an iterative procedure which shows the integrality of the span-
ning tree polyhedron. Then, in Section 3, we present a simple
(1, Bv + 2)-approximation algorithm for the MBDST problem via
iterative rounding. This matches the previous best result of Goe-
mans [10]. In Section 4, we present the main algorithm and the
proof of Theorem 1.2. Finally, in section 5, we extend the algo-
rithm to deal with degree lower bounds.

2. SPANNING TREE POLYHEDRON
In this section, we present an iterative procedure to find a min-

imum spanning tree from a basic optimal solution of a linear pro-
gram. This motivates the main result of the paper and illustrates
the basic proof techniques. Let G = (V, E) be a graph with a cost
function c on edges. A classical result of Edmonds [6] states that
the following linear program LP-MST(G) is integral, and a basic
optimal solution is always a minimum spanning tree.

minimize c(x) =
∑
e∈E

ce xe (6)

subject to x(E(V )) = |V | − 1 (7)

x(E(S)) ≤ |S| − 1 ∀S ⊂ V (8)

xe ≥ 0 ∀ e ∈ E (9)

The following is an iterative procedure to obtain a minimum
spanning tree of G.

Iterative MST Algorithm

1. Initialization F ← ∅.
2. While V (G) �= ∅ do

(a) Find a basic optimal solution x∗ of LP-MST(G) and
remove every edge e with x∗

e = 0 from G.

(b) Find a vertex v with at most one edge e = uv inci-
dent at it, and update F ← F ∪ {e}, G← G \ {v}.

3. Return F .

Figure 1: MST Algorithm

First assume that the above algorithm terminates. We claim that
the solution F returned by the algorithm is a spanning tree of G of
cost no more than the cost of the initial LP solution x∗, and hence
a minimum spanning tree. The argument will proceed by induction
on the number of iterations of the algorithm.

If the algorithm finds a vertex v of degree one (a leaf vertex)
in Step 2b with an edge e = {u, v} incident at v, then we must
have x∗

e = 1 since x(δ(v)) ≥ 1 is a valid inequality of the LP
(subtract the constraint (8) for S = V \{v} from the constraint (7)).
Intuitively, v is a leaf of the spanning tree. Hence, we add e to the
solution F (initially F = ∅), and remove v from the graph. Note
that for any spanning tree T ′ of G′ = G \ {v}, we can construct
a spanning tree T = T ′ ∪ {e} of G. Hence, the residual problem
is to find a minimum spanning tree on G \ v, and we apply the
same procedure to solve the residual problem recursively. Observe
that the restriction of x∗ to E(G′), denoted by x∗

res, is a feasible
solution to LP-MST(G′). Inductively, the algorithm will return a
spanning tree F ′ of cost at most the optimal value of LP-MST(G′),
and hence c(F ′) ≤ c · x∗

res, as x∗
res is a feasible solution to LP-

MST(G′). So, we have

c(F ) = c(F ′) + ce and c(F ′) ≤ c · x∗
res

which imply that

c(F ) ≤ c · x∗
res + ce = c · x∗

as x∗
e = 1. Therefore, the spanning tree returned by the algorithm

is of cost no more than the cost of the LP solution x∗, which is
a lower bound on the optimal cost. This shows that the algorithm
returns a minimum spanning tree of the graph.

It remains to show that the algorithm will terminate, or that we
can always finds a vertex v of degree one in Step 2b.

LEMMA 2.1. For any basic solution x∗ of LP-MST(G) with
support E∗ = {e | x∗

e > 0}, there exists a vertex v such that
degE∗(v) = 1.

A basic solution is defined to be the unique solution of m linearly
independent tight constraints (constraints which achieve equality),
where m denotes the number of variables in the linear program.
For any edge e, if x∗

e = 0, we can remove the edge e from the
graph and consider only the edges in E∗. Thus we can assume
that there is no tight constraints from (9). To prove Lemma 2.1,
we shall prove that there are at most n − 1 tight constraints from
(7)-(8), where n denotes the number of vertices in the graph. This
can be shown by an uncrossing technique. For a set S ⊆ V , the
corresponding constraint x∗(E(S)) ≤ |S| − 1 defines a vector in
R

|E|: the vector has a 1 corresponding to each edge e ∈ E(S), and
0 otherwise. We call this vector the characteristic vector of E(S),
and denote it by χE(S). Let F = {S | x∗(E(S)) = |S| − 1} be
the set of tight constraints from (7)-(8). Denote by span(F) the
vector space generated by the set of vectors {χE(S) | S ∈ F}. We
say two sets X, Y are intersecting if X ∩ Y , X − Y and Y − X
are nonempty. A family of sets is laminar if no two sets are inter-
secting. From standard uncrossing arguments (see e.g. Cornuejols
et al [5], Jain [12]) it follows that we can obtain a laminar family
L ⊆ F such that span(L) = span(F). For completeness we in-
clude a proof here to illustrate the uncrossing technique. First we
need an “uncrossing” lemma on intersecting sets.

LEMMA 2.2. [10] If S, T ∈ F and S ∩ T �= ∅, then both
S ∩ T and S ∪ T are in F . Furthermore, χE(S) + χE(T ) =
χE(S∩T ) + χE(S∪T ).

PROOF. As S ∩ T �= ∅, we have:

|S| − 1 + |T | − 1 = |S ∩ T | − 1 + |S ∪ T | − 1

≥ x∗(E(S ∩ T )) + x∗(E(S ∪ T ))

≥ x∗(E(S)) + x∗(E(T ))

= |S| − 1 + |T | − 1
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and hence we have equality throughout. This implies that S∪T and
S ∩ T are both in F , and furthermore there are no edges e ∈ E∗

between S \T and T \S. Therefore, χE(S)+χE(T ) = χE(S∩T )+
χE(S∪T ).

