
On the Crossing Spanning Tree Problem

Vittorio Bilò1, Vineet Goyal2,�, R. Ravi2,�, and Mohit Singh2,�

1 Dipartimento di Informatica Università di L’Aquila
Via Vetoio, Coppito 67100 L’Aquila, Italy

bilo@di.univaq.it
2 Tepper School of Business, Carnegie Mellon University, Pittsburgh PA 15213

{vgoyal,ravi,mohit}@andrew.cmu.edu

Abstract. Given an undirected n-node graph and a set C of m cuts, the mini-
mum crossing spanning tree is a spanning tree which minimizes the maximum
crossing of any cut in C, where the crossing of a cut is the number of edges in the
intersection of this cut and the tree. This problem finds applications in fields as
diverse as Computational Biology and IP Routing Table Minimization.
We show that a greedy algorithm gives an O(r log n) approximation for the prob-
lem where any edge occurs in at most r cuts. We then demonstrate that the prob-
lem remains NP-hard even when G is complete. For the latter case, we design
a randomized algorithm that gives a tree T with crossing O((log m + log n) ·
(OPT + log n)) w.h.p., where OPT is the minimum crossing of any tree.
Our greedy analysis extends the traditional one used for set cover. The random-
ized algorithm rounds a LP relaxation of a corresponding subproblem in stages.

1 Introduction

Given a graph G = (V, E) with n nodes and a family of cuts C = {C1, . . . , Cm}, the
minimum crossing tree is a spanning tree T , which minimizes the maximum crossing of
any cut, where the crossing of a cut Ci is defined as |E(T)∩Ci|. If the family of cuts is C
= {(v, V \v) : v ∈ V }, then the MCST problem reduces to finding the minimum degree
spanning tree problem which has been widely studied [8]. Hence, NP-completeness of
the minimum degree spanning tree problem [7] shows that MCST problem is NP-hard.

In this paper, we show approximation guarantees for the greedy algorithm for the
MCST problem.

Theorem 1. Given a graph G = (V, E) and a family of m cuts C={C1, . . . , Cm}, a
greedy algorithm for MCST problem gives a spanning tree T which crosses any cut in
C at most O(r · log n) times the maximum crossing of an optimal tree.

Although the minimum degree spanning tree problem is trivial on complete graphs,
surprisingly, the MCST problem remains difficult even for this special case. We show
that the decision version of even this version of the MCST problem is NP-complete.

Theorem 2. Given a complete graph G, set of cuts C and a positive integer k, the
problem of determining whether there exists a spanning tree of G which crosses any cut
in C at most k times, is NP-complete.
� Supported in part by NSF grant CCR-0105548 and ITR grant CCR-0122581 (The ALADDIN

project).

K. Jansen et al. (Eds.): APPROX and RANDOM 2004, LNCS 3122, pp. 51–60, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

52 Vittorio Bilò et al.

A proof of the above theorem appears in the Appendix. The particular case of com-
plete graphs finds application in fields as varied as IP routing and computational bi-
ology. We give improved algorithm for the MCST problem on complete graph which
gives better performance guarantees.

Theorem 3. There is a randomized LP rounding based algorithm, which given a com-
plete graph G and a family of cuts C={C1, . . . , Cm}, outputs a spanning tree T such
that crossing for any cut Ci ∈ C is O((log m + log n) · (OPT + log n)), where OPT is
the maximum crossing of an optimal tree.

1.1 Motivation: Chimerism in Physical Mapping

The MCST problem finds important applications in computational biology. The physi-
cal mapping problem of the human genome project is to reconstruct the relative position
of fragments of DNA along the genome from information on their pairwise overlap. One
has a collection of clones and a set of short genomic inserts (called probes). A probe
defines a single location where a given subset of clones coincide. For each probe/clone
pair, it can be determined whether the clone contains the probe as a subsequence using
biological techniques. The problem is to construct the order in which the probes would
occur along the original chromosome that is consistent with the given the probe/clone
incidence matrix. This can be done efficiently if there is no chimerism. Chimerism is the
result of concatenating two or more clone from different parts of the genome, produc-
ing a chimeric clone -one that is no longer a simple substring of the chromosome. More
formally, the problem is as follows: Given a probe-clone incidence matrix A, with rows
indexed by probes and columns by clones, and the entry aij is 1 iff probe i occurs in
clone j. If there is no chimerism, then the problem is reduced to finding a permutation
of rows so that ones in each column are consecutive (called as 1-C1P) and this can be
solved efficiently in polynomial time [1]. However, in the presence of chimerism, the
problem is more difficult. Then, we need to find a permutation π of rows, such that
each column has at most k blocks of consecutive ones (called as k-consecutive ones
property or k-C1P), if the chimeric clones are a concatenation of at most k clones. The
decision version of this problem i.e ”Does a given 0-1 matrix have the k-consecutive
ones property?” has been proven to be NP-complete for k ≥ 2 in [5].

