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Abstract. We consider two generalizations of the edge coloring problem
in bipartite graphs. The first problem we consider is the weighted bi-

partite edge coloring problem where we are given an edge-weighted
bipartite graph G = (V, E) with weights w : E → [0, 1]. The task is to
find a proper weighted coloring of the edges with as few colors as possi-
ble. An edge coloring of the weighted graph is called a proper weighted
coloring if the sum of the weights of the edges incident to a vertex of
any color is at most one. We give a polynomial time algorithm for the
weighted bipartite edge coloring problem which returns a proper
weighted coloring using at most �2.25n� colors where n is the maxi-
mum total weight incident at any vertex. This improves on the previous
best bound of Correa and Goemans [5] which returned a coloring using
2.557n + o(n) colors. The second problem we consider is the Balanced

Decomposition of Bipartite graphs problem where we are given a
bipartite graph G = (V, E) and α1, . . . , αk ∈ (0, 1) summing to one. The
task is to find a partition E1, . . . , Ek of E such that degEi(v) is close to
αidegE(v) for each 1 ≤ i ≤ k and v ∈ V . We give an alternate proof of
the result of Correa and Goemans [5] that there is a decomposition such
that �αidegE(v)� − 2 ≤ degEi(v) ≤ �αidegE(v)� + 2 for each v ∈ V and
1 ≤ i ≤ k. Moreover, we show that the additive error can be improved
from two to one if only upper bounds or only lower bounds on the degree
are present. All our results hold also for bipartite multigraphs, and the
decomposition results hold also for general graphs.

1 Introduction

Edge coloring problems have been crucial in the development of different algo-
rithmic techniques and have also been used to model various scheduling prob-
lems. In this paper, we consider two edge coloring problems which have been
inspired from study of Clos networks [4] and also generalize classical coloring
problems. Clos network were introduced by Clos [4] in the context of designing
interconnection networks used to route telephone calls and have found various
applications [2,10]. We refer the reader to Correa and Goemans [5] for the rela-
tionship between the problems considered here and Clos networks.
� Part of this work was performed at Microsoft Research, Redmond, Washington.
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The first problem we consider is the weighted bipartite edge coloring

problem where we are given an edge-weighted bipartite graph G = (V, E) with
weights w : E → [0, 1]. The task is to find a proper weighted coloring of the
edges with as few colors as possible. An edge coloring of the weighted graph is
called a proper weighted coloring if the sum of the weights of the edges incident
to a vertex of any color is at most one. If all the edges have weight one then
the problem reduces to the classical bipartite edge coloring problem. König’s
Theorem [12] gives an optimal coloring in this case where the number of colors
used is exactly the maximum degree of the graph. For the weighted bipartite
edge coloring problem, Chung and Ross [3] gave the following conjecture.

Conjecture 1. Given an instance of the weighted bipartite edge coloring

problem, there is a proper weighted coloring using at most 2n − 1 colors where
n denotes the maximum over all the vertices of the number of unit-sized bins
needed to pack the weights of edges incident at the vertex.

The following is a stronger version of the Conjecture 1.

Conjecture 2. Given an instance of the weighted bipartite edge coloring

problem, there is a proper weighted coloring using at most 2n − 1 colors where
n is the smallest integer greater than the maximum over all the vertices of the
total weight of edges incident at the vertex.

Conjecture 2 is the best possible since there are instances where any proper
weighted coloring takes 2n − 1 colors. Melen and Turner [15] showed that the
Conjecture 2 is true when all edge-weights are at most 1

2 . Moreover when all
weights are strictly more than 1

2 , Conjecture 2 is also true and follows simply
from König’s Theorem.

One of our main results in the paper makes progress towards the resolution
of Conjecture 2 and therefore Conjecture 1.

Theorem 1. There is a polynomial time algorithm for the weighted bipar-

tite edge coloring problem which returns a proper weighted coloring using at
most �2.25n� colors where n is the maximum total weight incident at any vertex.

