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Abstract. In this paper we show that iterative rounding is a powerful
and flexible tool in the design of approximation algorithms for multi-
objective optimization problems. We illustrate that by considering the
multi-objective versions of three basic optimization problems: spanning
tree, matroid basis and matching in bipartite graphs. Here, besides the
standard weight function, we are given k length functions with corre-
sponding budgets. The goal is finding a feasible solution of maximum
weight and such that, for all i, the ith length of the solution does not
exceed the ith budget. For these problems we present polynomial-time
approximation schemes that, for any constant ε > 0 and k ≥ 1, compute
a solution violating each budget constraint at most by a factor (1 + ε).
The weight of the solution is optimal for the first two problems, and
(1 − ε)-approximate for the last one.

1 Introduction

Most real-life optimization problems involve finding a feasible solution trading
off many mutually conflicting goals. This is a rich area of study in Operations
Research, Economics and Computer Science in the broad area of Multi-objective
Optimization [10,14,26]. A variety of approaches have been employed to formu-
late such problems including Goal Programming [4], Pareto-Optimality [9], and
Multi-objective Approximation Algorithms [26]. We adopt the latter approach
and cast one of the goals as the objective function, and the others as budget con-
straints. More precisely, we are given a (finite) set F of feasible solutions for the
problem; we are also given a weight function w : F → R+ and a set of k length
functions �i : F → R+, 1 ≤ i ≤ k, that assign a weight w(S) and k lengths �i(S),
1 ≤ i ≤ k, to every feasible solution S ∈ F . For each length function �i, we
are also given a non-negative budget Li ∈ R+. The multi-objective optimization
problem can then be formulated as follows1.
1 With a slight notation abuse, we will use OPT also to denote the actual optimal

solution (besides its weight).
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OPT := maximize w(S) subject to S ∈ F , �i(S) ≤ Li, 1 ≤ i ≤ k. (1)

In this paper we study the multi-objective version of three fundamental max-
imization problems, namely spanning tree, matroid basis, and matching in bi-
partite graphs.
1. In the multi-objective spanning tree problem, we are given an n-node
undirected graph G = (V, E) with edge weights w : E → R+, k edge lengths
�i : E → R+, 1 ≤ i ≤ k, and positive budgets L1, . . . , Lk. The set of all feasible
solutions F is given by the spanning trees of G. Define the weight of T ∈ F
as w(T ) :=

∑
e∈T w(e), and its ith-length as �i(T ) :=

∑
e∈T �i(e). The goal is

finding T ∈ F of maximum weight w(T ) such that �i(T ) ≤ Li for each 1 ≤ i ≤ k.

2. The multi-objective bipartite matching problem is defined analogously.
Here the goal is finding a matching M in a bipartite graph of maximum-weight
w(M) such that �i(M) ≤ Li for all 1 ≤ i ≤ k.

3. In the multi-objective matroid basis problem, we are given a matroid
M = (E, E), E ⊆ 2E, on the ground set E, m = |E| (for basic definitions and
results on matroids, see e.g. [27]). Moreover, we are given element weights w :
E → R+, element lengths �i : E → R+ and budgets Li ∈ R+, 1 ≤ i ≤ k. The set
of all feasible solutions F is given by then bases of M. The weight of a basis B ∈ E
is defined as w(B) :=

∑
e∈B w(e), while its ith-length is �i(B) :=

∑
e∈B �i(e).

The goal is computing a basis X ∈ F of maximum weight satisfying all the
budget constraints. This naturally generalizes the multi-objective spanning tree
problem which results when we consider a graphic matroid.
All three problems are polynomial-time solvable in their unbudgeted version
(k = 0), but become NP-hard [1,6] even for a single budget constraint (k = 1).

Our Results. We give a PTAS for multi-objective spanning trees and generalize
it to multi-objective matroid basis and also give a PTAS for multi-objective
matchings in bipartite graphs. Our results however require that the number of
budget constraints k is fixed.