1.2 k-C1P and Vector TSPs

A classical way to solve the k-C1P problem is to reduce it to a particular multidimen-
sional TSP problem called the Vector TSP (vTSP). This problem is defined on a com-
plete graph G = (V, E), where each edge e ∈ E is assigned an m-dimensional cost
c : E → {0, 1}m. The cost of a tour T in G is the m-dimensional vector c(T) =∑

e∈E(T) c(e) and the objective is to minimize ‖c(T)‖∞.
The reduction from k-C1P to vTSP is straightforward. Each row of A becomes a

node in G and the cost assigned to edge e = (i, j) is set to the XOR-vector between the
two rows ai and aj . Now, let π be the permutation induced by a solution T of vTSP, and
let b(Aπ) be the maximum number of blocks of consecutive ones in Aπ. Then, we have
that b(Aπ) = ‖c(T)‖∞

2 . Solving the vTSP problem is NP-hard by this reduction from the

On the Crossing Spanning Tree Problem 53

2-C1P problem. However, since the Hamming distance obeys the triangle inequality, it
is possible to use the standard Euler Tour short-cutting technique in order to compute a
2r-approximate solution, given an r-approximation to the related Vector MST problem
(vMST).

The vMST can be formulated as the minimum crossing spanning tree problem on a
complete graph G. Any column j of A can be seen as a cut Cj = (Vj , V \Vj) defined on
G by setting Vj = {vi ∈ V |aij = 0}. The cost of edge e = (i, j) is as before the XOR-
vector between ai and aj i.e. c(e) is a 0-1 vector, where the lth entry corresponding to
a cut Cl is 1 iff the edge (i, j) crosses Cl. Here, the terminology that an edge e crosses
a cut C is used interchangeably with e ∈ C. For any tree T , let c(T) =

∑
e∈E(T) c(e).

The ith entry of the vector c(T) is exactly the number of edges of T crossing the cut
Ci. Thus, the minimum crossing spanning tree minimizes ‖c(T)‖∞.

1.3 Motivation: IP Routing

Another useful application of the MCST problem can be found in [2] where it is shown
that the an efficient solution for the min-k-C1P can be used to obtain an good approx-
imation for the Interval Routing problem: given a set of IP routing tables sharing the
same host space, the problem is to reassign the IP addresses to the hosts in order to
minimize the maximum size of any IP routing table.

This IP routing table minimization problem, MIN-IP for short, can be formalized as
follows. We are given a set R = {r1, . . . , rn} of n routers and a set H = {h1, . . . , hm}
of m destination hosts. Each router rj ∈ R has a degree δj , that is δj out-edges, and a
routing table specifying which of the out-edges to take for every host. The problem is
to choose the IP addresses of the m hosts and construct the n IP routing tables so as to
minimize the maximum size of a table, that is the maximum number of used entries in
a table.

In [2] it is shown that, given any r-approximation algorithm for the problem of
determining a row permutation that minimizes the maximum number of blocks (of ones)
in a boolean matrix A, an efficient 2r log m-approximation algorithm exists for MIN-IP,
which exploits a matrix representation of the instances of the problem.

Similar applications can be found also in designing interval routing schemes as
proposed in [3, 4].

1.4 Related Work

As observed earlier, the minimum degree spanning tree problem is a special case of the
MCST problem. The best result for the minimum degree spanning tree problem are due
to Furer and Raghavachari [8]. They construct a spanning tree with maximum degree
at most ∆∗ + 1 where ∆∗ is the maximum degree of the optimal tree. The vMST
problem has been considered by Greenberg and Istrail [6]. They give solution of cost
O(s(A) · OPT + log n). Here s(A) = max1≤i≤n

∑n
j=1 aij . Note that r in Theorem

1 is different from s(A) in [6]: r is the maximum number of cuts a given edge e can
cross, where the cuts are defined by columns of A; s(A) is the sparsity of A i.e. the
maximum number of 1’s in any row in A. Observe that r ≤ 2 · s(A), but s(A) can be as

54 Vittorio Bilò et al.

bad as m. Hence, our algorithm gives comparable or better performance guarantee than
the algorithm in [6].