A basic solution is characterized by a set of linearly independent
tight constraints. The following lemma implies that a basic solu-
tion of LP-MST(G) is characterized by a laminar family of tight
constraints.

LEMMA 2.3. [12] If L is a maximal laminar subfamily of F ,
then span(L) = span(F).

PROOF. Let L be a maximal laminar subfamily of F and as-
sume that χE(S) /∈ span(L) for some S ∈ F . Choose one such
set S that intersects as few sets of L as possible. Since L is a max-
imal laminar family, there exists T ∈ L that intersects S. From
Lemma 2.2, we have that S ∩ T and S ∪ T are also in F and that
χE(S) +χE(T ) = χE(S∩T ) +χE(S∪T ). Since χE(S) /∈ span(L),
either χE(S∩T ) /∈ span(L) or χE(S∪T ) /∈ span(L). In either
case, we have a contradiction because both S ∪ T and S ∩ T inter-
sect fewer sets in L than S; this is because every set that intersects
S ∪ T or S ∩ T also intersects S.

The proof of Lemma 2.1 follows from Lemma 2.3.

Proof of Lemma 2.1: Suppose each vertex has degree at least two.
Then |E∗| ≥ 1

2

∑
v∈V degE∗(v) = |V |.

Recall that a basic solution is the unique solution of m linearly
independent constraints, where m is the number of variables in the
linear program. As x∗ is a basic solution and there are no tight
constraints from (9), we have |E∗| = |L|. A simple inductive
argument shows that a laminar family on a ground set of size n
containing no singleton sets has at most n − 1 sets. Hence, |L| ≤
|V | − 1 and so |E∗| = |L| ≤ |V | − 1, a contradiction. �

REMARK 2.4. If x∗ is an optimal basic solution to LP-MST(G),
then the residual LP solution x∗

res, which is x∗ restricted to G′ =
G \ v, remains an optimal basic solution to LP-MST(G′). Hence,
in the MST Algorithm we only need to solve the original linear pro-
gram once and none of the residual linear programs. Alternatively,
Lemma 2.1 shows that |E∗| = n−1 and since x(E∗) = n−1 and
x(e) ≤ 1 for all edges e ∈ E∗ (by considering constraints (9) for
size two sets), we must have xe = 1 for all edges e ∈ E∗ proving
integrality of the spanning tree polyhedron.

3. A +2 APPROXIMATION ALGORITHM
In this section we first present an (1, Bv + 2)-approximation al-

gorithm for the MBDST problem via iterative rounding. This algo-
rithm is simple, and it illustrates the idea of removing degree con-
straints. We use the following standard linear programming relax-
ation for the MBDST problem, which we denote by LP-MBDST(G,
B, W ). In the following we assume that degree bounds are given
for vertices only in a subset W ⊆ V . Let B denote the vector of all
degree bounds Bv one for each v ∈W .

minimize c(x) =
∑
e∈E

ce xe (10)

subject to x(E(V )) = |V | − 1 (11)

x(E(S)) ≤ |S| − 1 ∀S ⊂ V (12)

x(δ(v)) ≤ Bv ∀ v ∈W (13)

xe ≥ 0 ∀ e ∈ E (14)

Observe that LP-MBDST(G,B, W ) has an exponential number
of constraints. Cunningham [3] gave a polynomial time procedure
to separate over constraints (11)-(12) and (14). Separating over
constraints (13) is clearly in polynomial time. Hence, using the el-
lipsoid algorithm one can optimize over LP-MBDST(G,B, W ) in
polynomial time. An alternative is to write a compact formulation
for the above linear program [16] which has polynomially many
variables and constraints.

Our (1, Bv +2)-approximation algorithm in Figure 2 is a simple
iterative rounding procedure for LP-MBDST(G,B, W ).

MBDST Algorithm

1. Initialization F ← ∅.
2. While V (G) �= ∅ do

(a) Find a basic optimal solution x∗ of LP-
MBDST(G,B, W ) and remove every edge e
with x∗

e = 0 from G. Let the support of x∗ be E∗.

(b) If there exists a vertex v ∈ V , such that there is at
most one edge e = uv incident at v in E∗, then up-
date F ← F ∪ {e}, G← G \ {v}, W ←W \ {v},
and also update B by setting Bu ← Bu − 1.

(c) If there exists a vertex v ∈W such that degE∗(v) ≤
3 then update W ←W \ {v}.

3. Return F .

Figure 2: MBDST Algorithm

Before we prove the correctness of the algorithm, we give a high-
level description and some intuition. First we remove all edges e
with x∗

e = 0 and focus on the edges with positive fractional value,
i.e. x∗

e > 0. In Step 2b, if v is of degree 1 and e = uv is the only
edge incident at v, then v is a leaf of the spanning tree. So, we add
e to the solution F (initially F = ∅), remove v from the graph, and
update the LP appropriately. Note that since x∗

e = 1, we maintain
the optimality of the cost and also do not violate any degree con-
straint. Of course, we cannot always guarantee such an edge exists,
otherwise we would have solved the problem exactly. The crucial
observation is that if there is no leaf vertex, then there must exist
a vertex v with at most three edges incident at it and the degree
constraint for v is present in the linear program (i.e. v ∈ W ). In
Step 2c, we remove the degree constraint of a vertex v if v has at
most three edges incident at it. By doing so, the degree constraint
of v is violated by at most an additive constant of two, since in the
worst case Bv = 1 and all the three edges incident at v are used in
the returned solution F . In each iteration, we either remove a de-
gree constraint or include an edge in our solution. Therefore, in a
total of at most n+n−1 = 2n−1 iterations, we construct a span-
ning tree by including only 1-edges. These steps provide a simple
(1, Bv + 2)-approximation algorithm for the MBDST problem.

