
Degree Bounded Matroids and Submodular Flows

Tamás Király1,�, Lap Chi Lau2, and Mohit Singh3,��

1 MTA-ELTE Egerváry Research Group, Dept. of Operations Research,
Eötvös Loránd University, Budapest

tkiraly@cs.elte.hu
2 Dept. of Computer Science and Engineering, The Chinese University of Hong Kong

chi@cse.cuhk.edu.hk
3 Tepper School of Business, Carnegie Mellon University

mohits@andrew.cmu.edu

Abstract. We consider two related problems, the Minimum Bounded

Degree Matroid Basis problem and the Minimum Bounded De-

gree Submodular Flow problem. The first problem is a generaliza-
tion of the Minimum Bounded Degree Spanning Tree problem: we
are given a matroid and a hypergraph on its ground set with lower and
upper bounds f(e) ≤ g(e) for each hyperedge e. The task is to find
a minimum cost basis which contains at least f(e) and at most g(e)
elements from each hyperedge e. In the second problem we have a sub-
modular flow problem, a lower bound f(v) and an upper bound g(v) for
each node v, and the task is to find a minimum cost 0-1 submodular
flow with the additional constraint that the sum of the incoming and
outgoing flow at each node v is between f(v) and g(v). Both of these
problems are NP-hard (even the feasibility problems are NP-complete),
but we show that they can be approximated in the following sense. Let
opt be the value of the optimal solution. For the first problem we give
an algorithm that finds a basis B of cost no more than opt such that
f(e) − 2Δ + 1 ≤ |B ∩ e| ≤ g(e) + 2Δ − 1 for every hyperedge e, where
Δ is the maximum degree of the hypergraph. If there are only upper
bounds (or only lower bounds), then the violation can be decreased to
Δ − 1. For the second problem we can find a 0-1 submodular flow of
cost at most opt where the sum of the incoming and outgoing flow at
each node v is between f(v) − 1 and g(v) + 1. These results can be
applied to obtain approximation algorithms for different combinatorial
optimization problems with degree constraints, including the Minimum

Crossing Spanning Tree problem, the Minimum Bounded Degree

Spanning Tree Union problem, the Minimum Bounded Degree Di-

rected Cut Cover problem, and the Minimum Bounded Degree

Graph Orientation problem.

1 Introduction

In this paper we consider combinatorial optimization problems with degree con-
straints, for which the corresponding feasibility problem is already NP-complete.

� Research supported by OTKA K60802 and OMFB-01608/2006.
�� Research supported by NSF grant CCF-0728841.

A. Lodi, A. Panconesi, and G. Rinaldi (Eds.): IPCO 2008, LNCS 5035, pp. 259–272, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

260 T. Király, L.C. Lau, and M. Singh

One approach to deal with these problems is to allow a slight violation of the
degree constraints, and find a solution of this relaxation that has small cost. A
prime example of this approach is the Minimum Bounded Degree Spanning

Tree problem, where we have upper (and possibly lower) bounds on the degree
of the spanning tree at each node. The corresponding feasibility problem is
NP-complete since it includes the Hamiltonian path problem. Goemans [8]
showed that if the value of the optimal solution is opt, then one can find in
polynomial time a spanning tree of cost at most opt that violates the degree
bounds by at most 2. Using the iterative relaxation method, which is also the
main technique in the present paper, Singh and Lau [12] gave an algorithm that
finds a spanning tree of cost at most opt that violates the bounds by at most 1.
The aim of this paper is to obtain similar results for more general combinatorial
optimization problems.

1.1 Minimum Bounded Degree Matroid Basis

The first problem considered is the Minimum Bounded Degree Matroid

Basis problem, which is a generalization of the Minimum Bounded Degree

Spanning Tree problem. We are given a matroid M = (V, I), a cost function
c : V → R, a hypergraph H = (V, E), and lower and upper bounds f(e) and g(e)
for each hyperedge e ∈ E(H). The task is to find a basis B of minimum cost
such that f(e) ≤ |B ∩ e| ≤ g(e) for each hyperedge e ∈ E(H). One motivation
for considering the matroid generalization was the following problem posed by
Frieze [7]: “Given a binary matroid MA over the columns of a 0, 1-matrix A and
bounds gi for each row i of A, find a basis B of matroid MA such that there are
at most gi ones in any row among columns in B”.

A problem similar to ours has been considered recently by Chaudhuri et al.
[3]. The results we give in this paper improve considerably their approximation
guarantees. Our first main result is the following:

Theorem 1. There exists a polynomial time algorithm for the Minimum

Bounded Degree Matroid Basis problem which returns a basis B of cost
at most opt such that f(e) − 2Δ + 1 ≤ |B ∩ e| ≤ g(e) + 2Δ − 1 for each
e ∈ E(H). Here Δ = maxv∈V |{e ∈ E(H) : v ∈ e}| is the maximum degree of
the hypergraph H and opt is the cost of an optimal solution which satisfies all
the degree constraints.