The paper is organized as follows. In Section 2, we describe a greedy algorithm for
the MCST problem and prove Theorem 1. In Section 3, we give a randomized algorithm
for the special case and prove the guarantees of Theorem 3. In the Appendix, we show
that the MCST problem is NP-hard even for complete graphs.

2 Greedy Algorithm for the General Case

In this section, we show that the greedy algorithm gives an O(r · log n) approxima-
tion for the MCST problem where r is defined as maxe∈G |{C ∈ C: e ∈ C}|. Given
any subgraph H , the maximum number of times H crosses any cut in C is denoted by
Cross(H, C).

Greedy Algorithm:
F ← φ
while F is not a tree
do

Let e′ be an edge which minimizes Cross(F ∪ e, C)
over all edges e ∈ G which join two components of F .

F ← F ∪ e′

od

First, we give a lower bound for the MCST problem.

Lemma 1. Given any S ⊂ C, let k be the number of components formed after removing
the edges from G of all cuts in S. Then

opt ≥ k − 1
|S|

Proof. Any spanning tree of G must choose at least k−1 edges to join the k components
formed after removing the edges of cuts in S. Each of these k− 1 edges crosses at least
one of the cuts in S. Hence, the average crossing of such a cut in S is at least k−1

|S| .

The Proof of Theorem 1. Let the solution returned by the greedy algorithm be Tg and
let l = Cross(Tg, C). We can divide the running of the greedy algorithm in l phases.
The ith phase of the algorithm is the period when Cross(F, C) = i. Let ki denote the
number of components in F when the ith phase ends. Let Mi be the cuts which are
crossed by i edges at the end of ith phase and mi = |Mi|.

Consider the running of the algorithm in the ith phase. The crossing number of
at least mi cuts increases by 1 in the ith phase. Each edge can increase the crossing
number of at most r cuts. Hence, in the ith phase we must include at least
mi

r � edges
in F . Every edge, when included in F , reduces the number of components in F by
exactly one. Therefore, we have the following inequality

ki ≤ ki−1 − mi

r
(1)

On the Crossing Spanning Tree Problem 55

When the ith phase ends, every edge joining two components of F must cross at least
one of the cuts in Mi, else the greedy algorithm would choose such an edge in the ith

phase. Applying Lemma 1, we get the for each i,

opt ≥ ki − 1
mi

(2)

Using (1) and (2), we have that for each i,

ki−1 − ki ≥ ki − 1
r ∗ opt

(3)

Using ki ≥ 2 for each i ≤ l − 1 and kl−1 > kl, we have for each i,

ki−1 − ki ≥ ki

2r∗opt

⇒ ki−1 ≥ ki(1 + 1
2r∗opt)

⇒ k0 ≥ kl(1 + 1
2r∗opt)

l

As, k0 = n and kl = 1, we get that

n ≥ (1 + 1
2r∗opt)

l

⇒ log n ≥ l log(1 + 1
2r∗opt)

Using, log(1 + x) ≥ x− x2

2 and r ∗ opt ≥ 1 we get

log n ≥ l(1
2r∗opt (1− 1

4r∗opt)) ≥ l 1
4r∗opt

⇒ l ≤ 4r log n ∗ opt

Hence, the greedy algorithm is a O(r log n) approximation. ��

3 A Randomized Algorithm for the Case of Complete Graphs

In this section, we describe a randomized algorithm for MCST for complete graphs and
prove that it gives a tree with maximum crossing O((log m + log n) · (OPT + log n))
with high probability, where n is the number of vertices in G and m is the number of
cuts in C.

The idea is the following : Start with each vertex as a different component and merge
components in phases until a connected subgraph is obtained. In a phase, each compo-
nent is represented by an arbitrarily chosen vertex of the component. We carefully se-
lect some edges between the representative vertices by solving a multicommodity flow
problem in each phase, so that the cuts in C are not crossed “too much”. We ensure that
at least one edge is chosen out of each representative in every phase. Hence, the num-
ber of components reduces by at least a factor of two and thus a connected subgraph is
obtained in at most log2 n phases.

In phase p, we solve the following multicommodity flow problem on a graph G′

constructed from a complete graph Gp (on the representative vertices in this phase) as
follows. Let V (Gp) = {v1, v2, . . . , vnp}.