Theorem 1. For any ε > 0, there exists an algorithm for Multi-Objective
Spanning tree with k ≥ 1 budget constraints which returns a spanning tree T
of optimal weight and �i(M) ≤ (1 + ε)Li for each 1 ≤ i ≤ k. The running time
of the algorithm is O(nO(k2/ε)).

Theorem 1, proved in Section 2, generalizes the result of Ravi and Goemans [25]
who gave the same guarantees for the special case of a single budget constraint(k =
1), and improves on the (much more involved) algorithm of Papadimitriou and
Yannakakis [22] which returns a suboptimal ((1− ε)-approximate) solution with
a similar (i.e., 1 + ε) violation of the budget constraints. The latter result of [22]
also holds for our case of many different but fixed number of objectives, and
even in this case, we improve on the approximation factor in the main objective
(with the same violation in the budgets).



Iterative Rounding for Multi-Objective Optimization Problems 97

Theorem 2. For any ε > 0, there exists an algorithm for Multi-Objective
matroid basis with k ≥ 1 budget constraints which returns a basis B of optimal
weight and �i(B) ≤ (1 + ε)Li for each 1 ≤ i ≤ k. The running time of the
algorithm is O(mO(k2/ε)).

Theorem 2 is discussed in Section 2.1, and generalizes a similar result for the
k = 1 case as above in [25].

Theorem 3. . For any ε > 0, there exists a deterministic algorithm for Multi-
Objective Bipartite Matching with k ≥ 1 budget constraints which returns
a matching M of weight w(M) ≥ (1 − ε)OPT and length �i(M) ≤ (1 + ε)Li for
each 1 ≤ i ≤ k. The running time of the algorithm is O(nO(k2√k log k/ε2)).

Theorem 3 is proved in Section 3. A similar approximation guarantee was known
earlier via the work of [22]. However, their result implies a fully polynomial RNC
scheme rather than a PTAS, and thus Theorem 3 provides the first deterministic
approximation scheme for multi-objective bipartite matching. A PTAS,
based on a completely different approach, was known earlier only for the case of
one budget constraint, i.e. k = 1 [6].

Our Techniques. Perhaps even more importantly than our specific results,
our main contribution is to demonstrate that the general framework of iterative
techniques can be used to obtain approximation algorithms for various multi-
objective optimization problems. This technique was introduced by Jain [15] for
approximating survivable network design problems. The basic idea in iterative
rounding for covering problems is as follows: Consider the optimal (fractional)
vertex (or extreme point or basic feasible) solution to a linear programming re-
laxation to the problem, and show that there is a variable with high fractional
value (e.g. at least 0.5) which can be rounded up to an integer without losing too
much (e.g. 2) in the approximation. The method includes this rounded variable
in the integral solution and iterates. Since the basis iterative rounding loses a
constant factor in approximation, we refine the method by replacing the round-
ing step by the following: relax (remove) a constraint that can be ignored without
losing too much in the feasibility and iterate on the residual problem. The re-
sulting iterative relaxation method has been very successful for approximating
degree-constrained network design problems [16,17,29].

We now outline how the iterative technique is applied to our problems. The
algorithm for multi-objective spanning tree is rather simple; a vertex solu-
tion for the natural LP relaxation of the problem is already sparse: it has about
k edges more than a spanning tree in its support due to the well-known lami-
narity of an independent set of tight spanning tree constraints [27]. We remove
all edges corresponding to variables of value zero, relax (remove) all the bud-
get constraints, and solve optimally the residual problem (which is a standard
spanning tree problem). A preliminary guessing phase ensures that the k edges
not used in the tree do not add much to the approximation bound for any of
the budgets. This approach also gives a very simple proof of the earlier result
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for the case k = 1 [25]. An identical approach works also for the more general
multi-objective matroid basis problem.