This theorem can be improved if only upper bounds (or only lower bounds) are
present. The proof of the improvement uses the proof technique of Bansal et
al. [1], who worked independently on the Minimum Crossing Spanning Tree

problem and obtained the following result for that special case.

Theorem 2. There exists a polynomial time algorithm for the Minimum

Bounded Degree Matroid Basis problem with only upper bounds which re-
turns a basis B of cost at most opt such that |B ∩ e| ≤ g(e) + Δ − 1 for each
e ∈ E(H). An analogous result holds when only lower bounds are present.

It should be noted that this does not match the result of Singh and Lau [12] on
minimum bounded degree spanning trees, since that result violates the degree

Degree Bounded Matroids and Submodular Flows 261

bounds by at most 1 even when both upper and lower bounds are present. Some-
what surprisingly, we show an example at the end of Section 3 indicating that
obtaining a result for general matroids which satisfies both upper and lower de-
gree bounds within additive error of one does not follow from current techniques.

1.2 Minimum Bounded Degree Submodular Flow

The second problem considered in this paper is the Minimum Bounded

Degree Submodular Flow problem. Here we are given a digraph D = (V, E),
a crossing submodular set function b : 2V → Z ∪ {+∞}, node sets Vf ⊆ V and
Vg ⊆ V , and functions f : Vf → Z+ and g : Vg → Z+. Let us introduce the
following notation for the set of edges entering or leaving a node set:

δin(X) = {uv ∈ E : u /∈ X, v ∈ X},
δout(X) = {uv ∈ E : u ∈ X, v /∈ X},

δ(X) = δin(X) ∪ δout(X).

If F ⊆ E is an edge set and x : E → R is a function on the edges, then we use
the notation x(F) =

∑
e∈F x(e). A degree-constrained 0-1 submodular flow is a

vector x ∈ E → {0, 1} with the following properties:

x(δin(X)) − x(δout(X)) ≤ b(X) for every X ⊆ V , (1)
x(δ(v)) ≥ f(v) for every v ∈ Vf , (2)
x(δ(v)) ≤ g(v) for every v ∈ Vg. (3)

If Vf = Vg = ∅, then this is the well-studied submodular flow problem, introduced
by Edmonds and Giles [5]. There are several efficient algorithms for finding a
feasible submodular flow, or even a minimum cost submodular flow for a linear
cost function. However, the addition of the degree constraints (2) and (3) makes
the feasibility problem NP-complete, as we show in subsection 4.1. Our second
main result is the following:

Theorem 3. There exists a polynomial time algorithm for the Minimum

Bounded Degree Submodular Flow problem which returns a 0-1 submodular
flow of cost at most opt that violates each degree constraint by at most one, where
opt is the cost of an optimal solution which satisfies all the degree constraints.

In Section 2, we show some applications of the main results. Then we present the
proofs of the main results and some corresponding hardness results in Section 3
for the matroid problem and in Section 4 for the submodular flow problem.

2 Applications

In this section we highlight some applications of the main results.

2.1 Minimum Crossing Spanning Tree

In the Minimum Crossing Spanning Tree problem, we are given a graph
G = (V, E) with edge cost function c, a collection of cuts (edge subsets)

262 T. Király, L.C. Lau, and M. Singh

C = {C1, . . . , Cm} and bound gi for each cut Ci. The task is to find a tree T
of minimum cost such that T contains at most gi edges from cut Ci. See [2] for
various applications of this problem. The Minimum Bounded Degree Span-

ning Tree problem is the special case where C = {δ(v) : v ∈ V }. The following
result1 (see also [1]) can be obtained as a corollary of Theorem 2. Note that
d = 2 for the Minimum Bounded Degree Spanning Tree problem.

Corollary 1. [1] There exists a polynomial time algorithm for the Minimum

Crossing Spanning Tree problem that returns a tree T with cost at most opt

and such that T contains at most gi + d − 1 edges from cut Ci for each i where
d = maxe∈E |{Ci : e ∈ Ci}|. Here opt is the cost of an optimal solution which
satisfies all the cut constraints.

Proof. Let M = (E, I) denote the graphic matroid over the graph G. The hy-
pergraph H is defined with V (H) = E(G) and E(H) = {Ci : 1 ≤ i ≤ m}. Note
that Δ = maxv∈V (H) |{e ∈ E(H) : v ∈ e}| = maxe∈E(G) |{Ci : e ∈ Ci}| = d. So,
using Theorem 2, we obtain a basis T of matroid M (which is a spanning tree),
such that |T ∩ Ci| ≤ gi + d − 1. ��

2.2 Minimum Bounded-Ones Binary Matroid Basis

For the Minimum Bounded-Ones Binary Matroid Basis problem posted by
Frieze [7], we are given a binary matroid MA over the columns of a 0, 1-matrix
A and bounds gi for each row i of A. The task is to find a minimum cost basis B
of matroid MA such that there are at most gi ones in any row among columns
in B. The following result is obtained as a corollary of Theorem 2.

