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Abstract. Online auctions in which items are sold in an online fashion
with little knowledge about future bids are common in the internet en-
vironment. We study here a problem in which an auctioneer would like
to sell a single item, say a car. A bidder may make a bid for the item
at any time but expects an immediate irrevocable decision. The goal of
the auctioneer is to maximize her revenue in this uncertain environment.
Under some reasonable assumptions, it has been observed that the on-
line auction problem has strong connections to the classical secretary
problem in which an employer would like to choose the best candidate
among n competing candidates [HKP04]. However, a direct application
of the algorithms for the secretary problem to online auctions leads to
undesirable consequences since these algorithms do not give a fair chance
to every candidate and candidates arriving early in the process have an
incentive to delay their arrival.
In this work we study the issue of incentives in the online auction prob-
lem where bidders are allowed to change their arrival time if it benefits
them. We derive incentive compatible mechanisms where the best strat-
egy for each bidder is to first truthfully arrive at their assigned time
and then truthfully reveal their valuation. Using the linear programming
technique introduced in Buchbinder et al [BJS10], we first develop new
mechanisms for a variant of the secretary problem. We then show that
the new mechanisms for the secretary problem can be used as a building
block for a family of incentive compatible mechanisms for the online auc-
tion problem which perform well under different performance criteria. In
particular, we design a mechanism for the online auction problem which
is incentive compatible and is 3/16 ≈ 0.187-competitive for revenue, and
a (different) mechanism that is 1

2
√

e
≈ 0.303-competitive for efficiency.

1 Introduction

Online auctions in which items are sold in an online fashion with little knowledge
about future bids are common in the modern environment. Consider a problem in
which a seller would like to put his car, a Honda civic in an excellent condition, on
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an auction4. As a first step he publishes an advertisement for the car, and defines
a time frame for the sale. Assume that at future time t a potential buyer reads
the advertisement, and would like to participate in the auction. The potential
buyer has her value vi for the car. However, her knowledge about the values of
other potential buyers is very limited. Therefore, a reasonable assumption for
her is that other buyers evaluating the car similarly to her. In particular, she
believes that in a random subset of k potential buyers her value is the highest
with probability 1/k. Based on her beliefs she may now choose to arrive at any
time t′ ≥ t and then report some value v′i, possibly different than vi if it benefits
her.

Consider next the seller side of the story. The seller’s knowledge about values
of the potential buyers is also very limited. In particular, different people may
value his Honda civic very differently. A natural model that captures such limited
knowledge is an adversarial setting in which the set of values buyers have for the
car are chosen arbitrarily, but that the arrival times of the buyers is a random
permutation. The seller would like to design a mechanism which is incentive
compatible and achieves good performance. In this work, we devise mechanisms
for such an auction scenario where for any bidder, bidding truthfully and arriving
at their assigned time maximizes its expected profit. Moreover, these mechanisms
perform well under the criteria of both efficiency and revenue as compared to
the offline VCG mechanism that sells the item to the highest bidder but charges
a price of the second highest bidder [Vic61].

1.1 Auction Model

We model the online auction problem as the following mechanism design ques-
tion. An auctioneer would like to sell a single item to a collection of n bidders
C = {1, 2, . . . , n}. Each bidder i has an arrival time ai ∈ [0, T ] and a valuation vi
both of which are private information. The information given to the mechanism
is only the number of bidders and the time horizon. The bidder may arrive at
any time ti ≥ ai. When the bidder arrives, it bids bi for the item which may
be distinct from her valuation vi. The mechanism must then make a decision
of whether to allocate the good to the bidder and at what price. All allocation
decisions are irrevocable. We assume that the utility function for bidder i is the
quasilinear function vi − pi where pi is the price faced by bidder i.

Now, we explain how the valuation and the arrival times are selected. First,
an adversary chooses a set of arrival times {a1, a2, . . . , an} and assigns them
adversarially. Then it chooses a set of values {v1, v2, . . . , vn} and the values are
matched with the arrival times using a random permutation. From the above
model, each bidder makes the following reasonable assumption.

Assumption 11 Each bidder believes that if all the bidders are sorted by their
valuations then each permutation of bidders is equally likely.

4 The first author of this paper owns a Honda civic 2004 that he would like to sell
shortly. The rest of the details may be fictional.



Unconditionally, if all the bidders are sorted by their valuations then each
permutation of bidders is equally likely. What the above assumption states is
that any bidder, conditioned on her information, still believes the above
claim. Informally, this means that each bidder believes her valuation (or any
other bidder’s valuation) is equally likely to be the jth largest valuation for
any j. Observe that the assumption is inherently ordinal and we contrast it
with typical assumptions in such scenarios where it assumed that valuations are
drawn independently from a fixed distribution.

We evaluate any mechanism by two criteria, efficiency and revenue. We de-
fine the outcome of a mechanism to be efficient if it allocates the good to the
highest bidder and efficiency of a mechanism to be the probability with which
the outcome is efficient. The revenue of a mechanism is defined to be the ex-
pected price charged by the mechanism. In the spirit of online algorithms, we
compare its performance to the offline VCG mechanism that sells the item to
the highest bidder but charges a price of the second highest bidder [Vic61]. We
are interested in designing Bayesian incentive compatible mechanisms which en-
sure truthfulness with respect to both the arrival time as well as the bid. In
particular, we design a mechanism where for any bidder arriving truthfully on
their assigned time maximizes the expected profit given their beliefs and that
other bidders are also truthful. Moreover, we also show that reporting the true
valuation for the item is a dominant strategy for the bidders.