We start the proof by a characterization of a basic feasible solu-
tion of LP-MBDST(G,B, W ). We remove all edges with x∗

e = 0
and focus only on the support of the basic solution and the tight
constraints from (11)-(13). Let F = {S | x∗(E(S)) = |S| − 1}
correspond to the set of tight constraints from (11)-(12), and let
T = {v ∈ W | x∗(δ(v)) = Bv} correspond to the set of tight
degree constraints from (13). The proof of the following lemma is
based on the uncrossing techniques used in Section 2; we shall also
prove it in a more general setting in Lemma 4.3.

664



LEMMA 3.1. Let x∗ be any basic solution of LP-MBDST(G,B,
W ) with support E∗. Then there exists a set T ⊆ W and a laminar
family L such that x∗ is the unique solution to the following linear
system. {

x∗(δ(v)) = Bv ∀v ∈ T
x∗(E(S)) = |S| − 1 ∀S ∈ L

Moreover, the characteristic vectors {χE(S) : S ∈ L} ∪ {χδ(v) :
v ∈ T} are linearly independent. Furthermore, |E∗| = |L|+ |T |.

In the next lemma we prove (by a very simple counting argu-
ment) that in each iteration we can proceed by applying either Step 2b
or Step 2c; this will ensure that the algorithm terminates.

LEMMA 3.2. Any basic feasible solution x∗ of LP-MBDST(G,
B, W ) with support E∗ must satisfy one of the following.

(a) There is a vertex v ∈ V such that degE∗(v) = 1.
(b) There is a vertex v ∈W such that degE∗(v) ≤ 3.

PROOF. Suppose for sake of contradiction that both (a) and (b)
are not satisfied. Then every vertex has at least 2 edges incident at it
and every vertex in W has at least 4 edges incident at it. Therefore,
|E∗| ≥ (2(n− |W |) + 4|W |)/2 = n + |W |, where n = |V (G)|.

By Lemma 3.1, there is a laminar family L and a set T ⊆ W of
vertices such that |E∗| = |L|+ |T |. As L contains subsets of size
at least two, |L| ≤ n−1. Hence, |E∗| = |L|+|T | ≤ n−1+|T | ≤
n− 1 + |W |, a contradiction.

From Lemma 3.2 and the previous discussion, we obtain the fol-
lowing theorem of Goemans [10].

THEOREM 3.3. (Goemans [10]) There exists a polynomial time
(1, Bv+2)-approximation algorithm for the MINIMUM BOUNDED

DEGREE SPANNING TREE problem.

4. A +1 APPROXIMATION ALGORITHM
In this section we present an (1, Bv + 1)-approximation algo-

rithm for the MBDST problem. The general approach is simi-
lar to the MBDST algorithm in Figure 2. Observe that, in Step
2c of the MBDST algorithm, by removing the degree constraint
of a vertex v ∈ W only when a vertex has degree at most two
(or more generally, removing a degree constraint for a vertex v if
degE∗(v) ≤ Bv + 1), we could ensure that the degree of every
vertex is violated by at most one. However, it may no longer be
the case that there exists a leaf vertex if every vertex in W just has
degree at least three (instead of four), and so the algorithm may
not be able to proceed. To overcome this, in Step 2b we not only
look for 1-edges incident at leaf vertices but include any 1-edge in
our integral solution. However, the residual problem is no longer
an MBDST problem, since the endpoints of this edge are not nec-
essarily leaf vertices. Hence, we define the following more gen-
eral problem which is self-reducible, i.e. the problem in a later
iteration is still of the same form. We call this problem the MIN-
IMUM BOUNDED-DEGREE CONNECTING TREE (MBDCT) prob-
lem, and we present an (1, Bv + 1)-approximation algorithm for
this more general problem by the iterative rounding method.

The MINIMUM BOUNDED-DEGREE CONNECTING TREE prob-
lem is defined as follows. We are given a graph G = (V, E), a
degree upper bounds Bv for each vertex v in some subset W ⊆ V ,
a cost function c : E → R, and a forest F . We assume without
loss of generality that E(F ) ∩ E(G) = ∅. The task is to find a
minimum cost forest H such that H ∪ F is a spanning tree of G
and dH(v) ≤ Bv . We call such a forest H an F -tree of G, and a
connected component of F a supernode; note that an isolated ver-
tex of F is also a supernode. Intuitively, the forest F is the partial

solution we have constructed so far, and H is a spanning tree in the
graph where each supernode is contracted into a single vertex. We
denote this contracted graph by G/F . Observe that when F = ∅
the MBDCT problem is just the MBDST problem.

We need some notation to define the linear programming relax-
ation for the MBDCT problem. For any set S ⊆ V (G) and a forest
F on G, let F (S) be the set of edges in F with both endpoints in
S, i.e., {e ∈ F : |e ∩ S| = 2}. Note that F (V ) is just equal
to E(F ). We denote C(F ) the sets of supernodes of F . A set S
is non-intersecting with F if for each C ∈ C(F ) we either have
C ⊆ S or C ∩ S = ∅. We denote I(F ) the family of all subsets
which are non-intersecting with F .

(a) (b)

Figure 3: In Figure (a), the dashed edges correspond to F . In
Figure (b), the bold edges H form an F -tree of G as F ∪H is
a spanning tree of G or equivalently, H is a spanning tree of
G/F .