Corollary 2. There exists a polynomial time algorithm for the Minimum

Bounded-Ones Binary Matroid Basis problem which returns a basis B of
cost at most opt such that there are at most gi +d−1 ones in any row restricted
to columns of B. Here d is the maximum number of ones in any column of A
and opt is the cost of an optimal solution satisfying all the row constraints.

Proof. Let M = MA and define a hypergraph H where the vertex set is the
columns of A. The hyperedges correspond to rows of A where ei = {Aj : Aij = 1}
where Aj is the jth column of A. Note that Δ = maxv∈V (H) |{e ∈ E(H) : v ∈
e}| = maxj |{i : aij = 1}| = d, which is the maximum number of ones in any
column of A. So, using Theorem 2, we obtain a basis of M = MA such that
number of ones in any row is at most gi + d − 1. ��

2.3 Minimum Bounded Degree Spanning Tree Union

In the Minimum Bounded Degree Spanning Tree Union problem, we are
given a graph G = (V, E) with edge cost function c, a positive integer k, and
lower and upper degree bounds f(v) and g(v) for each vertex v. The task is to
1 Independent of the work in [1], we obtained Corollary 1 with a weaker bound using

Theorem 1.

Degree Bounded Matroids and Submodular Flows 263

find a subgraph H which is the union of k edge-disjoint spanning trees and the
degree of v in H is between f(v) and g(v). The Minimum Bounded Degree

Spanning Tree problem is a special case when k = 1. Theorem 2 implies the
following result, which is optimal in terms of the degree upper bounds.

Corollary 3. There exists a polynomial time algorithm for the Minimum

Bounded Degree Spanning Tree Union problem which returns a subgraph
G of cost at most opt which is the union of k edge-disjoint spanning trees and
the degree of v in H is at most g(v) + 1. Here opt is the cost of an optimal
solution which satisfies all the degree upper bounds.

Proof. Let M = (E, I) denote the union of k graphic matroids over the graph
G, which is a matroid by the matroid union theorem. The hypergraph H is
defined with V (H) = E(G) and E(H) = {δ(v) : v ∈ V (G)}. Note that Δ =
maxv∈V (H) |{e ∈ E(H) : v ∈ e}| = maxe∈E(G) |{δ(v) : v ∈ V (G)∧e ∈ δ(v)}| = 2.
So, using Theorem 2, we obtain a basis T of matroid M (which is the union of
k edge-disjoint spanning trees), such that |T ∩ Ci| ≤ gi + 1. ��

2.4 Minimum Bounded Degree Directed Cut Cover

Let D = (V, E) be a digraph. A set of vertices X is called a directed cut if
δout(X) = ∅. A subset of edges F is called a directed cut cover if |F ∩ δ(X)| �= ∅
for every directed cut X . In the Minimum Bounded Degree Directed Cut

Cover problem, we are given a digraph D = (V, E), a cost function c : E → Z,
and degree constraints f(v) and g(v) for each v ∈ V . The task is to find a
directed cut cover F ⊆ E of minimum cost such that f(v) ≤ |F ∩ δ(v)| ≤ g(v)
for every v ∈ V . Theorem 3 implies the following result, which is optimal in
terms of the degree bounds.

Corollary 4. There exists a polynomial time algorithm for the Minimum

Bounded Degree Directed Cut Cover problem which returns a directed
cut cover F of cost at most opt and f(v) − 1 ≤ |F ∩ δ(v)| ≤ g(v) + 1 for each
vertex v ∈ V . Here opt is the cost of an optimal solution which satisfies all the
degree constraints.

Proof. Let b(X) = −1 if V \ X is a directed cut, and let b(X) = ∞ otherwise.
Then b is a crossing submodular set function. In this setting, a 0-1 submodular
flow corresponds to a directed cut cover. So, by Theorem 3, we obtain a directed
cut cover F such that f(v) − 1 ≤ |F ∩ δ(v)| ≤ g(v) + 1 for every v ∈ V . ��

2.5 Minimum Bounded Degree Graph Orientation

In the Minimum Bounded Degree Graph Orientation problem, we are
given a digraph D = (V, E), a cost function c : E → Z, and bounds f(v) ≤ g(v)
for every v ∈ V . The task is to find an edge set of minimum cost whose reversal
makes the digraph k-edge-connected, so that the number of edges reversed at
each node v is between f(v) and g(v). Theorem 3 implies the following result,
which is optimal in terms of the degree bounds.

264 T. Király, L.C. Lau, and M. Singh

Corollary 5. There exists a polynomial time algorithm for the Minimum

Bounded Degree Graph Orientation problem which finds an edge set of cost
at most opt whose reversal makes the digraph k-edge-connected and such that the
number of edges reversed at each node v is between f(v) − 1 and g(v) + 1. Here
opt is the cost of an optimal solution which satisfies all the degree constraints.