Our algorithm for multi-objective bipartite matching is more involved:
after an initial preprocessing phase, where the algorithm removes all edges with
large weight and large length, there is a decomposition phase. In that phase,
we run an iterative relaxation algorithm which uses the optimal solution of the
natural LP formulation to obtain a modified LP solution. The iterative algorithm
ensures that the support of the modified solution is a collection of h ≤ k vertex
disjoint paths. Moreover, each of these paths has small weight and length. In
the final combination phase, we combine the solutions on these paths to return
one feasible matching. Each path can be decomposed in two matchings. The
algorithm picks one matching from each of the paths. While the algorithm is
a brute force enumeration over all choices (which are 2h ≤ 2k in number), a
probabilistic argument is used to show that there exists a choice of a matching
from each path which provides a solution with the desired guarantee.

Related Work. Multi-objective optimization has been studied extensively in
Operations Research, Microeconomics and Computer Science. We refer the reader
to more general sources [4,9,10,14], and restrict our attention to work which
closely relates to our problems. There are many examples of single-budget
versions of polynomial-time solvable optimization problems addressed in the lit-
erature. In the constrained shortest path problem the goal is finding a minimum-
weight path in a directed graph between two nodes s and t such that the length
of the path does not exceed a budget L [5]. In the constrained minimum arbores-
cence problem we are given a directed graphs with edge weights and lengths. The
aim is computing an arborescence of minimum weight whose length is below the
input budget [13]. Previous work on budgeted optimization problems also in-
cludes results on budgeted scheduling [18,28] and bicriteria results for several
budgeted network design problems [19].

Jain [15] introduced the iterative rounding framework and applied it to ap-
proximating general network design problems. Subsequently, it was applied to
various other network design problems [8,12,20]. The iterative relaxation tech-
nique has recently been successfully applied to degree constrained network design
problems [2,16,17,29].

There are few general tools for designing approximation algorithms for bud-
geted problems. One is the Lagrangian relaxation method. The basic idea is
relaxing the budget constraint, and lifting it into the objective function weight-
ing it by a Lagrangian multiplier. Solving the relaxed problem, one obtains two
or more optimal solutions, which are then patched together to get a good solution
for the original problem. Demonstrating this method, Goemans and Ravi [25]
gave the first PTAS for multi-objective spanning tree with a single budget
constraint. Using the same approach, but a more involving patching step, Berger,
Bonifaci, Grandoni, and Schäfer [6] obtained a PTAS for the single-budget ver-
sion of the matching problem. This approach does not seem to generalize to the
case of multiple budget constraints.
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A second general tool, due to Papadimitrou and Yannakakis [22], is based
on the construction of succinct approximation of Pareto curves. In order to ef-
ficiently construct such ε-approximate Pareto curves, a sufficient condition is
the existence of a pseudo-polynomial-time algorithm for the exact version of
the problem considered. The task in the exact version of the problem is to re-
turn a feasible solution of exactly some pre-specified value. The existence of
such pseudo-polynomial-time algorithm for the spanning tree problem [3] im-
plies a polynomial-time algorithm which returns a (1 − ε)-approximate solution
violating all the budget constraints by a factor of (1 + ε) for the correspond-
ing multi-objective version. Unfortunately, it is not known whether such an
algorithm exists for matchings in bipartite graphs, while the famous random-
ized algorithm of Mulmuley, Vazirani and Vazirani [21] can be used to obtain
a polynomial-time randomized approximation scheme for multi-objective bi-
partite matching2. Their method, however, only approximates the objective
while our algorithm matches the value of the objective function with the optimal
for two out of the three problems addressed here, while for the third we obtain
a deterministic rather than an RNC algorithm.

A third approach is based on parametric search and is advocated in [19]; their
results imply that a ρ-approximation algorithm for the single objective problem
gives a (k · ρ)-approximation for each of the budget violations as well as for
the objective in the corresponding k-objective problem. This only gives a much
weaker k-approximation for each objective for the problems considered here.

Other general tools for multi-objective problems such as Matching-Based
Augmentation [24] advocates building the solution iteratively using one (path)
matching at a time controlling the various objectives, and Randomized Round-
ing of fraction LP solutions while bounding all objectives simultaneously [7,23].
While these techniques are useful in handling more than one type of objective,
their performance ratios tend to be in the higher logarithmic range.