Theorem 1 improves on the previous best result given by Correa and Goemans [5]
who give a coloring using at most 2.557n+ o(n) colors. Correa and Goemans [5]
also give an algorithm which returns a proper weighted coloring with 2.5480n+
o(n) colors where n denotes the maximum over all the vertices of the number of
unit-sized bins needed to pack the weights of incident edges. Theorem 1 implies
the improved bound of �2.25n� for this variant as well.

The second problem we consider is the Balanced Decomposition of Bi-

partite graphs problem where we are given a bipartite graph G = (V, E) and
α1, . . . , αk ∈ (0, 1) summing to one. The task is to find a partition E1, . . . , Ek of
E such that degEi(v) is close to αidegE(v) for each 1 ≤ i ≤ k and v ∈ V . Correa
and Goemans [5] gave the following conjecture.
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Conjecture 3. Given an instance of Balanced Decomposition of Bipartite

graph problem there exists a decomposition such that

�αidegE(v)� ≤ degEi(v) ≤ �αidegE(v)�

for each 1 ≤ i ≤ k and each v ∈ v.

Correa and Goemans [5] proved a relaxed version of the conjecture in which
both the upper and lower bounds are relaxed by two, i.e, the decomposition
guarantees that �αidegE(v)� − 2 ≤ degEi(v) ≤ �αidegE(v)� + 2.

We give an alternate proof of the result of Correa and Goemans [5] using
linear programming methods and then show that the violation can be bounded
by an additive one if only upperbound (or lowerbound) are present.

Theorem 2. Given an instance of Balanced Decomposition of Bipartite

graph problem there exists a decomposition E1, . . . , Ek of E such that

�αidegE(v)� − 2 ≤ degEi(v) ≤ �αidegE(v)� + 2

for each 1 ≤ i ≤ k and each v ∈ V . Moreover, there are decompositions
F1, . . . , Fk and G1, . . .Gk such that

degFi(v) ≤ �αidegE(v)� + 1

degGi(v) ≥ �αidegE(v)� − 1

for each 1 ≤ i ≤ k and v ∈ V .

1.1 Previous Work

Two classical results on edge coloring are König’s theorem [12] for coloring a
bipartite graph with Δ colors and the Vizing’s theorem [18] for coloring any
simple graph with Δ + 1 colors where Δ is the maximum degree of the graph.

Before we review some of the existing literature on the problems discussed
in this paper, we introduce some notation. Given a weighted bipartite graph
G = (A ∪ B, E) with weights w : E → [0, 1], let χ′

w(G) denote the minimum
number of colors needed to obtain a proper weighted coloring of G. Given positive
integers n and r, let M(n, r) = maxGχ′

w(G) where the maximum is taken over all
bipartite graphs G = (A∪B, E) with |A| = |B| = r and maxv∈V

∑
e∈δ(v) we ≤ n.

In this notation, Conjecture 2 can be reformulated to claim that M(n, r) ≤ 2n−1.
Given positive integers n and r, let m(n, r) = maxGχ′

w(G) where the max-
imum is taken over all bipartite graphs G = (A ∪ B, E) with |A| = |B| = r
and where n is the maximum over all the vertices of the number of unit-sized
bins needed to pack the weights of incident edges. Conjecture 1 can be reformu-
lated to claim that m(n, r) ≤ 2n − 1. It is easy to see that Conjecture 2 implies
Conjecture 1 since m(n, r) ≤ M(n, r) for each n and r.

If the weight function is restricted to w : E → I for some interval I ⊆ [0, 1],
then we let the minimum number of colors be denoted by MI(n, r) an mI(n, r)
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respectively. Melen and Turner [15] proved that m[0,1/2](n, r) ≤ M[0,1/2](n, r) ≤
2n − 1 and in general showed that

m[0,B](n, r) ≤ M[0,B](n, r) ≤ n

1 − B

Improving the bounds for m(n, r) and M(n, r) has received considerable at-
tention [3,5,8,15,16,17] and the previous best bounds known were

5n

4
≤ m(n, r) ≤ 2.548n + o(n)

2n − 1 ≤ M(n, r) ≤ 2.557n + o(n)

where both the upper bounds are by Correa and Goemans [5]. The lower bound
on m(n, r) is due to Ngo and Vu [16] and lower bound on M(n, r) is due to Du
et al [8]. Our results improve the upper bounds for both m(n, r) and M(n, r) to
�2.25n� making progress towards resolution of Conjecture 1 and Conjecture 2.