Proof. This can be done by considering the submodular flow problem defined
by the set function b(X) = |δin(X)| − k (∅ �= X � V) (see [6]), which is a
submodular set function. In this setting, a 0-1 submodular flow corresponds to
an edge set whose reversal makes the digraph strongly k-edge-connected. So this
result follows from Theorem 3. ��

It is shown in subsection 4.1 that the corresponding feasibility problem is
NP-complete, and thus the feasibility problem for bounded degree submodular
flow is also NP-complete.

3 Minimum Bounded Degree Matroid Basis

Proof of Theorem 1: The main technique used to prove Theorem 1 is the iter-
ative relaxation method used in [10,12], which is based on the iterative rounding
method introduced by Jain [9]. We first formulate a linear programming re-
laxation for the Minimum Degree Bounded Matroid Basis problem. Let
r : 2V → Z+ denote the rank function of matroid M .

minimize c(x) =
∑

v∈V

cv xv (4)

subject to x(V) = r(V) (5)
x(S) ≤ r(S) ∀S ⊆ V (6)

f(e) ≤ x(e) ≤ g(e) ∀ e ∈ E(H) (7)
0 ≤ xv ≤ 1 ∀ v ∈ V (8)

This linear program is exponential in size but can be separated over in polyno-
mial time if given an access to the independent set oracle [4]. Given a matroid
M = (V, I) and an element v ∈ V , we denote by M \ v the matroid obtained by
deleting v, i.e., M \v = (V ′, I ′) where V ′ = V \{v} and I ′ = {S ∈ I : v /∈ S}. We
also denote by M/v the matroid obtained by contracting v, i.e., M/v = (V ′, I ′)
where V ′ = V \ {v} and I ′ = {S \ {v} : S ∈ I, v ∈ S}.

The algorithm is given in Figure 1. Suppose that the algorithm terminates
successfully. Then Theorem 1 follows from a similar argument as in [12], which
is sketched as follows. Firstly, observe that the matroid M is updated to M \ v
whenever we remove v such that xv = 0 and updated to M/v whenever we pick
v such that xv = 1. A simple verification shows that the residual linear pro-
gramming solution (current LP solution restricted to V \ {v}) remains a feasible
solution for the modified linear program in the the next iteration. In Step2c we
remove a degree constraint, and hence the current linear programming solution

Degree Bounded Matroids and Submodular Flows 265

1. Initialization B ← ∅,
2. While B is not a basis do

(a) Find a basic optimal solution x. Delete v such that xv = 0. Update each
edge e ∈ E(H) let e← e \ {v}. Update matroid M ←M \ v.

(b) For each element v with xv = 1, include v in B and decrease f(e) and g(e)
by 1 for each e � v. Update matroid M ←M/v.

(c) For every e ∈ E(H) such that |e| ≤ 2Δ, remove e from E(H).
3. Return B.

Fig. 1. The algorithm for the Minimum Bounded Degree Matroid Basis problem

remains a feasible solution. So, a simple inductive argument shows that by only
picking elements with xv = 1, the cost of the returned basis is no more than the
cost of the original basic optimal solution. Also, since we only remove a degree
constraint of a hyperedge when it contains at most 2Δ elements, the degree
constraints are violated by at most 2Δ−1. Therefore, it remains to show that the
algorithm always terminates successfully. That is, it can always find an element
v with xv = 1 in Step 2b or it finds a hyperedge e with |e| ≤ 2Δ in Step 2c.

Suppose for contradiction neither of the above conditions hold. Hence, 0 <
xv < 1 for each v ∈ V and |e| > 2Δ for each e ∈ E(H). Let T = {S ⊆ V :
x(S) = r(S)} be the collection of all tight sets at solution x. Let χS denote the
characteristic vector of S, i.e, χS(v) = 1 if v ∈ S else χS(v) = 0. A family of sets
L ⊆ 2V is called a chain if the following condition holds: for every A, B ∈ L we
have either A ⊂ B or B ⊂ A. The following claim can be obtained by standard
uncrossing argument (see Schrijver [11] Chapter 41).

Claim. For any basic solution x, there exists a chain L ⊆ T such that the
following holds.

1. {χS : S ∈ L} are linearly independent vectors.
2. span({χS : S ∈ L}) = span({χS : S ∈ T }).

As x is a basic solution, there is a set E′ ⊆ E of tight hyperedges (a hyperedge e
is tight if x(e) = g(e) or x(e) = f(e)) such that {χS : S ∈ L}∪ {χe : e ∈ E′} are
linearly independent vectors and |V | = |E′|+ |L|. We now derive a contradiction
to this by a counting argument. We assign 2Δ tokens to each vertex v ∈ V for a
total of 2Δ|V | tokens. We then redistribute the tokens so that each hyperedge in
E′ collects at least 2Δ tokens, each member of L collects at least 2Δ tokens, and
there are still at least one extra token. This implies that 2Δ|V | > 2Δ|E′|+2Δ|L|,
which gives us the desired contradiction.