The following is a linear programming relaxation for the MB-
DCT problem, which we denote by LP-MBDCT(G,B, W,F ). In
the linear program we have a variable xe for each edge e which has
at most one endpoint in any one component of forest F . Indeed
we assume (without loss of generality) that E does not contain any
edge with both endpoints in the same component of F .

minimize c(x) =
∑
e∈E

ce xe (15)

s.t. x(E(V )) = |V | − |F (V )| − 1 (16)

x(E(S)) ≤ |S| − |F (S)| − 1 ∀S ∈ I(F ) (17)

x(δ(v)) ≤ Bv ∀ v ∈ W (18)

xe ≥ 0 ∀ e ∈ E (19)

In the linear program, the constraints from (16)-(17) and (19) are
exactly the spanning tree constraints for the graph G/F , the graph
formed by contracting each component of F into a singleton vertex.
The constraints from (18) are the degree constraints for vertices
in W . Hence, from the discussion in Section 3, it follows that
we can optimize over LP-MBDCT(G,B, W, F ) using the ellipsoid
algorithm in polynomial time.

The algorithm in Figure 4 is an iterative rounding procedure for
LP-MBDCT(G,B, W,F ). For clarity of presentation and proof of
correctness, we present the algorithm as a recursive procedure.

For the correctness of the MBDCT Algorithm, we shall prove
the following key lemma in Section 4.2, which will ensure that the
algorithm terminates.
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MBDCT Algorithm(G,B, W, F )

1. If F is a spanning tree return ∅ else let F̂ = ∅
2. Find a basic optimal solution x∗ of LP-

MBDCT(G,B, W, F ) and remove every edge e with
x∗

e = 0 from G. Let E∗ be the support of x∗.

3. If there exists an edge e = {u, v} such that x∗
e = 1, then

set F̂ ← {e}, F ← F ∪ {e} and G← G \ {e}. Also set
Bu ← Bu − 1 and Bv ← Bv − 1.

4. If there exists a vertex w ∈ W such that degE∗(w) ≤
Bw + 1, then update W ←W \ {w}.

5. Return F̂
⋃

MBDCT Algorithm(G,B, W, F ).

Figure 4: MBDCT Algorithm

LEMMA 4.1. A basic feasible solution x∗ of LP-MBDCT(G,B,
W, F ) with support E∗ must satisfy one of the following.

(a) There is an edge e with x∗
e = 1.

(b) There is a vertex w ∈W such that degE∗(w) ≤ Bw + 1.

We first prove that Lemma 4.1 implies that the MBDCT Algo-
rithm returns a F -tree with the claimed guarantees.

THEOREM 4.2. Given a graph G, degree bounds B for vertices
v ∈ W for some subset W ⊆ V , and a forest F , the MBDCT
Algorithm returns a F -tree H of cost at most the cost of the optimal
solution to LP-MBDCT(G,B, W,F ), and dH(v) ≤ Bv + 1 for all
v ∈W .

PROOF. The proof is by induction on the number of iterations
of the algorithm. The base case is trivially true as H = ∅ is a F -
tree of G if F is a spanning tree and H satisfies the degree bounds
on each vertex in W . Let x∗ be a basic optimal solution to LP-
MBDCT(G,B, W,F ) in the first iteration. Suppose, in Step 3, we
find an edge e = (u, v) with x∗

e = 1. Let F ′ = F ∪ {e}, G′ =
G \ {e} and B′ denote the modified degree bounds as described in
Step 3. By the induction hypothesis, the algorithm returns a F ′-tree
H ′ of G′ whose cost is at most the cost of an optimal solution to
LP-MBDCT(G′,B′, W,F ′), and dH′(w) ≤ B′

w + 1 for all w ∈
W . Consider the F -tree H = H ′ ∪ {e} of G. Firstly, observe
that x∗ restricted to edges of G′, say x∗

res, is a feasible solution to
LP-MBDCT(G′,B′, W,F ′). Therefore,

c(H) = c(H ′) + ce ≤ c · x∗
res + ce = c · x∗

as x∗
e = 1. Hence, the cost of H is at most the cost of an opti-

mal solution to LP-MBDCT(G,B, W,F ). Now, adding the edge
e increases the degree of u and v by 1. As Bu = B′

u + 1 and
Bv = B′

v + 1, we have

dH(u) = dH′(u) + 1 ≤ B′
u + 1 + 1 = Bu + 1

where the inequality dH′(u) ≤ B′
u + 1 follows from the induction

hypothesis. Similarly, we also have dH(v) ≤ Bv + 1. For any
other vertex w ∈ W \ {u, v}, we have

degH(w) = degH′(w) ≤ B′
w + 1 = Bw + 1

where the inequality holds by the induction hypothesis. Hence, the
degrees are satisfied within an additive constant of one, as claimed.

Now, suppose we remove a degree constraint for some vertex
w ∈W in Step 4. Let W ′ = W \w. Clearly, x∗ is a feasible solu-
tion to LP-MBDCT(G,B, W ′, F ) since we relaxed the problem by

deleting the degree constraint for w. Let x′ denote an optimal so-
lution to LP-MBDCT(G,B, W ′, F ). By the induction hypothesis,
the algorithm returns a F -tree H with cost at most c · x′ and satis-
fies that dH(v) ≤ Bv + 1 for all v ∈ W ′. Clearly, c · x′ ≤ c · x∗,
and hence the cost of H is at most the cost of an optimal solution
to LP-MBDCT(G,B, W, F ). Moreover, by the induction hypothe-
sis H satisfies the degree bound within additive constant of one for
each vertex in W \{w}. Since degE∗(w) ≤ Bw +1 and H ⊆ E∗,
we have dH(w) ≤ Bw + 1.

In either case we show how to construct a F -tree H with cost at
most the cost of an optimal solution to LP-MBDCT(G,B, W,F ),
and dH(v) ≤ Bv + 1 for all v ∈ W . Lemma 4.1 implies these are
the only cases.

4.1 Characterizing basic solutions
To prove Lemma 4.1, we need a characterization of the basic

solutions of LP-MBDCT(G,B, W,F ). The proof of the following
lemma is standard but we give it here for completeness.