The Balanced Decomposition of Bipartite Graphs problem was in-
troduced by Correa and Goemans [5] who proved a relaxed version of the Con-
jecture 3 as mentioned above. Some special cases of Conjecture 3 are known to
be true. When k = 2, Conjecture 3 is true and the decomposition was given
by Hoffman [9]. When each αi is equal to 1

k then de Werra [7] showed that
the conjecture is true. The conjecture is also true when G is regular or when
αidegE(v) is an integer for each i and v and follows from König’s edge coloring
theorem [12].

1.2 Bipartite Versus General Graphs

In all results stated in the paper, there is no distinction between bipartite graphs
and bipartite multigraphs (allowing parallel edges): the proofs apply without
change also to bipartite multigraphs. Conjectures 2 and 3 do not hold as stated
for arbitrary (non-bipartite) graphs. We elaborate on this here, and explain
which of the results in this paper extend to general graphs.

Consider the Petersen graph which is a regular graph of degree 3 whose edges
cannot be properly colored by 3 colors. Give every edge a weight 2/3. In the
setting of Conjecture 2 this corresponds to a value of n = 2 and a requirement
for a proper weighted coloring with 3 colors, which is impossible. This shows
that when general graphs are concerned, the term 2n−1 in the conjecture needs
to be raised to at least 2n.

If one allows parallel edges, then having odd cycles has a more dramatic effect.
Consider for example a triangle with k parallel edges between any two vertices.
Give each edge a weight of (k + 1)/2k. Now n corresponds to k + 1, whereas
any proper weighted coloring requires 3k colors. Hence as k grows, the bound
in Conjecture 1 approaches 3n (if the graph is non-bipartite and has parallel
edges).

Applications of Conjecture 2 often involve bipartite graphs with parallel edges.
And indeed, our proof of Theorem 1 works without change even if the bipartite
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graph has parallel edges. For general (non-bipartite) graphs, our proof of The-
orem 1 easily extends to give a bound of �2.25n� + r, where r is the maximum
multiplicity of any edge (and in particular, r = 1 in simple graphs). In counting
multiplicity of an edge, one may first merge parallel copies of an edge if the sum
of their weights does not exceed 1. Hence r need never exceed 2n.

Conjecture 3 does not hold for all graphs, a counter example being the triangle
and α1 = α2 = 1

2 . Nevertheless, our proof of Theorem 2 holds with no change for
general graphs. The previous proof of Correa and Goemans 3, that is cited after
the statement of Conjecture 3, makes use of the bipartiteness of the underlying
graph, but it is possible to modify their proof technique, using the results of
Kano and Saito [11], such that that it works also for general graphs (see also
[6]). Unlike the nonbipartite version of Theorem 1 (discussed in the previous
paragraph), multiplicity of edges has no effect on Theorem 2.

2 Edge-Coloring Weighted Bipartite Graphs

In this section we give a proof of Theorem 1. The algorithm is a combination of
König’s Theorem [12] with the greedy algorithm. We state the König’s Theorem
since we use it as a subroutine in our algorithm.

Theorem 3. [12] Given a bipartite (multi) graph G = (V, E) there exists a
coloring of edges with Δ = maxv∈V degE(v) colors such that all edges incident
at a common vertex receive a distinct color. Moreover, such a coloring can be
found in polynomial time.

The algorithm giving the guarantee of Theorem 1 is given in Figure 1. Observe
that in Step 3 of the algorithm, F can indeed be decomposed into �tn� matchings,
using Theorem 3 (because the maximum degree of F is �tn�).

We now show that the algorithm in Figure 1 gives a proper weighted coloring
for t = 9

4 . Since the algorithm only uses �tn� = � 9
4n� colors, it is enough to

show that each edge will be colored in either Step (2) when it is included in F
or Step (4) of the algorithm. We prove this by a series of claims which follow.