The reassignment is as follows. Each element v gives Δ tokens to the smallest
member in L it is contained in and one token to each hyperedge e ∈ E′ it is
present in. As any element is contained in at most Δ edges, thus the redistribu-
tion is valid as we distribute at most 2Δ tokens per element. Now, consider any
set S ∈ L and let R be the largest set in L contained in S. We have x(S) = r(S)

266 T. Király, L.C. Lau, and M. Singh

and x(R) = r(R). Thus, we have x(S \ R) = r(S) − r(R). As constraints for
R and S are linearly independent and xv > 0 for each v ∈ V , this implies
r(S) �= r(R). Since r is a matroid rank function, r(S) − r(R) ≥ 1 as they are
both integers. Since 0 < xv < 1, this implies |S \ R| ≥ 2. Thus, S can collect at
least 2Δ tokens, Δ tokens from each element in S \R, as required. Consider any
hyperedge e ∈ E′. As |e| ≥ 2Δ and it can collect one token from each element
in e, there are at least 2Δ tokens for each edge e, as required.

Now, it remains to argue that there is an extra token left. If any of the ele-
ments is in strictly less than Δ hyperedges of E′ then we have one extra token.
Else,

∑
e∈E′ χe = Δ · χV which gives dependence among the constraints as

V ∈ L. Hence, we have the desired contradiction, and the proof of Theorem 1
follows. ��

Now we show how to use the proof technique of Bansal et al. [1] to obtain
Theorem 2.

Proof of Theorem 2: The proof for upper bounds is similar to the proof of
Theorem 1 except for the counting argument. The only important difference is
that we remove a hyperedge e if g(e) + Δ− 1 ≥ |e|; this is possible since in that
case the degree upper bound on e can be violated by at most Δ − 1. It follows
that we may assume that |e| − g(e) ≥ Δ for all hyperedges.

The proof that |V | > |E′| + |L| if 0 < x < 1 goes as follows. Let L =
{S1, . . . , Sk}, where S1 � S2 � · · · � Sk, and let S0 := ∅. Then |e| − x(e) ≥ Δ
for every e ∈ E′, and x(Si \ Si−1) = r(Si) − r(Si−1) ≥ 1 for i = 1, . . . , k. Using
these inequalities, we obtain that

|E′| + |L′| ≤
∑

e∈E′

|e| − x(e)
Δ

+
k∑

i=1

x(Si \ Si−1)

=
∑

v∈V

1 − x(v)
Δ

|{e ∈ E′ : v ∈ e}| + x(Sk) ≤ |V |,

and if equality holds, then |{e ∈ E′ : v ∈ e}| = Δ for every v ∈ V and Sk = V .
But then Δ · χSk

=
∑

e∈E′ χe, which contradicts the linear independence.
If only lower bounds are present, then we can delete a hyperedge e if f(e) ≤

Δ − 1, so we may assume that f(e) ≥ Δ for all hyperedges. To show |V | >
|E′|+ |L| we use that x(e) ≥ Δ for every e ∈ E′ and |Si \Si−1|−x(Si \Si−1) ≥ 1
for i = 1, . . . , k, where the latter holds because x(Si \ Si−1) < |Si \ Si−1| and
both are integer. Thus

|E′| + |L′| ≤
∑

e∈E′

x(e)
Δ

+
k∑

i=1

(|Si \ Si−1| − x(Si \ Si−1))

=
∑

v∈V

x(v)
Δ

|{e ∈ E′ : v ∈ e}| + |Sk| − x(Sk) ≤ |V |,

and the claim follows similarly as for upper bounds. ��

Degree Bounded Matroids and Submodular Flows 267

Remark 1. It is shown in [12] that for the Minimum Bounded Degree Span-

ning Tree problem the violation of the degree bounds can be bounded by Δ−1
(which is equal to 1 since Δ = 2 in that problem) even in the presence of both
lower and upper bounds on the degrees. In the generalization for matroids, it
seems that our method cannot guarantee a solution that violates the bounds by
at most Δ− 1 if both lower and upper degree bounds are present. The reason is
that there may be a basic solution with non-integer values, but Step 2c can not
be applied, as the following example shows.

Let V = {u1, u2, . . . , u6, v1, v2 . . . , v6} be a ground set of 12 elements, and
let M = (V, I) be the partition matroid where each basis contains 1 element
from each of {u1, v1}, {u3, v3}, {u4, v2}, and {u6, v5}, and 2 elements from
{u2, u5, v4, v6}. Let H = (V, E) be the hypergraph containing the hyperedges
{u1, u2, u3}, {u3, u4, u5}, {u5, u6, u1}, {u2, u4, u6}, and {v1, v2, v3}, {v3, v4, v5},
{v5, v6, v1}, {v2, v4, v6}. For the first four hyperedges, let the lower bound f(e)
be 2, and for the last four hyperedges, let the upper bound g(e) be 1. Then the
following is a basic solution: ui = 2/3 (i = 1, . . . , 6), vi = 1/3 (i = 1, . . . , 6). It is
not possible to delete any hyperedges since f(e) ≥ Δ or |e| − g(e) ≥ Δ for each
hyperedge e ∈ E.