LEMMA 4.3. Let x∗ be any basic feasible solution of LP-MBD-
CT(G,B, W, F ) with support E∗. Then there exists a set T ⊆ W
and a laminar family ∅ �= L ⊆ I(F ) such that x∗ is the unique
solution to the following linear system.{

x∗(δ(v)) = Bv ∀v ∈ T
x∗(E(S)) = |S| − |F (S)| − 1 ∀S ∈ L

Moreover, the vectors {χE(S) : S ∈ L} ∪ {χδ(v) : v ∈ T} are
linearly independent. Furthermore, |E∗| = |L|+ |T |.

PROOF. A basic solution of a linear program is the unique solu-
tion of m linearly independent tight constraints, where m denotes
the number of variables in the linear program. Let U = {v ∈
W : x∗(δ(v)) = Bv} and M = {S ⊆ V :

∑
e∈E(S) x∗

e =

|S| − |F (S)| − 1}. For R, S ∈ M and R ∩ S �= ∅, we have that:

(|R ∩ S| − |F (R ∩ S)| − 1) + (|R ∪ S| − |F (R ∪ S)| − 1)

≥ x∗(E(R ∩ S)) + x∗(E(R ∪ S))

≥ x∗(E(R)) + x∗(E(S))

= |R| − |F (R)| − 1 + |S| − |F (S)| − 1

= (|R ∩ S| − |F (R ∩ S)| − 1) + (|R ∪ S| − |F (R ∪ S)| − 1),

where the last equality holds because E(F )∩δ(R) = ∅ and E(F )∩
δ(S) = ∅ by the definition of I(F ). So equality holds everywhere
and thus both R ∩ S and R ∪ S are also inM. This also implies
that there are no edges in E between R \ S and S \ R, and hence
the linear dependency χE(R∩S) + χE(R∪S) = χE(R) + χE(S).

Now, from standard uncrossing arguments (as in the proof of
Lemma 2.3), it follows that there exists a maximal linearly inde-
pendent laminar family L in M such that the characteristic vec-
tors in {χE(S) : S ∈ L} span all the characteristic vectors in
{χE(S) : S ∈M}. Let T be a maximal subset of U such that χδ(v)

for v ∈ T and χE(S) for S ∈ L are linearly independent. Then, the
inequalities corresponding to vertices in T and the inequalities cor-
responding to sets in L define a basic solution x∗ proving the first
claim, satisfying the second claim, and the final claim follows.

REMARK 4.4. Another proof of Lemma 4.3 can be obtained by
observing that in LP-MBDCT(G,B, W, F ), the constraints from
(2)-(3) and (5) correspond to spanning tree constraints of G/F ,
which is the graph formed by contracting each component of F
into a singleton vertex. Let F = {S ∈ I(F ) : x∗(E(S)) =
|S| − |F (S)| − 1}. Observe that each S ∈ F corresponds to
a subset S′ ⊆ V (G/F ) after we contract each component of
F contained in S (observe that S ∈ I(F ) implies that S does
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not intersect any component of F ). Let F ′ be the family consist-
ing of subsets of V (G/F ) corresponding to subsets in F . From
Lemma 2.3, it follows that there is a laminar family L′ ⊆ F ′ such
that span(L′) = span(F ′). Now, uncontracting each supern-
ode inside each subset S′ ∈ L′, we get the desired laminar family
L ⊆ F .

4.2 A counting argument
We are ready to prove Lemma 4.1. Suppose for sake of contra-

diction that both (a) and (b) of Lemma 4.1 are not satisfied. Then
each vertex v ∈ W has degree at least 3, and degree of v ∈ W is
exactly 3 only if Bv = 1. Now, let L �= ∅ be the laminar family
and T be the vertices defining the solution x∗ as in Lemma 4.3. As
in the proof of Lemma 3.2, we shall derive that |L| + |T | < |E∗|.
This contradicts Lemma 4.3 and completes the proof.

We call a vertex v active if there is some edge incident at v.
Clearly, all vertices in T are active. The laminar family L defines a
directed forest L in which nodes correspond to sets in L and there
exists an edge from set R to set S if R is the smallest set containing
S. We call R the parent of S and S the child of R. A parent-less
node is called a root and a childless node is called a leaf. Given a
node R, the subtree rooted at R consists of R and all its descen-
dants.

The strategy in the counting argument is similar to that used by
Jain [12]. For each active node v ∈ V , we assign one token to
v for each edge incident at v. For every edge we have assigned
exactly two tokens, and hence the total tokens assigned is exactly
2|E∗|. We shall redistribute these tokens such that each vertex in
T and each subset S ∈ L is assigned two tokens, and we are still
left with some excess tokens; this will imply |E∗| > |L|+ |T | and
contradict Lemma 4.3.

In the initial assignment each active vertex has at least one token,
and each vertex in T gets at least three tokens. Vertices in T need
two tokens and are assigned at least three tokens; active vertices
not in T do not need any tokens but are assigned at least one token.
Hence in the initial assignment each active vertex has at least one
excess token and the following claim follows.

CLAIM 4.5. If an active vertex v has only one excess token,
then either v /∈ T and v is of degree one, or v ∈ T and v is of
degree three and Bv = 1.

The following key lemma shows that such a redistribution is pos-
sible.

LEMMA 4.6. For any rooted subtree of the forest L �= ∅ with
root S, we can distribute the tokens assigned to vertices inside S
such that every vertex in T ∩ S and every node in the subtree gets
at least two tokens and the root S gets at least four tokens.

PROOF. The proof is by induction on the height of the subtree.
First suppose S is a leaf.

1. S contains at least four active vertices, then S can collect at
least four tokens by taking one excess token from each active
vertex.