1. F ← ∅, t ← 9
4 .

2. Include edges in F in non-increasing order of weight maintaining the property that
degF (v) ≤ �tn� for all v ∈ V .

3. Decompose F into r = �tn� matchings M1, . . . , Mr and color them using colors
1, . . . , r. Let Fi ← Mi for each 1 ≤ i ≤ r.

4. Greedily add remaining edges to any of the Fi’s maintaining that weighted degree
of each color at each vertex is at most one, i.e,

∑
e∈δ(v)∩Fi

we ≤ 1 for each v ∈ V

and 1 ≤ i ≤ r.

Fig. 1. Algorithm for Edge Coloring Weighted Bipartite Graphs
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Claim. Each edge of weight at least 1
t is in F .

Proof. Let e = {u, v} be an edge such that we ≥ 1
t . If e cannot be added to

F then degF (v) ≥ �tn� or degF (u) ≥ �tn� when e is considered in Step (2) of
the algorithm. But edges added in F , before e is considered in Step (2), have
weight larger than the weight of e. Therefore, the total weight at the endpoint
with degree at least �tn� is at least tn · 1

t + we > n. A contradiction.

Lemma 1. If t ≥ 9
4 then each edge can be colored with one of the colors.

Proof. For sake of contradiction suppose some edge cannot be colored in Step (3)
or Step (4). Let e = {u, v} be such an edge and let we = α. From Claim 2, we
have that α < 1

t . Moreover, when e is considered in Step (2), the degree of
either u or v is already �tn� else we would have included e in F . Without loss
of generality let that vertex be u, i.e, degF (u) = �tn�.

For each color 1 ≤ i ≤ �tn�, we must have that
∑

f∈δ(v)∩Fi
wf > 1 − α or

∑
f∈δ(u)∩Fi

wf > 1 − α else we can color e in Step (4).
Let Lv = {i|

∑
f∈δ(v)∩Fi

wf > 1 − α} and k = |Lv|. Then we have

n >
∑

i∈Lv

∑

f∈δ(v)∩Fi

wf > k(1 − α) (1)

Now for each color i /∈ Lv, we have
∑

f∈δ(u)∩Fi
wf > 1−α. Moreover, degF (u) =

�tn� and each of these edges weighs at least we = α. Hence, for each color
1 ≤ i ≤ �tn�, there is an edge incident at u colored with color i with weight at
least α. Therefore

n >
∑

f∈δ(u)

wf ≥
∑

1≤i≤�tn�

∑

f∈δ(u)∩Fi

wf (2)

=
∑

i∈Lv

∑

f∈δ(u)∩Fi

wf +
∑

i/∈Lv

∑

f∈δ(u)∩Fi

wf (3)

≥
∑

i∈Lv

α +
∑

i/∈Lv

(1 − α) = kα + (�tn� − k)(1 − α) (4)

≥ kα + (tn − k)(1 − α). (5)

Let β = k
n . By scaling Inequation (1), Inequation (5) and from Claim 2, we have

β(1 − α) < 1 (6)
β(2α − 1) + t(1 − α) < 1 (7)

α <
1
t
. (8)

We now show that for t = 9
4 , we have a contradiction to the above inequalities.

The expression β(2α−1)+ t(1−α) is a decreasing function of β as 2α−1 < 0
since α < 1

t < 1
2 . Thus the expression β(2α− 1)+ t(1−α) has a minimum value

at largest possible β which is at most 1
1−α and at β = 1

1−α , we have

β(2α − 1) + t(1 − α) =
1

1 − α
(2α − 1) + t(1 − α) =

1
1 − α

− 2 + t(1 − α).(9)
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Let g(α) = 1
1−α − 2 + t(1 − α). We claim that g(α) ≥ 1 for each α ∈ [0, 1

t )
which gives the desired contradiction. Since, g(α) is a differentiable function of
α in the range [0, 1

t ) the global minimum will occur at either a local minimum
or at boundary of the interval. The derivative g′(α) = 1

(1−α)2 − t. Thus the local
minima can occur at α = 1 − 1√

t
. But then

g(0) = t − 1 ≥ 1 (10)

g(
1
t
) =

t

t − 1
− 2 + t − 1 =

(t − 2)2

t − 1
+ 1 ≥ 1 (11)

g(1 − 1√
t
) =

√
t − 2 +

√
t = 2(

√
t − 1) ≥ 1 (12)

where the last inequality holds for t ≥ 9
4 . Thus g(α) ≥ 1 for each α ∈ [0, 1

t )
which contradicts inequation (7).