In the context of these methods, our paper shows that iterative rounding
is a powerful and flexible tool for approximating multi-objective optimization
problems giving even better results than all of the above methods. This was
already the case for degree-constrained spanning trees and survivable network
design problems [16,29] and directed network design problems [2], and our results
extend these to some more multi-objective problems.

2 Multi-Objective Spanning Tree and Matroid Basis

We formulate the following linear programming relaxation for multi-objective
spanning tree which is a standard extension of the linear program for the
maximum spanning tree problem. There is a variable xe for each edge e ∈ E.
For a subset F ⊆ E of edges, we denote x(F ) =

∑
e∈F xe and for a subset S ⊆ V ,

we denote E(S) = {e : |e ∩ S| = 2} to be the set of edges with both endpoints
in S.

2 The same algorithm works for general graphs also.
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(LP-ST) maximize
∑

e∈E

w(e) xe

subject to x(E(V )) = |V | − 1,

x(E(S)) ≤ |S| − 1, ∀S ⊂ V
∑

e∈E

�i(e)xe ≤ Li, ∀ 1 ≤ i ≤ k

xe ≥ 0, ∀ e ∈ E.

The following characterization of any vertex solution of (LP-ST) follows directly
from the uncrossing technique (see [27]).

Lemma 1. Let x be a vertex solution of the linear program (LP-ST) such that
xe > 0 for each edge e and let T = {S ⊆ V : x(E(S)) = |S| − 1} be the set of all
tight subset constraints. Then there exists a laminar family L ⊆ T and a subset
J ⊆ {1 ≤ i ≤ k :

∑
e∈E �i(e)xe = Li} of tight length constraints such that

1. The vectors {χ(E(S)) : S ∈ L} are linearly independent.
2. span(L)=span(T )
3. |L| + |J | = |E|

Algorithm for Multi-Objective Spanning Tree
1. Guess all edges in the optimal solution such that �i(e) ≥ ε

k
Li. Include these edges

in the solution and contract them. Delete all other edges with �i(e) ≥ ε
k
Li from G.

Update Li.
2. Find a vertex solution x of (LP-ST) for the residual problem and remove every
edge e with xe = 0.
3. Pick any maximum-weight spanning tree in the support.

The algorithm for multi-objective spanning tree above proceeds in two
phases. The first phase is the pruning step which we describe below. Observe
that no feasible solution can include an edge whose ith-length is more than Li.
We extend this step further and guess all edges in the solution whose ith-length is
at most ε

kLi. For any i there can be at most k
ε such edges in the optimal solution.

Hence, trying all such possibilities for inclusion in a partial initial solution takes
time O(mk/ε) where m is the number of edges in G. There are k length function
to try which amounts to the total number of choices being at most O(mk2/ε).
After guessing these edges correctly, we throw away all other edges which have
�i length more than εLi and contract the guessed edges in the optimal solution.
Clearly, the rest of the edges in the optimal solution form a spanning tree in the
contracted graph. Also, now we have an instance where �i(e) ≤ ε

kLi for each e
and i. We also update the bound Li by subtracting the lengths of the selected
edges. Let L′

i denote the residual bounds. We solve the linear program (LP-
ST) with updated bounds L′

i. Step (3) can be interpreted as removing all the k
constraints bounding the length under the length functions l1 . . . , lk. Removing
these constraints gives us the linear program for the spanning tree problem which
is integral and its optimal solution is a maximum weight spanning tree.



Iterative Rounding for Multi-Objective Optimization Problems 101

Proof. (Theorem 1) First observe that the support of (LP-ST) on a graph with n
vertices has at most n+k−1 edges. In fact, from Lemma 1, we have |E| = |L|+|J |.
But |L| ≤ n−1 since L is a laminar family without singletons and |J | ≤ k proving
the claim.