56 Vittorio Bilò et al.

– For each undirected edge e = (u, v), add two directed edges ef = (u, v) and
er = (v, u) in G′,

– For each vertex vi ∈ V (Gp) introduce a new vertex svi in V (G′) and
– ∀vj ∈ V (Gp), j �= i, add the directed edge (vj , svi) in G′.

Now, the flow problem on G′ is the following. Each vertex vi ∈ V (G′) is required
to send a unit flow of commodity i to svi . Let f1, f2, . . . , fn be the flows associated
with each of the n commodities. Let fi(v) denote the net flow of ith commodity into
the vertex v. The following integer program accomplishes our goal.

min z
s.t. z ≥∑

e∈E(G)∩C Xe ∀C ∈ C
Xe =

∑
i=1,...,np

fi(e)
∀i = 1, . . . , np

fi(v) =
∑

(v,u)∈E(G′) fi(v, u)−∑
(u,v)∈E(G′) fi(u, v) ∀v ∈ V (G′)

fi(v) = 0 ∀v ∈ V (G′) \ {vi, svi}
fi(vi) = 1
fi(svi) = −1
fi(e) ∈ {0, 1} ∀e ∈ E(G′)

We now describe the algorithm for the MCST problem. We will construct a con-
nected subgraph H with a low maximum crossing.

1. Initialize V (H)← V (G), E(H)← φ, G0 ← G, R0 ← V (G), p← 0.
2. While H is not connected

(a) Construct G′ from Gp. Solve the LP-relaxation of the corresponding integer
program for phase p and obtain an integral solution X̂ by randomized rounding
of the optimum LP solution [10].

(b) Let E′ = {e ∈ Gp : X̂e > 0}. E(H)← E(H) ∪ E′.
(c) p ← p + 1. Let Rp be the set of representative vertices (chosen arbitrarily one

for each connected component of H), Gp is the complete graph on the vertices
of Rp.

Let T ∗ be a optimal tree for the MCST problem and let OPT be the maximum cross-
ing of any cut in T ∗.

Proposition 1. Let z∗p be the optimum to the LP-relaxation in phase p. Then z∗p ≤
2OPT.

Proof. We can construct a feasible solution of the LP from the optimum tree T ∗ of
value at most 2OPT. Let Ri = {v1, . . . , vnp} be the set of representatives in phase i.
From the Tree Pairing Lemma in [9], there exists a matching M between vertices of
Ri such that the paths in T ∗ between the matched pairs of vertices are edge disjoint.
We can use this matching to construct a feasible solution to the LP. Send a unit flow
of commodity i on the directed path Pvi,vj ∪ (vj , svi) and of commodity j on the path
Pvj ,vi ∪ (vi, svj), where P (u, v) is the unique path in tree T ∗ between matched pairs u
and v. The above flow is a feasible flow as it satisfies all the flow constraints of the LP.
Every edge of T ∗ carries at most two units of flow. Hence, the objective value z for this
feasible flow, is at most 2OPT. Therefore, z∗p ≤ 2OPT.

On the Crossing Spanning Tree Problem 57

Proposition 2. If an edge e = (u, v) crosses a cut C, then any other path between u
and v also crosses the cut C at least once.

Proof. If we remove all the edges in C from G, then u and v would be disconnected.
Thus, every path from u to v contains an edge of C.

We will use Proposition 2, to obtain and work with a special kind of optimum so-
lution such that each flow path uses only two edges. Consider the flow decomposition
for commodity i in the optimum solution of the LP-relaxation and consider a flow path
P =< vi, vi1 , vi2 , . . . , vik

, svi >. We can replace P by the path P ′ =< vi, vik
, svi >

without increasing the maximum crossing. From Observation 2, we know that any cut
that the edge (vi, vik

) crosses will be crossed at least once by the path P . Therefore,
P ′ only reduces the number of crossings for the cuts in C and so we can replace P by
P ′. Thus, we can obtain a fractional optimum solution S∗ such that each flow path uses
only two edges. This step greatly simplifies the subsequent analysis of the randomized
rounding since every cut crosses every flow path at most once after this preprocessing.

3.1 Rounding S∗ to an Integral Solution

Let us describe the rounding of the fractional multicommodity flow obtained by solving
the LP relaxation corresponding to phase p. The flow corresponding to each commodity
is rounded independently of others. For each commodity i = 1, . . . , np, choose an edge
e = (vi, vj) with probability fi(vi, vj). The corresponding flow is routed through the
path < vi, vj , svi > and the edge (vi, vj) is included in the subgraph H . This is repeated
for every commodity independently.