2. S contains exactly three active vertices, say {u, v, w}, then
|E∗(S)| ≤ 3. If any one of the active vertices in S, say u, has
two excess tokens, then S can collect four tokens by taking
one excess token from each vertex and two excess tokens
from u, and we are done. Now suppose that each of {u, v, w}
has exactly one excess token. Since x∗(E∗(S)) ≥ 1 and
there is no 1-edge, we have |E∗(S)| ≥ 2.

Suppose |E∗(S)| = 2, say E∗(S) = {uv, uw}, then this
implies that u ∈ T , Bu = 1 and u has another neighbor
y /∈ S (else u would be removed from W in Step 4 of Algo-
rithm 4) . However, x∗(E∗(S)) = x∗(u, v) + x∗(u, w) =
x∗(δ(u))−x∗(u, y) = Bu−x∗(u, y) < 1, a contradiction.

Hence S contains exactly three edges. This implies that u, v, w ∈
T and Bu = Bv = Bw = 1 by Claim 4.5. Since there are
no edges inside a supernode, each of the three active ver-
tices must be in different supernodes. Therefore, x∗(u, v) +
x∗(u, w)+x∗(v, w) = x∗(E∗(S)) ≥ 2, since S contains at
least three supernodes. This implies that

∑
z∈{u,v,w} x∗(δ(z)) ≥

4 which contradicts the fact that degree bound of each of u, v
and v is one.

3. S contains at most two active vertices. We show such a case
cannot occur. For any S ∈ L we have that x∗(E∗(S)) = k
for some integer k > 0 and since there is no 1-edge, E∗(S)
must contain at least two edges. This implies that S contains
at least three active vertices.

Now suppose S has at least one child.

1. S has two or more children: By the induction hypothesis,
each child has 2 excess tokens, and so S can collect at least
4 tokens by taking the excess tokens.

2. S has only one child: Let the child of S be R. S can take two
excess tokens from R by the induction hypothesis. Observe
that S \ R must contain at least one active vertex as χE(S)

and χE(R) are linearly independent. If S\R has two or more
active vertices then we can take one excess token from each
and give them to S, and we are done. So suppose S \ R has
exactly one active vertex, say v. If v has two excess tokens,
then we are also done. So assume v has only one excess to-
ken. Note that x∗(E∗(S)) = x∗(E∗(R)) + x∗(δ(v, R)),
where δ(v, R) denotes the edges between v and vertices in
R. Since S, R ∈ L, both are tight and x∗(E∗(S)) and
x∗(E∗(R)) are integers, x∗(δ(v, R)) ≥ 1. As there is no
1-edge, v is not a degree-1 vertex. Since v has only one ex-
cess token, we must have v ∈ T and Bv = 1 by Claim 4.5.
Now, 1 = Bv = x∗(δ(v)) ≥ x∗(δ(v, R)) ≥ 1 and we
must have equality throughout and so δ(v) = δ(v, R). This
implies that χE(S) = χE(R) + χδ(v,R) = χE(R) + χδ(v),
which contradicts their linear independence in L.

From Lemma 4.6, we obtain that number of tokens is at least
2|T | + 2|L| + 2 which shows that |E∗| > |T | + |L|, which con-
tradicts Lemma 4.3. This completes the proof of Lemma 4.1, and
hence Theorem 4.2 follows.

5. A ±1 APPROXIMATION ALGORITHM
In this section, we consider an extension of the MBDCT prob-

lem in which a degree lower bound Av and a degree upper bound
Bv are given for each vertex v. We present an (1, Av−1, Bv +1)-
approximation algorithm for the MBDCT problem, where both the
degree lower and upper bounds are violated by at most 1. We as-
sume the lower bounds are given on a subset of vertices U ⊆ V .
Let A denote the vector of all degree bounds Av for each v ∈ U .
The following is a linear programming relaxation for the MBDCT
problem, which is denoted by LP-MBDCT(G,A,B, U, W,F ).
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minimize c(x) =
∑
e∈E

ce xe

subject to x(E(V )) = |V | − |F (V )| − 1

x(E(S)) ≤ |S| − |F (S)| − 1 ∀S ∈ I(F )

x(δ(v)) ≥ Av ∀ v ∈ U

x(δ(v)) ≤ Bv ∀ v ∈ W

xe ≥ 0 ∀ e ∈ E

Recall that a vertex is active if it has degree at least 1. Notice that
if a supernode C has only one active vertex v, we could just contract
C into a single vertex c, set Ac := Av and Bc := Bv , and set c ∈
U ⇐⇒ v ∈ U , and set c ∈ W ⇐⇒ v ∈ W . Henceforth, we
call a supernode which is not a single vertex a nontrivial supernode.
Hence a non-trivial supernode has at least 2 active vertices. The
(1, Av − 1, Bv + 1)-approximation algorithm in Figure 5 is an
iterative rounding procedure for LP-MBDCT(G,A,B, U,W, F ).

MBDCT Algorithm2(G,A,B, U, W, F )

1. If F is a spanning tree then return ∅ else let F̂ ← ∅.
2. Find a basic optimal solution x∗ of LP-

MBDCT(G,A,B, U, W, F ) and remove every edge
e with x∗

e = 0 from G.

3. If there exists an edge e = {u, v} such that x∗
e = 1 then

F̂ ← {e}, F ← F ∪ {e} and G ← G \ {e}. Also
updateA,B by setting Au ← Au− 1, Bu ← Bu− 1 and
Av ← Av − 1, Bv ← Bv − 1.

4. If there exists a vertex v ∈ U ∪W of degree at most two,
then update U ← U \ {v} and W ←W \ {v}.

5. Return F̂
⋃

MBDCT Algorithm2(G,A,B, U, W, F ).