4 Minimum Bounded Degree Submodular Flow

Proof of Theorem 3: The proof of this theorem is also based on the iterative
relaxation method used in [10,12]. Let us define the linear relaxation of the
problem by

minimize c(x) =
∑

e∈E

c(e)x(e) (9)

x(δin(X)) − x(δout(X)) ≤ b(X) for every X ⊆ V , (10)
x(δ(v)) ≥ f(v) for every v ∈ Vf , (11)
x(δ(v)) ≤ g(v) for every v ∈ Vg, (12)

0 ≤ x(e) ≤ 1 for every e ∈ E. (13)

Let x∗ be an optimal basic solution of the linear programming relaxation. This
can be obtained in polynomial time by the ellipsoid method. Obviously c(x∗) ≤
opt. We will find a 0-1 submodular flow of cost at most c(x∗) that violates the
degree bounds by at most one.

The problem can be reduced to an instance containing fewer edges in two
cases:

– If x∗(e) = 0 for some e ∈ E, then we delete the edge e from the digraph. A
solution of the resulting problem solves the original problem.

– If x∗(e) = 1 for some e = uv ∈ E, then we delete the edge e from the digraph,
decrease f(u), f(v), g(u), g(v) by 1, and change b as follows:

268 T. Király, L.C. Lau, and M. Singh

b′(X) =

⎧
⎪⎨

⎪⎩

b(X) − 1 if u /∈ X and v ∈ X ,
b(X) + 1 if u ∈ X and v /∈ X ,
b(X) otherwise.

The set function b′ is also crossing submodular. If we have a solution x′ for
this modified problem, then we can obtain a solution for the original problem
by setting x′(e) = 1.

This way we can reduce the problem to an instance where 0 < x∗(e) < 1 for
every e ∈ E. We may also delete isolated nodes by changing b appropriately. Now
we try to remove degree bounds so that the solutions of the resulting problem
are feasible for the original problem. One difference from the proof of Theorem
1 is that in some iterations we increase the number of vertices in the graph.
However, in each step we decrease |E|+ |Vf |+ |Vg| by at least one and thus the
number of steps is polynomial.

First let us observe that g(v) > 0 for every v ∈ Vg and f(v) < |δ(v)| for every
v ∈ Vf , since otherwise there would be some edge e with x∗(e) = 0 or x∗(e) = 1.
Removal of an upper degree bound at a node v is possible in the following two
cases:

– If |δ(v)| ≤ g(v) + 1, then we can remove the upper bound at v, since a
solution of the resulting problem cannot violate the original degree bound
by more than 1.

– If g(v) = 1, then we replace v by two nodes v1 and v2. An edge uv ∈ E is
replaced by uv1, while an edge vu ∈ E is replaced by v2u. The set function
b is modified as follows:

b′(X) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1 if X = v1 or X = V − v2,
b(X) if X ∩ {v1, v2} = ∅,
b(X − {v1, v2} + v) if {v1, v2} ⊆ X ,
∞ otherwise.

The set function b′ is crossing submodular. No degree upper bound and lower
bound are given for v1 and v2, i.e. V ′

g = Vg − v, V ′
f = Vf − v. Note that the

current solution corresponds to a feasible solution of this relaxation. The
definition of b′ implies that x(δ(v1)) ≤ 1 and x(δ(v2)) ≤ 1 for any solution x.
This means that the corresponding solution on the original digraph violates
the degree bounds at v by at most 1.

After the above modifications, we may assume that g(v) ≥ 2 and |δ(v)| ≥ g(v)+2
for every v ∈ Vg. Removal of a lower degree bound at a node v is possible in the
following two cases:

– If f(v) ≤ 1, then we can remove the lower bound at v, since a solution of
the resulting problem cannot violate the original bound by more than 1.

– If f(v) = 2 and |δ(v)| = 3, then we replace v by two nodes v1 and v2. An
edge uv ∈ E is replaced by uv1, while an edge vu ∈ E is replaced by v2u. For

Degree Bounded Matroids and Submodular Flows 269

the modification of b there are two cases. If |δout(v)| ≤ 1, then it is modified
as follows:

b′(X) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

−1 if X = V − v1,
b(X) if X ∩ {v1, v2} = ∅,
b(X − {v1, v2} + v) if {v1, v2} ⊆ X ,
∞ otherwise.

If |δin(v)| ≤ 1, then the modified set function is

b′(X) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

−1 if X = v2,
b(X) if X ∩ {v1, v2} = ∅,
b(X − {v1, v2} + v) if {v1, v2} ⊆ X ,
∞ otherwise.

The set function b′ is crossing submodular. No lower bound is given for v1

and v2, i.e. V ′
f = Vf − v. Note that there is no degree upper bound on

v by the previous rule (since g(v) ≥ f(v) ≥ |δ(v)| − 1), and the current
solution corresponds to a feasible solution in this relaxation. The definition
of b′ implies that x(δ({v1, v2})) ≥ 1 for any solution x. This means that the
corresponding solution on the original digraph violates the lower bound at
v by at most 1.