Observe that the weight of the tree returned by the algorithm is at most the
weight of the LP-solution and hence is optimal for the correct guess of heavy
edges. Now, we show that the ith-length is at most L′

i + εLi. Observe that any
tree must contain n − 1 edges out of the n + k − 1 edges in the support. Hence,
the maximum ith-length tree has length no more than k · ε

kLi = εLi more than
the minimum ith-length tree. In turn, the tree of minimum ith-length has ith-
length no larger than the ith-length of the optimal fractional solution, which is
at most L′

i by feasibility. Altogether, the maximum ith-length of the solution
returned is no more than L′

i + εLi. Adding the length of edges guessed in the
first step we obtain that the tree returned by the algorithm has ith-length at
most L′

i + εLi + Li − L′
i = (1 + ε)Li.

2.1 Multi-Objective Matroid Basis

The results on Multi-objective spanning tree can be naturally generalized
to the case of Multi-objective matroid basis. Consider the following linear
programming relaxation (LP-MB) for the problem. There is a variable xe for
each element e ∈ E. For any subset S ⊆ E, we denote x(S) =

∑
e∈S xe. Here r

denotes the rank function of the matroid M.

(LP-MB) maximize
∑

e∈E

w(e)xe

subject to x(E) = r(E),

x(S) ≤ r(S), ∀S ⊆ E
∑

e∈E

�i(e)xe ≤ Li, ∀ 1 ≤ i ≤ k

xe ≥ 0, ∀ e ∈ E.

The polynomial time solvability of the linear program (LP-MB) follows from
the polynomial time separation of the rank constraints [11]. Our algorithm for
Multi-objective matroid basis is described below. Its analysis follows along
the same line as in the case of Multi-objective spanning tree and is omitted
due to space restrictions.

Algorithm for Multi-Objective Matroid Basis
1. Guess all elements in the optimal solution such that �i(e) ≥ ε

k
Li. Include all such

elements in the solution and update the matroid by contracting these elements in
the matroid. Delete all other heavy elements e with �i(e) ≥ ε

k
Li for any i from M.

Update Li.
2. Find a vertex solution x of (LP-MB) for the residual problem and remove every
element e with xe = 0.
3. Pick any maximum weight basis in the support.
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3 Multi-Objective Bipartite Matching

In this section we present a polynomial-time approximation scheme for Multi-
Objective Bipartite Matching and prove Theorem 3.

We formulate the following linear programming relaxation (LP-BM) for the
problem. We use δ(v) to denote the set of edges incident to v ∈ V .

(LP-BM) maximize
∑

e∈E

w(e)xe

subject to
∑

e∈δ(v)

xe ≤ 1, ∀ v ∈ V

∑

e∈E

�i(e)xe ≤ Li, ∀ 1 ≤ i ≤ k

xe ≥ 0, ∀ e ∈ E.

Algorithm for Multi-Objective Bipartite Matching
Preprocessing
(a) Let δ = ε2 / 36k

√
2k ln(k + 2). Guess all the edges e in OPT such that w(e) ≥

δ OPT or �i(e) ≥ δ Li for some i, and add them to the solution. Reduce the problem
consequently.
Decomposition
(b) Compute the optimal fractional vertex solution xb to LP-BM for the reduced
problem. As long as there is an integral variable, reduce the problem appropriately
and iterate.
(c) Remove all the nodes of degree zero and of degree at least 3, and all the edges
incident to the removed nodes. Compute an optimal fractional vertex solution xc

to the problem LP-BM in the remaining graph. As long as there is an integral
variable, reduce the problem appropriately and iterate. Finally, remove one edge
from each remaining cycle.
(d) Compute an optimal fractional vertex solution xd to the problem LP-BM in
the remaining graph. As long as there is an integral variable, reduce the problem
appropriately and iterate.
(e) Let γ = ε / 2