Figure 5: MBDCT Algorithm 2

For the correctness of the MBDCT Algorithm 2, we shall prove the
following key lemma, which will ensure that the algorithm termi-
nates.

LEMMA 5.1. A basic feasible solution x∗ of LP-MBDCT(G,A,
B, U, W,F ) with support E∗ must satisfy one of the following.

(a) There is an edge e such that x∗
e = 1.

(b) There is a vertex v ∈ U ∪W such that degE∗(v) = 2.

In MBDCT Algorithm 2, we only remove a degree constraint on
v ∈ U ∪W if v is of degree 2 and there is no 1-edge. Since there
is no 1-edge, we must have Av ≤ 1. If v ∈ U , then the worst
case is Av = 1 but both edges incident at v are not picked in later
iterations. If v ∈ W , then the worst case is Bv = 1 but both
edges incident at v are picked in later iterations. In either case, the
degree bound is off by at most 1. Following the same argument of
Theorem 4.2, we have the following extension of Theorem 1.2.

THEOREM 5.2. There is a polynomial time (1, Av−1, Bv +1)-
approximation algorithm for the MINIMUM BOUNDED DEGREE

CONNECTING TREE problem.

To prove Lemma 5.1, we need a characterization of the basic
solutions of LP-MBDCT(G,A,B, U, W, F ). The proof of the fol-
lowing lemma is the same as the proof of Lemma 4.3.

LEMMA 5.3. Let x∗ be any basic feasible solution of LP-MBD-
CT(G,A, B, U,W, F ). Then there exists a set TU ⊆ U , TW ⊆W
and a laminar family ∅ �= L ⊆ I(F ) such that x∗ is the unique
solution to the following linear system.⎧⎨

⎩
x∗(δ(v)) = Av ∀v ∈ TU

x∗(δ(v)) = Bv ∀v ∈ TW

x∗(E(S)) = |S| − |F (S)| − 1 ∀S ∈ L
Moreover, the vectors {χE(S) : S ∈ L} ∪ {χδ(v) : v ∈ TU} ∪
{χδ(v) : v ∈ TW } are linearly independent. Furthermore, |E∗| =
|L|+ |TU |+ |TW |.

5.1 A counting argument
Now we are ready to prove Lemma 5.1. The set up is very

similar to that of Section 4.2. Let L be the laminar family and
T := TU ∪ TW be the vertices defining the solution x∗ as in
Lemma 5.3. Suppose that both (a) and (b) of Lemma 5.1 are not
satisfied. We shall derive that |L|+ |T | < |E∗|, which will contra-
dict Lemma 5.3 and complete the proof.

As before, for each active vertex v ∈ V , we assign one token to
v for each edge incident at v. Observe that in the initial assignment
each active vertex has at least one excess token, and so a nontrivial
supernode has at least two excess tokens. For a vertex v with only
one excess token, if v /∈ T , then v is a degree 1 vertex; if v ∈ T ,
then v is of degree 3 and Bv = 1 or Bv = 2.

Suppose every vertex v which is active (and hence has excess
tokens) gives all its excess tokens to the supernode it is contained
in. We say the number of excess tokens of a supernode is the sum
of excess tokens of active vertices in that supernode. Observe that
the excess of any supernode is at least one as every supernode has
at least one active vertex and each active vertex has at least one
excess token.

We call a supernode special if its excess is exactly one.

CLAIM 5.4. A supernode C is special only if it contains exactly
one active vertex v ∈ T and degE∗(v) = 3.

PROOF. If the supernode C has two or more active vertices then
the excess of C is at least two. Hence, it must contain exactly one
active vertex with exactly one excess token. Also, there must be
at least two edges incident at the supernode as x∗(δ(C)) ≥ 1 is a
valid inequality. Hence, degE∗(C) ≥ 2. If v /∈ T , then both v and
thus C will have at least two excess tokens. This implies v ∈ T
and degE∗(v) = 3.

We contract a special supernode into a single vertex because it
contains only one active vertex. Hence, the only special supernodes
are singleton vertices in T with degree exactly three.

The main difference from the proof in Section 4.2 is the existence
of special vertices with degree bounds equal to 2, for which we
need to revise the induction hypothesis because some node S ∈ L
may now only get three tokens. The following definition gives a
characterization of those sets which only get three tokens.

DEFINITION 5.5. A set S �= V is special if:

1. |δ(S)| = 3;

2. x∗(δ(S)) = 1 or x∗(δ(S)) = 2;

3. χδ(S) is a linear combination of the characteristic vectors of
its descendants (including possibly χE(S)) and the charac-
teristic vectors χδ(v) of v ∈ S ∩ T ;
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Observe that special supernodes satisfy all the above properties.
Intuitively, a special set has the same properties as a special supern-
ode. The following lemma will complete the proof of Lemma 5.1,
and hence Theorem 5.2.

LEMMA 5.6. For any rooted subtree of the forest L �= ∅ with
the root S, we can distribute the tokens assigned to vertices inside
S such that every vertex in T ∩ S and every node in the subtree
gets at least two tokens and the root S gets at least three tokens.
Moreover, the root S gets exactly three tokens only if S is a special
set or S = V .

PROOF. First we prove some claims needed for the lemma.

CLAIM 5.7. If S �= V , then |δ(S)| ≥ 2.

PROOF. Since S �= V , x∗(δ(S)) ≥ 1 is a valid inequality of
the LP. As there is no 1-edge, |δ(S)| ≥ 2.

Let the root be set S. We say a supernode C is a member of S
if C ⊆ S but C �⊆ R for any child R of S. We also say a child R
of S is a member of S. We call a member R of S special, if R is
a special supernode (in which the supernode is a singleton vertex
in T with degree three from Claim 5.4) or if R is a special set. In
either case (whether the member is a supernode or set), a member
has exactly one excess token only if the member is special. Special
members also satisfy all the properties in Definition 5.5.