3 Partitioning Bipartite Graphs

In this section we prove Theorem 2. First, we give an algorithm where we show
a decomposition which matches the guarantee of Correa and Goemans [5] and
violates the bounds by at most two. We then show how to modify the algorithm
to obtain the stronger guarantee where violation is bounded by at most one when
only upper or lower bounds are present. Our algorithms use linear programming
methods and the techniques have close resemblance to result of Beck and Fiala [1]
on discrepancy of sets. We also note that the proofs do not use the fact that the
graphs are bipartite or simple and all our results in this section also hold for
general graphs with parallel edges.

Theorem 4. [5] Given an instance of Balanced Decomposition of Bipar-

tite graph problem there exists a decomposition such that

�αidegE(v)� − 2 ≤ degEi(v) ≤ �αidegE(v)� + 2

for each 1 ≤ i ≤ k and each v ∈ v.

Proof. We formulate a feasibility linear program for the following generalization
of the decomposition problem. For each edge e, we are given a set of allowable
colors Ce ⊆ {1, . . . , k} and for each vertex v, we have a degree bound for ev-
ery color from a set of colors Kv ⊆ {1, . . . , k}. We let the binary variable xi

e

denote whether an edge e belongs to Ei for each edge e ∈ E and i ∈ Ce. We
initialize Ce = {1, . . . , k}, Kv = {1, . . . , k} for each v ∈ V and degree bound
Bi

v = αidegE(v) for each 1 ≤ i ≤ k, v ∈ V which corresponds to the required
decomposition in Conjecture 3.

(LP) minimize 0 (13)

subject to
∑

e∈δ(v):i∈Ce

xi
e = Bi

v ∀ v ∈ V, ∀ i ∈ Kv (14)
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∑

i∈Ce

xi
e = 1 ∀ e ∈ E (15)

xe ≥ 0 ∀ e ∈ E (16)

Observe that the fractional solution xi
e = αi for each 1 ≤ i ≤ k and e ∈ E is

a fractional feasible solution to the linear program.
We give an iterative algorithm which rounds the above linear program into

an integral decomposition. The integral decomposition will violate the degree
bounds by an additive error of 2 giving us Theorem 4. The algorithm iteratively
constructs the partition E1, . . . , Ek of E and is given in Figure 2.

1. Let Ei ← ∅ for each 1 ≤ i ≤ k. While E �= ∅ do
(a) Find an extreme point optimal solution x to (LP).
(b) If there is a variable xi

e = 0 then remove variable xi
e and let Ce ← Ce \ {i}.

(c) If xi
e = 1 then

– Ei ← Ei ∪ {e}
– E ← E \ {e}
– Bi

v ← Bi
v − 1 for each v ∈ e.

(d) If there exists a vertex v ∈ V and 1 ≤ i ≤ k such that i ∈ Kv and there are
at most 3 edges incident at v with non-zero xi

e then remove the constraint at
vertex v for i, i.e, Kv ← Kv \ {i}.

2. Return Ei for 1 ≤ i ≤ k.

Fig. 2. Decomposition Algorithm I

First we show that if the algorithm reaches Step (2), then the solution returned
by the algorithm satisfies the guarantees claimed in Theorem 4. In Step (1c) we
reduce Bi

v whenever we select an edge e in Ei incident at v. Therefore, the
bound for Ei at any vertex v can only be violated if the constraint for v and i
is removed in Step (1d) We maintain the property that the constraint for vertex
v and i is removed only if there are at most three edges incident at vertex v
which can possibly be included in Ei. Therefore, it follows that the number of
edges selected in Ei incident at v is strictly less than Bi

v + 3 and hence at most
�Bi

v� + 2. Moreover, we have already selected strictly more than Bi
v − 3 edges

incident at v in Ei when we remove the constraint for vertex v and color i.
Hence, the number of edges in Ei incident at v is at least �Bi

v� − 2.
To complete the proof we show that the algorithm indeed reaches Step (2).