In phase p, let the fractional optimum flow be f∗ and the optimum LP solution be
z∗. Let z(C) denote the number of edges crossing a cut C ∈ C. Consider Yj , a 0-1
variable associated with the jth commodity, where

Yj =
{

1 if the integral flow crosses C
0 otherwise

Therefore,
Pr(Yj = 1) =

∑

e∈E(Gp)∩C

f̃j(e)

z(C) =
np∑

j=1

Yj

E[z(C)] =
∑np

j=1

∑
e∈E(Gi)∩C f̃j(e)

=
∑

e∈E(Gi)∩C

∑np

j=1 f̃j(e)
=

∑
e∈E(Gi)∩C Xe

≤ z̃ ≤ 2 ·OPT

z(C) is the sum of independent Bernoulli trials. Thus, we can use Chernoff bounds
to bound the tail probability

Pr(|z(C)− E[z(C)]| > kβ) ≤ exp(− k2β2

2E[z(C)]
)

58 Vittorio Bilò et al.

Let β = E[z(C)] + log n and k = logn m + 2. Therefore,

Pr(|z(C)− E[z(C)]| > kβ) ≤ exp(−k2(E[z(C)]+log n)
2)

< exp(− (2 logn m+4) log n
2)

= 1
mn2

Since E[z(C)] ≤ 2OPT, we have that Pr(z(C) > (2(k + 1)OPT + k log n)) <
1

mn2 or Pr(z(C) > 2(logn m + 3) · OPT + (logn m + 2) · log n) < 1
mn2 for any

cut C ∈ C in any phase p. We say that a “bad” event occurs in a phase p if some
cut C ∈ C has a high crossing in that phase. Thus, from the union bound we have
Pr(bad event occurs in phase p) < 1

n2 . The algorithm has at most log2 n phases. Thus,

Pr(”bad” event occurs in any phase) <
log n

n2
(4)

Thus, we have shown that in every phase the crossing of every cut is O((logn m +
3)OPT + (logn m + 2) · log n) with high probability. Hence, we obtain a solution of
maximum crossing O((log2 m + log2 n) · (OPT + log2 n)) with probability at least
(1− log n

n2). ��
Remark: For m ≥ n, setting k =

√
(lognm + 2) gives a slightly better solution

with maximum crossing O(
√

log m logn(OPT + log n)).

4 Future Work

We believe that better performance ratios can be obtained particularly for the MCST
problem on complete graphs. Furthermore, more sophisticated methods than a simple
greedy approach should be able to remove the factor of r in the general case.

References

1. K. Booth and G. Luker. Testing for the consecutive ones property, interval graphs and
graph planarity using pq-tree algorithms. Journal of Computer and System Sciences 13: 335-
379,1976.

2. Vittorio Bilo and Michele Flammini. On the IP routing tables minimization with addresses
reassignments. In Proc. of the 18th International Parallel and Distributed Processing Sym-
posium(IPDPS), IEEE Press, 2004.

3. Michele Flammini, Giorgio Gambosi and Stefano Salomone. Interval Routing schemes. Al-
gorithmica 16(6): 549-568, 1996.

4. Michele Flammini, Alberto Marchetti-Spaccamela and Jan van Leeuwen. The Complexity
of Interval Routing on Random Graphs. The Computer Journal 41(1): 16-25, 1998.

5. Paul W. Goldberg, C. Golumbic, Martin, Haim Kaplan, and Ron Shamir. Four Strikes against
Physical Mapping. Journal of Computational Biology, 2(1): 139-152, 1995.

6. David S. Greenberg and Sorin Istrail.Physical mapping by STS Hybridization: Algorithmic
strategies and the challenges of software evaluation. Journal of Computational Biology, 2(2):
219-273, 1995.

7. Michael R. Garey and David S. Johnson Computers and Intractibility: A guide to the Theory
of NP-completeness. W. H. Freeman and Company, New York, 1979.

On the Crossing Spanning Tree Problem 59

8. M. Furer and B. Raghavachari. Approximating the minimum degree spanning tree to within
one from the optimal degree. In Proceedings of the Third Annual ACM–SIAM Symposium
on Discrete Algorithms (SODA‘92), 317-324, 1992.