After the above modifications, we may assume that |δ(v)| ≥ 4 for every v ∈
Vf ∪ Vg. The solution corresponding to x∗ is still a feasible solution, but it is
not necessarily a basic solution, so we have to resolve the LP and continue this
process until a basic solution is obtained where there are no 0-1 edges and no
degree bounds can be deleted. (Actually, it is not necessary to solve the LP to
optimality, it is enough to perform the easier task of finding a basic solution that
is not worse than the current solution).

At the end of the process either all edges are fixed to 0 or 1 and we are done,
or 0 < x∗(e) < 1 for every e ∈ E, there are no isolated nodes, and |δ(v)| ≥ 4
for every v ∈ Vf ∪ Vg. We show that the latter case is impossible. Since x∗ is a
basic solution, there is a system of linearly independent constraints which are
tight at x∗ for which x∗ is the unique solution of the equation system given
by these tight constraints. Let F∗ be the family of sets corresponding to the
submodular flow constraints in this system, and let V ∗ denote the set of nodes
with degree constraints that are in the system. A family of sets F ⊂ 2V is called
cross-free if for every sets A, B ∈ F we have either A ⊆ B, B ⊆ A, A ∩ B = ∅
or A ∪ B = V . The following claim can be obtained by standard uncrossing
argument (see Schrijver [11] Chapter 60).

Claim. We may assume that the family F∗ is cross-free.

Since x∗ is the unique solution of the equation system defined by F∗ and V ∗, we
have |E| ≤ |F∗| + |V ∗|. We show, using a simple counting argument, that this
is impossible.

270 T. Király, L.C. Lau, and M. Singh

We assign 2|E| tokens to the nodes by assigning 2 tokens for every edge in
E to the two endpoints of the edge. The idea of the proof is to reassign these
tokens to the members of F∗ and V ∗ so that every member gets at least 2 tokens
and at least one token is not assigned to any member. This would contradict
|E| ≤ |F∗| + |V ∗|.

Let r ∈ V be an arbitrary node. We define the family

H∗ := {X ⊆ V − r : X ∈ F∗} ∪ {X ⊆ V − r : V − X ∈ F∗}.

Notice that H∗ is laminar. For a set X ∈ H∗, we define X ′ ∈ F∗ to be either X
or V − X (depending on which one is in F∗). We will assign 2 tokens to each
member of H∗ so that every member gets tokens from its nodes, thus the tokens
of r are not used.

A node v ∈ V ∗ has at least 4 tokens since |δ(v)| ≥ 4. We assign 2 of its tokens
to v (as degree constraint) and 2 tokens to the smallest member of H∗ containing
v. If no member of H∗ contains v, we have 2 unused tokens.

To assign tokens to the remaining members of H∗, we proceed in an order
compatible with the partial order of inclusion. Let X ∈ H∗ be a set that has
no tokens yet, and let {X1, . . . , Xk} be the maximal members of H∗ inside X ,
which all have at least two tokens assigned to them. There must be an edge
with an endpoint in X − ∪k

i=1Xi, otherwise the constraints corresponding to
X ′, X ′

1, . . . , X
′
k would be linearly dependent: the constraint for X ′ would be

a ±1 combination of the constraints for X ′
1, . . . , X

′
k, where the i-th coefficient

depends on whether X ′
i = Xi or X ′

i = V − Xi. Moreover, if only one such edge
e existed, then x∗(e) would be integer because it would be determined by an
integer combination b(X ′), b(X ′

1), . . . , b(X
′
k). Since 0 < x∗(e) < 1 for every edge,

it follows that there are at least two edges with an endpoint in X − ∪k
i=1Xi,

hence there are at least two tokens inside X that are not yet assigned to other
sets. We assign these tokens to X .

At the end of this procedure, every member of H∗ and V ∗ is assigned 2 tokens,
and there is an unused token at r since it is not an isolated node. This contradicts
the assumption that |E| ≤ |F∗| + |V ∗|, so we proved the theorem. ��

4.1 Hardness of the Feasibility Problem

In this section we prove that a special case of the degree-constrained 0-1 sub-
modular flow problem is NP-complete. The construction also shows that the fea-
sibility problems for Bounded Degree Graph Orientation and Bounded

Degree Directed Cut Cover are NP-complete. A subset of edges in a di-
graph is called independent if no two edges have a common node. In the following
E[W] denotes the set of induced edges in W , i.e. edges with both endpoints in W .

Theorem 4. Given a digraph D = (V, E) and a subset W ⊆ V of nodes, it is
NP-complete to decide if it is possible to change the orientation of an independent
subset of edges in E[W] so that the resulting digraph is strongly connected.

Proof. We reduce SAT to this problem. Let us consider a SAT instance with
variables x1, . . . , xn and clauses c1, . . . , cm. We associate a digraph D = (V, E)
and a node set W ⊆ V to this instance using the following construction.