Observe that Steps (1b), (1c) and (1d) all make progress in the sense that they
reduce either the number of variables or the number of constraints. Lemma 2
implies that whenever Step (1a)is not applicable (because we are already at an
extreme point of the current LP), at least one of these three other steps is indeed
available. Since between every two applications of Step (1a) there must be an
application of one of the other three steps, Step (2) must be reached eventually.
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Lemma 2. Given an extreme point solution x such that 0 < xi
e < 1 for each

e ∈ E and i ∈ Ce there must exist a vertex v and color i satisfying the conditions
of Step (1d).

Proof. Suppose for the sake of contradiction there is no vertex v ∈ V and color
i ∈ Kv with at most three edges incident at v with non-zero xi

e. Since x is an
extreme point, the number of tight independent constraints equals the number of
variables. We will show a contradiction to this fact by showing that the number of
tight independent constraints at x are strictly less than the number of variables.

We first count the number of variables. For each edge e, we must have |Ce| ≥ 2
since xi

e < 1 for each edge e and i ∈ Ce and
∑

i∈Ce
xi

e = 1. Hence,

# of variables ≥ 2|E|. (17)

For each vertex v ∈ V and i ∈ Kv, let Di
v denote the number of variables of

form xi
e where v ∈ e. Since the condition of Step (1d) is not applicable we must

have Di
v ≥ 4 for each vertex v ∈ V and i ∈ Kv.

Hence,

# of variables ≥ 1
2

∑

v∈V

k∑

i=1

Di
v ≥ 2

∑

v

|Kv|. (18)

A simple averaging gives that the

# of variables ≥ |E| +
∑

v

|Kv| (19)

Observe that if equality must hold in inequations (18) and (19) then i ∈ Kv

whenever i ∈ Ce for some e ∈ δ(v).
Now we bound the total number of tight independent constraints. Since 0 <

xi
e < 1 for each e and i ∈ Ce, these integrality constraints cannot be tight at

x. The number of other constraints is exactly |E| +
∑

v |Kv|. Thus all of these
constraints must be at equality at x and linearly independent. We now show that
this cannot be the case and derive a linear dependence in the tight constraints.

Summing up all the edge constraints we obtain that
∑

e∈E

∑

i∈Ce

xi
e = |E| (20)

where LHS is the sum of the all the variables. Summing up all the vertex con-
straints we obtain

∑

v∈V,i∈Kv

∑

e∈δ(v):i∈Ce

xi
e =

∑

v∈V,i∈Kv

Bi
v (21)

where each variable occurs exactly twice in the LHS. Thus equation (21) is
exactly twice of equation (20) giving us a dependence in the tight constraints
which is a contradiction.

This completes the proof of the Theorem 4.
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We now prove the second guarantee in Theorem 2.

Theorem 5. Given an instance of Balanced Decomposition of Bipartite

graph problem, there are decompositions F1, . . . , Fk and G1, . . . Gk such that

degFi(v) ≤ �αidegE(v)� + 1

degGi(v) ≥ �αidegE(v)� − 1

for each 1 ≤ i ≤ k and v ∈ V .

Proof. We first show how to construct the decomposition F1, . . . , Fk which sat-
isfies the upper bounds within an additive error of 1. The algorithm is very
similar to the algorithm given in Figure 2 with the following difference. The re-
laxation step (1d) is modified and the constraint for i ∈ Kv is removed whenever
Di

v ≤ �Bi
v�+1 where Di

v is the number of variables of the form xi
e for some edge

e incident at v.

1. Let F i ← ∅ for each 1 ≤ i ≤ k. While E �= ∅ do
(a) Find an extreme point optimal solution x to (LP).
(b) If there is a variable xi

e = 0 then remove variable xi
e and let Ce ← Ce \ {i}.

(c) If xi
e = 1 then

– F i ← F i ∪ {e}
– E ← E \ {e}
– Bi

v ← Bi
v − 1 for each v ∈ e.