9. Philip N. Klein and R. Ravi. A Nearly Best-Possible Approximation Algorithm for Node-
Weighted Steiner Trees. J. Algorithms 19(1): 104-115, 1995.

10. P. Raghavan and C. Thompson. Randomized Rounding. Combinatorica, Volume 7, 365-374,
1987.

Appendix: MCST for Complete Graphs Is NP-Hard

In this section, we consider the MCST problem for complete graphs. We show that the
problem is NP-hard even for this special case. In fact, we show that the decision version
of the problem is NP-complete.

Clearly, the decision problem is in NP. We reduce the 2-consecutive ones problem,
2-C1P, to MCST. Given a n×m matrix A, 2-C1P is the problem of determining whether
there exists a permutation of rows such that in each column all ones occur in at most 2
consecutive blocks. This problem has been shown to be NP-complete in [6].
Given any arbitrary n×m matrix A, make a complete graph G over n+1 vertices, with
one vertex corresponding to each row and a new dummy vertex s. For each column in A,
include a cut in C naturally defined by the column: vertices with rows with 1 form one
side of the cut. The dummy vertex s is always on the 0-side of each cut. Also include in
C singleton cuts, Cv = ({v}, V \ {v}) for every vertex in G. For each pair of vertices
u and v, include in C the cut Cuv = ({u, v}, V \ {u, v}). Finally, let k = 4.

We first show that if there exists a permutation of rows, π, such that it has 2-C1
property, then there exists a spanning tree which crosses each cut in C at most four
times. Consider the Hamiltonian path H which starts at s and then traverses the vertices
in the order corresponding to permutation π. Each cut corresponding to a column is
crossed by the Hamiltonian path H exactly when the row permutation π switches from
a row with 0 with a row with 1 or vice versa. As all the ones are in 2 consecutive blocks,
each cut can be crossed at most four times. Introducing the dummy node corresponds
to introducing a row with all zeros as the first row which clearly does not change 2-C1
property. Also, a Hamiltonian path crosses each singleton cut at most two times and
cut Cuv at most two times for any u, v ∈ V . Hence, there exists a spanning tree which
crosses every cut in C at most four times.

Now, for the other direction we show that if there exists a spanning tree T which
crosses every cut in C at most 4 times then there exists that a permutation π which has
the 2-C1P property. We claim that any such tree must be a Hamiltonian path. As each
singleton vertex is a cut in C, hence degree of each vertex is at most four. Suppose there
exists a vertex u with degree four. For n > 5, there exists a vertex v which is not a
neighbor of u. But, then the cut Cuv is crossed at least five times. Hence, all vertices
have degree at most three. Suppose, for the sake of contradiction there exists a vertex
u such that degT (u) = 3. Consider any vertex v which is not a neighbor of u. As T
crosses Cuv at most four times, so degT (v) = 1. This implies that the total sum of
degrees of nodes in T is at most 3 ∗ 4+ (n− 3). Hence, 2n− 2 ≤ n+9 or equivalently,
n ≤ 11 which is a contradiction assuming larger n. Hence, every vertex must have
degree at most two in T showing that T is a Hamiltonian path.

60 Vittorio Bilò et al.

Let the hamiltonian path be (v1, . . . , vk, s, vk+1, vn). Consider the following per-
mutation of rows (rk+1, . . . , rn, r1, . . . , rk) where vi corresponds to row ri in the trans-
formation. We claim that in each column, there cannot be more than two blocks of ones.
Suppose for the sake of contradiction, there exists a column ci which has three blocks
of ones. Thus, the cut corresponding to the Hamiltonian cycle formed by joining vn

and v1 must cross the cut corresponding to column ci at least five times. But any cycle
crosses any cut even number of times. Hence, it must cross the cut at least six times, but
then the hamiltonian path must cross the cut at least five times, a contradiction. Hence,
there exists a permutation which satisfies the 2-C1 property. This reduction shows that
decision version of MCST problem for complete graphs is NP-complete. ��

	1 Introduction
	1.1 Motivation: Chimerism in Physical Mapping
	1.2 k-C1P and Vector TSPs
	1.3 Motivation: IP Routing
	1.4 Related Work

	2 Greedy Algorithm for the General Case
	3 A Randomized Algorithm for the Case of Complete Graphs
	3.1 Rounding S* to an Integral Solution

	4 Future Work
	References
	Appendix: MCST for Complete Graphs Is NP-Hard