√
2k ln(k + 2). As long as there is a path P = (e1, e2, . . . , et)

induced by xd such that w(P ) > γ w(xd) or �i(P ) > γ �i(xd) for some i, find
a minimal subpath P ′ = (e1, e2, . . . , et′) of P satisfying the condition above and
remove et′ from the graph.
(f) Compute an optimal fractional vertex solution xf to the problem LP-BM in
the remaining graph. As long as there is an integral variable, reduce the problem
appropriately and iterate.
(g) Let P1, P2, . . . , Pq be the set of paths induced by xf . Return the subpaths
S1, S2, . . . , Sh formed after deleting the internal nodes whose matching constraints
are not tight with respect to xf . Return the solution xg which is xf induced on the
edges in Si for each 1 ≤ i ≤ h.
Combination
(h) Let Mj and M̄j be the two matchings partitioning Sj . Return the matching
M ′ satisfying the following properties: (i) For each Sj , M ′ ∩ Sj ∈ {Mj , M̄j}; (ii)
w(M ′) ≥ (1 − ε/2)w(xg) and �i(M ′) ≤ (1 + ε/2)�i(xg) for all i.

The algorithm for Multi-Objective Bipartite Matching above works in
three phases.
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In the Preprocessing Phase, the algorithm guesses all the edges in OPT of
weight at least δ OPT or ith-length at least δLi for some i. Here δ is a proper
function of ε and k. This guessing can be performed in time polynomial in n
(but exponential in δ). The algorithm then includes all the guessed edges in
the solution, and deletes the remaining heavy edges. It also reduces the Li’s
accordingly. After this phase w(e) ≤ δ OPT and �i(e) ≤ δLi for each edge e.

In the Decomposition Phase our algorithm computes over a series of pruning
and iterative steps, a solution to the multi-objective matching problem on a
reduced graph that is eventually a collection of paths. In Step (c), we discard
nodes of degree 0 or of degree 3 or higher so as to leave only paths and cycles;
Finally, one edge from each cycle is removed in this step. In Step (e), we further
break each path into subpaths of bounded total weight and length. This pruning
is useful in the later Combination Phase when we choose one of the two matchings
in each path: the bounded difference ensures that one such combination is near
optimal. The use of vertex solutions in all the residual problems ensures that the
total number of edges thrown away in all the above stages is roughly of the order
of the extra budget constraints in the problem which is O(k/γ) for a parameter
γ � O(ε/

√
k). Finally, we output a feasible fractional vertex solution xg to the

LP with the following properties.

(1) The support of xg is a collection of vertex disjoint paths S1, . . . , Sh where
h ≤ k.
(2) xg is a (1 + ε/4)-approximate solution.
(3) For each Si, the degree constraints of the vertices of Si are tight except for
its endpoints.
(4) For each Si, w ·xg(Si) ≤ γOPT and �i ·xg(Sj) ≤ γLi for each 1 ≤ i ≤ k and
1 ≤ j ≤ h where γ = ε/2

√
2k ln(k + 2).

In the final Combination Phase, the paths S1, . . . , Sh are used to compute an
approximate feasible (integral) solution. The algorithm enumerates over all the
2h matchings which are obtained by taking, for each Si, one of the two matchings
which partition Si. This enumeration takes polynomial time since h ≤ k = O(1).
A probabilistic argument is used to show that one of these matchings satisfies
the claimed approximation guarantee of the algorithm.

Analysis. We now analyze the three phases of the algorithm, bounding the
corresponding approximation guarantee and running time. Consider first the
Preprocessing Phase. In order to implement Step (a), we have to consider all the
possible choices, and run the algorithm for each choice. Observe that there are at
most (k + 1)/δ such heavy edges in the optimal solution, and hence the number
of possibilities is O(m(k+1)/δ) = O(mO(k2√k log k/ε2)). The algorithm generates
a different subproblem for each possible guess of the edges. In the following we
will focus on the run of the algorithm where the guessed edges correspond to an
optimal solution to the multi-objective problem.

Consider now the Decomposition Phase. We prove that the output of this
phase satisfies the four properties stated above. Observe that by construction
the algorithm returns a collection of edge disjoint paths whose interior vertices
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have tight degree constraints. Properties (3) and (4) follow by construction. We
now argue that the number of paths is bounded by k, proving Property (1).

Lemma 2. The number h of subpaths in Step (g) is upper bounded by k.