(d) If there exists a vertex v ∈ V and i such that i ∈ Kv and Di
v ≤ �Bi

v� + 1
then remove the constraint at vertex v for color i, i.e, Kv ← Kv \ {i}. Here
Di

v = |{e ∈ δ(v) : xi
e > 0}|.

2. Return F i for 1 ≤ i ≤ k.

Fig. 3. Decomposition Algorithm II

If the modified algorithm reaches Step (2) then it gives the claimed guarantee
since the bound for color i at vertex v is violated only when the corresponding
constraint is removed in Step (1d). In such a case we have Di

v ≤ �Bi
v� + 1 and

hence the total number of edges in F i incident at v are bounded by �Bi
v� + 1 as

desired.
To complete the proof of the Theorem 5 we show that the algorithm reaches

Step (2). As in the discussion preceding Lemma 2, this will follow from the
following lemma.

Lemma 3. Given an extreme point solution x such that 0 < xi
e < 1 for each

v ∈ V and i ∈ Kv there must exist a vertex v and color i such that Di
v ≤ �Bi

v�+1
where Di

v is the number of variables of the form xi
e for some edge e incident at v.
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Proof. Suppose for sake of contradiction we have Di
v ≥ �Bi

v� + 2 for each i ∈
Kv. We give a contradiction to the fact that the number of tight independent
constraints is equal to the number of variables in x.

The contradiction is shown by a counting argument. We give one token to
each variable which redistributes its token to the constraints. We then collect
one token for each tight independent constraint and still have extra tokens, giving
us the contradiction. The redistribution is given by the following two rules.

– Rule 1: Each variable xi
e gives xi

e tokens to the constraint for edge e.
– Rule 2: Each variable xi

e gives 1−xi
e

2 tokens to the constraint for each end-
point v of e and i.

Observe that each edge gives a total of one token.
Now, we count the number of tokens received by each constraint. Edge con-

straint for an edge e receives
∑

i∈Ce
xi

e tokens from Rule 1 which is exactly one
from the edge constraint of e in (LP). Hence, each edge constraint receives one
token in the redistribution.

Consider a constraint for vertex v ∈ V and i ∈ Kv. It receives 1−xi
e

2 tokens
for each e ∈ δ(v) such that xi

e > 0 by Rule 2 or equivalently each edge counting
towards Di

v. Hence, the total number of tokens received by the constraint is at
least

∑

e∈δ(v),xi
e>0

1 − xi
e

2
=

1
2
(Di

v −
∑

e∈δ(v),xi
e>0

xi
e) ≥ 1

2
(Di

v − Bi
v) ≥ 1

where the last inequality follows since Di
v ≥ Bi

v +2. Thus each degree constraint
also receives at least one token. Moreover, if any of the constraints receives more
than token or there is a vertex v ∈ V and color i /∈ Kv such that xi

e > 0 for
some edge e ∈ δ(v) then 1−xi

e

2 token given by Rule 2 is extra and gives us the
contradiction. Otherwise, for any color i and vertex v, we must have that i ∈ Kv

whenever i ∈ Ce. But then the sum of all the edge constraints exactly equals
the sum of the all the degree constraints, contradicting the requirement that the
constraints are linearly independent.

This completes the proof that there exists a decomposition F1, . . . , Fk satisfying
the upper bounds within additive error of one.

We now show how to construct the decomposition G1, . . . , Gk which satisfies
the lower bounds within an additive error of one. The algorithm is exactly similar
to one in Figure 3 except that we modify Step (1d) in the following manner. We
delete the constraint for vertex v ∈ V and i ∈ Kv only when �Bi

v� ≤ 1. Observe
that with this modification it is easy to verify that the solution returned satisfies
the lowerbound within an additive error of 1. This follows from the fact that
at least �Bi

v� − 1 edges incident at v are in Gi before we remove the degree
constraint for vertex v and color i.

We now show that algorithm will make progress with the modified Step (1d)
in the following lemma. The proof of Lemma 4 is omitted and appears in the
full version of the paper.
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Lemma 4. Given an extreme point solution x such that 0 < xi
e < 1 for each

v ∈ V and i ∈ Kv there must exist a vertex v and color i such that �Bi
v� ≤ 1.

This completes the proof of Theorem 5.
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