Recall that E(S) denotes the set of edges with both endpoints in
S. We denote by D(S) the set of edges with endpoints in different
members of S.

CLAIM 5.8. If S ∈ L has r members then x∗(D(S)) = r − 1.

PROOF. For every member R of S, we have

x∗(E(R)) = |R| − |F (R)| − 1,

since either R ∈ L, or R is a supernode in which case both LHS
and RHS are zero. As S ∈ L, we have

x∗(E(S)) = |S| − |F (S)| − 1

Now observe that every edge of F (S) must be contained in F (R)
for some member R of S. Hence, we have the following, in which
the sum is over R that are members of S.

x∗(D(S)) = x∗(E(S))−
∑
R

x∗(E(R))

= |S| − |S ∩ F | − 1−
∑
R

(|R| − |F (R)| − 1)

= (|S| −
∑
R

|R|) +
∑
R

|F (R)| − |F (S)|+
∑
R

1− 1

= (
∑
R

1)− 1 = r − 1

because |S| = ∑
R |R| and |F (S)| = ∑

R |F (R)|.
CLAIM 5.9. Suppose a set S �= V contains exactly three spe-

cial members R1, R2, R3 and |D(S)| ≥ 3. Then S is a special
set.

PROOF. Note that |δ(S)| = |δ(R1)| + |δ(R2)| + |δ(R3)| −
2|D(S)| = 3 + 3 + 3− 2|D(S)| = 9 − 2|D(S)|. Since S �= V ,
we have |δ(S)| ≥ 2 by Claim 5.7. As |D(S)| ≥ 3, the only
possibility is that |D(S)| = 3 and |δ(S)| = 3, which satisfies

the first property of a special set. Also, we have x∗(δ(S)) =
x∗(δ(R1))+x∗(δ(R2))+x∗(δ(R3))−2x∗(D(S)). As each term
on the RHS is an integer, it follows that x∗(δ(S)) is an integer.
Moreover, as we do not have a 1-edge, x∗(δ(S)) < |δ(S)| = 3
and thus x∗(δ(S)) is either equal to 1 or 2, and so the second
property of a special set is satisfied. Finally, note that χδ(S) =
χδ(R1) +χδ(R2)+χδ(R3) +χE(R1) +χE(R2) +χE(R3)−2χE(S).
Here, the vector χE(Ri) will be the zero vector if Ri is a special
vertex. Since R1, R2, R3 satisfy the third property of a special
member, S satisfies the third property of a special set.

The proof of Lemma 5.6 is by induction on the height of the
subtree. In the base case, each member has at least one excess
token and exactly one excess token when the member is special.
Consider the following cases for the induction step.

1. S has at least four members. Each member has an excess of
at least one. Therefore S can collect at least four tokens by
taking one excess token from each.

2. S has exactly three members. If any member has at least
two excess tokens, then S can collect four tokens, and we
are done. Else each member has only one excess token and
thus, by the induction hypothesis, is special. If S = V , then
S can collect three tokens, and this is enough since V is the
root of the laminar family. Else, we have x∗(D(S)) = 2
from Claim 5.8. Because there is no 1-edge, we must have
|D(S)| > x∗(D(S)) = 2. Now, it follows from Claim 5.9
that S is special and it only requires three tokens.

3. S contains exactly two members R1, R2. If both R1, R2

have at least two excess tokens, then S can collect four to-
kens, and we are done. Else, one of the members has ex-
actly one excess token say R1. Hence, R1 is special by the
induction hypothesis. We now show a contradiction to the
independence of tight constraints defining x∗, and hence this
case would not happen.

Since S contains two members, Claim 5.8 implies x∗(D(S)) =
1. There is no 1-edge, therefore we have |D(S)| = |δ(R1, R2)|
≥ 2. Also, R1 is special and thus |δ(R1)| = 3. We claim
δ(R1, R2) = δ(R1). If not, then let e = δ(R1)\δ(R1, R2).
Then

x∗
e = x∗(δ(R1))−x∗(δ(R1, R2)) = x∗(δ(R1))−x∗(D(S)).

But x∗(δ(R1)) is an integer as R1 is special and x∗(D(S)) =
1. Therefore, x∗

e is an integer which is a contradiction. Thus
δ(R1, R2) = δ(R1). But then

χE(S) = χE(R1) + χδ(R1) + χE(R2)

if R2 is a set or

χE(S) = χE(R1) + χδ(R1)

if R2 is supernode. R1 is special implies that χδ(R1) is a
linear combination of the characteristic vectors of its descen-
dants and the characteristic vectors {χδ(v): v ∈ R1 ∩ T }.
Hence, in either case χE(S) is spanned by χE(R) for R ∈
L \ {S} and χδ(v) for v ∈ S ∩ T which is a contradiction to
the inclusion of S in L.

This completes the proof of Lemma 5.6 and Theorem 5.2. �
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6. CONCLUDING REMARKS AND OPEN
QUESTIONS

In this paper we extend the iterative rounding framework to ob-
tain the best possible guarantee for the MBDST problem. A closely
related problem is the well studied travelling salesperson problem
(TSP). The sub-tour elimination relaxation for TSP is very similar
to the LP relaxation for the MBDST problem. Indeed our tech-
niques can be used to give the following polyhedral result: Any
solution to the sub-tour elimination polytope can be written as a
convex combination of 1-trees each of maximum degree three and
average degree two, improving on a similar result of Goemans [10].
Here, a 1-tree is a tree on V \ v along with any two edges incident
at vertex v. A natural open question is whether the techniques used
here can be used to obtain better approximation algorithm for the
TSP problem.
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