Proof. Consider the solution xf . The number of variables |E| =
∑q

i=1 |Pi| is up-
per bounded by the number of tight constraints. Let q′ be the number of internal
nodes whose matching constraint is not tight in xf . Note that the matching con-
straints at the endpoints of each path are not tight. Hence the number of tight
constraints is at most

∑q
i=1(|Pi|−1)−q′+k = |E|−q−q′+k ≥ |E|, from which

q + q′ ≤ k. Observe that, by definition, the number h of subpaths is exactly
q + q′ (we start with q subpaths, and create a new subpath for each internal
node whose matching constraint is not tight). The claim follows.

Clearly, solution xg satisfies all the constraints. We next argue that the weight
of xg is nearly optimal. In Steps (c), (e) and (g) we remove a subset of edges
whose optimal fractional value is larger than zero in the step considered. In the
following lemma, whose proof is omitted for lack of space, we bound the number
of edges removed. Due to the Preprocessing Phase, the weight of these edges
is negligible, which implies that the consequent worsening of the approximation
factor is sufficiently small. This proves Property (2).

Lemma 3. The algorithm removes at most 7k, (k+1)/γ, and 2k edges in Steps
(c), (e), and (g), respectively.

Each of the steps (b) to (g) is run polynomially many times and takes polynomial
time. Hence the overall running time of the Decomposition Phase is polynomial.

Consider eventually the Combination Phase. As described earlier, the running
time of this phase is bounded by O(2knO(1)). The following lemma, which is the
heart of our analysis, shows that a subset M ′ satisfying Properties (i) and (ii)
always exists. Henceforth the algorithm always returns a solution. Although we
use a randomized argument to prove the lemma, the algorithm is completely
deterministic and enumerates over all solutions. Recall that Mj and M̄j are the
two matchings which partition subpath Sj .

Lemma 4. In Step (h) there is always a set of edges M ′ satisfying Properties
(i) and (ii).

Proof. Consider the following packing problem

(PACK) maximize

h∑

j=1

(yj w(Mj) + (1 − yj) w(M̄j))

subject to

h∑

j=1

(yj �i(Mj) + (1 − yj) �i(M̄j)) ≤ Li, ∀ 1 ≤ i ≤ k

yj ∈ {0, 1}, ∀ 1 ≤ j ≤ h.
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We can interpret the variables yj in the following way: M ′ ∩ Sj = Mj if yj =
1, and M ′ ∩ Sj = M̄j otherwise. Given a (possibly fractional and infeasible)
solution y to PACK, we use w(y) and �i(y) as shortcuts for

∑h
j=1(yj w(Mj) +

(1 − yj)w(M̄j)) and
∑h

j=1(yj �i(Mj) + (1 − yj) �i(M̄j)), respectively.
Observe that xg induces a feasible fractional solution yg to the linear relax-

ation of PACK. In fact, consider each subpath Sj . By definition, each matching
constraint at an internal node of Sj is tight. This implies that all the edges e
of Mj (resp., M̄j) have the same value xg

e =: yg (resp., xg
e =: 1 − yg). Thus,

we have w(yg) = w(xg). Now, we construct a (near) feasible integral solution y′

to PACK which satisfies (i) and (ii). Independently, for each path Si, select Mi

with probability yg
i and M̄i with probability 1− yg

i . Note that E[w(y′)] = w(yg)
and E[�i(y′)] = �i(yg) ≤ Li for all i.

By Step (e), switching one variable of y′ from 1 to 0 or vice versa can change
the cost and ith-length of y′ at most by γ w(xg) and γ �i(xg), respectively. The
proof of the lemma now follows directly from the following proposition, which
derives from Chernoff’s bounds.

Proposition 1. With positive probability, w(y′) ≥ (1 − ε/2)w(xg) and li(y′) ≤
(1 + ε/2)li(xg) for all i.

Proof. (Theorem 3) It is easy to see that the solution returned is a matching.
Moreover a solution is always returned by Lemma 4. The approximation guar-
antee of the algorithm follow from the properties of the Decomposition step and
Lemma 4. The running time of each step is polynomial (for fixed k and ε) thus
proving Theorem 3.
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