Degree Bounded Matroids and Submodular Flows 271

For the variable xj , let mj be the number of clauses that contain xj or ¬xj .
We construct a cycle of length 4mj : the nodes are uj

i , v
j
i , w

j
i , z

j
i (i = 1, . . . , mj),

the oriented edges are uj
iv

j
i , w

j
i v

j
i , z

j
i w

j
i , z

j
i u

j
i+1 (i = 1, . . . , mj). The node set W

consists of all these nodes.
In addition, we add a node t and nodes si (i = 1, . . . , m), and add edges sit

(i = 1, . . . , m). For a given variable xj , suppose that ci is the l-th clause that
contains xj or ¬xj . If it contains xj , then we add the edges siu

j
l , u

j
l si, w

j
l t, tw

j
l .

If it contains ¬xj , then we add the edges siw
j
l , w

j
l si, u

j
l t, tu

j
l . This finishes the

construction of the digraph D.
Consider the cycle of length 4mj associated to the variable xj . The nodes

vj
i have out-degree 0, while the nodes zj

i have in-degree 0 (i = 1, . . . , mj). This
means that we have to change the orientation of 2mj independent edges in the
cycle in order to get a strong orientation. Thus we have two possibilities: either
we change the orientation of the edges uj

iv
j
i , z

j
i w

j
i (i = 1, . . . , mj), or of the edges

wj
i v

j
i , z

j
i u

j
i+1 (i = 1, . . . , mj). We say that the former corresponds to the ‘true’

value of xj , while the later corresponds to the ‘false’ value.
In this way, there is a one-to-one correspondence between orientations of the

above structure and possible evaluations of the variables. We claim that the
orientation is strongly connected if and only if the corresponding evaluation
satisfies the SAT formula. Suppose that the formula is not satisfied, i.e. there is
a clause ci containing only false literals. Consider the node set consisting of si

and its neighbors of type u and w. By the construction, this set has in-degree
0 in the orientation corresponding to the evaluation. Therefore the orientation
cannot be strongly connected.

Now suppose that an evaluation satisfies the formula. Then each node si

(i = 1, . . . , m) can be reached from t by a path of length 4 (which corresponds
to the “true” literal in ci). Since there is an edge from si to t for each si, and
all other nodes obviously have paths to and from t or some si, the orientation is
strongly connected. ��

Corollary 6. The feasibility problem for degree-constrained 0-1 submodular
flows is NP-complete.

References

1. Bansal, N., Khandekar, R., Nagarajan, V.: Additive Guarantees for Degree
Bounded Directed Network Design, IBM Research Report RC24347 (September
2007)

2. Bilo, V., Goyal, V., Ravi, R., Singh, M.: On the Crossing Spanning Tree Problem.
In: Jansen, K., Khanna, S., Rolim, J.D.P., Ron, D. (eds.) RANDOM 2004 and
APPROX 2004. LNCS, vol. 3122, pp. 51–60. Springer, Heidelberg (2004)

3. Chaudhuri, K., Rao, S., Riesenfeld, S., Talwar, K.: A Push-Relabel Algorithm
for Approximating the Minimum-Degree MST Problem and its Generalization to
Matroids, Invited submission to Theoretical Computer Science (Special Issue for
ICALP 2006) (2006)

272 T. Király, L.C. Lau, and M. Singh

4. Cunningham, W.H.: Testing membership in matroid polyhedra. Journal of Com-
binatorial Theory, Series B 36(2), 161–188 (1984)

5. Edmonds, J., Giles, R.: A min-max relation for submodular functions on graphs.
Ann. Discrete Math. 1, 185–204 (1977)

6. Frank, A.: An algorithm for submodular functions on graphs. Ann. Discrete
Math. 16, 97–120 (1982)

7. Frieze, A.: Personal Communication (March 2007)
8. Goemans, M.X.: Minimum bounded-degree spanning trees. In: Proceedings of 47th

IEEE FOCS, pp. 273–282 (2006)
9. Jain, K.: A factor 2 approxiamtion algorithm for the generalized Steiner network

problem. Combinatorica 21, 39–60 (2001)
10. Lau, L.C., Naor, J., Salavatipour, M., Singh, M.: Survivable network design with

degree or order constraints. In: Proceedings of 39th ACM STOC, pp. 651–660
(2007)

11. Schrijver, A.: Combinatorial Optimization, Polyhedra and Efficiency. Springer, Hei-
delberg (2003)

12. Singh, M., Lau, L.C.: Approximating minimum bounded degree spanning trees to
within one of optimal. In: Proceedings of the 39th ACM STOC, pp. 661–670 (2007)

	Degree Bounded Matroids and Submodular Flows
	Introduction
	Minimum Bounded Degree Matroid Basis
	Minimum Bounded Degree Submodular Flow

	Applications
	Minimum Crossing Spanning Tree
	Minimum Bounded-Ones Binary Matroid Basis
	Minimum Bounded Degree Spanning Tree Union
	Minimum Bounded Degree Directed Cut Cover
	Minimum Bounded Degree Graph Orientation

	Minimum Bounded Degree Matroid Basis
	Minimum Bounded Degree Submodular Flow
	Hardness of the Feasibility Problem

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
 /MTEX
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