We note that ensuring truthfulness with respect to valuation is a well un-
derstood phenomenon in an offline setting [Vic61] and generalizes easily to our
online model as well. The main contribution of our paper is to design an incen-
tive compatible mechanism where arriving at their assigned time is a dominant
strategy.

1.2 Results

We design a family of incentive compatible mechanisms where each mechanism
in the family gives a different efficiency and revenue. Specifically, we prove the
following main theorem.

Theorem 1. For any 0 ≤ τ ≤ 1, there exists a incentive compatible online
auction mechanism that is:

– τ
4 + τ

2 ln
1
τ -competitive for efficiency.

– τ
2 − τ2

3 -competitive for revenue.

In particular, there exists a mechanism that is 3/16 ≈ 0.187-competitive for rev-
enue, and a (different) mechanism that is 1

2
√
e
≈ 0.303-competitive for efficiency.

Our results are illustrated in Figure 1. The dashed lines mark the interesting
values of τ which define a set of Pareto optimal mechanisms with respect to
efficiency and revenue.



Fig. 1. The performance of the online auction mechanism as a function of τ .

Techniques and connections with secretary problems Our results are closely re-
lated to better understanding of variants of the secretary problem. In the classical
secretary problem an employer would like to choose the best candidate among n
competing candidates. The candidates are assumed to arrive in a random order.
The secretary problem as well as many variants of it have been studied exten-
sively in the past (See Section 1.3 for more details). Our auction mechanism is
based on designing an underlying mechanisms for a variant of the secretary prob-
lem where we want to ensure that the probability that the mechanism selects the
ith candidate is at least the probability of selecting the i+1th candidate for each
i, where probability is taken over all permutations. This property in a secretary
mechanism captures the inherent combinatorial structure of the auction problem
where any bidder would not delay her arrival since the probability of acceptance
decreases over time. We also modify our performance goals in secretary problem
to mimic the goals of the auction problem. The goal of efficiency of a mechanism
in the auction setting corresponds to maximizing the probability of accepting
the best candidate. The other goal of maximizing revenue corresponds to maxi-
mizing the probability of hiring the best candidate while having the second best
candidate appear before the best candidate. For formal definitions of the secre-
tary model see Section 2. To obtain such mechanisms for the secretary problem,
we use a recently introduced linear programming technique by Buchbinder et
al [BJS10]. Buchbinder et al [BJS10] also designed new mechanisms for the sec-
retary problem which ensure that the probability of hiring in each position is
the exactly equal. In our setting, mapping the online auction problem to the
secretary problem, we design new mechanisms for the probability of hiring is
an non-increasing function of the position. Moreover, we also evaluate a mecha-
nism based on its revenue apart from its efficiency. Thus the set of mechanisms
obtained here differ in performance from those in Buchbinder et al [BJS10].



Finally, we believe that our novel truthfulness assumption that each bidder
believes “her valuation is as good as anyone else” is very reasonable in many
scenarios of lack of information, and may be useful in designing mechanisms for
various other settings.

1.3 Previous Results

Recently, there has been significant work on using generalizations of secretary
problems as a framework for online auctions [HKP04,Kle05,BIKK07,BIK07,BIKK08].
Incentives issues in online mechanisms have been studied in several models
[LN00,HKP04,AAM03]. These works designed mechanisms where incentive is-
sues were considered for both value and time strategies. The closest to our model
is a model studied in Hajiaghayi et al[HKP04]. They studied a similar model in
which an item is sold online. Bidders in their model have arrival and departure
time, and the item must be allocated to a bidder by their reported departure
time. The main difference of their model from our model is that they make the
assumption that bidders do not receive any utility from the item if they get the
item outside their arrival/departure interval. This makes the design easier since
bidders who arrive early have no incentive to delay their arrival later than their
departure time since they will get no utility.

The secretary problem is a well-studied problem introduced by Gardner [Gar60].
We refer the reader to the survey by Ferguson [Fer89] on the history of the prob-
lem. For our results on the secretary problem, we use the linear programming
technique introduced by Buchbinder et al [BJS10] who apply the technique to
the secretary problem and some of its generalizations.

2 Secretary Problem and Linear Programming

In this section, we give new mechanisms for variants of the secretary problem
which form the basis for the mechanisms for the online auction problem. In the
secretary problem we have a set of candidates C = {1, 2, . . . , n} that arrive in a
random order. There is total order R over the set of candidates which specifies
the quality of the candidates with respect to each other. The rank of the candi-
date is the position of the candidate in the total order R. After interviewing a
candidate, the mechanism designer learns her rank in relation to the candidates
that have already been interviewed. The mechanism designer then has to take
an irrevocable decision whether to hire the interviewed candidate. We study two
objectives which the mechanism designer needs to maximize. The first, which we
call efficiency, is the probability of hiring the best candidate. This goal closely
relates to efficiency in the online auction scenario. The second objective, which
we call revenue, is the probability of the event of hiring the best candidate while
having the second best candidate appear before the best candidate. This ob-
jective is closely related to the revenue in the auction model. Since we want to
map mechanisms for the secretary problem to incentive compatible mechanisms
for the online auction problem, we want the following property to be satisfied



(P ) (Efficiency) max 1
n
·
∑n

i=1 fi
(Revenue) max 1

n(n−1)
·
∑n

i=1(i− 1) · fi
s.t.
∀ 1 ≤ i ≤ n fi ≤ i · pi
∀ 1 ≤ i ≤ n fi ≤ 1−

∑i−1
j=1 pi

∀ 1 ≤ i ≤ n− 1 pi ≥ pi+1

∀ 1 ≤ i ≤ n fi ≥ 0, pi ≥ 0

(D) min
∑n

i=1 xi

s.t.
∀ 2 ≤ i ≤ n− 1

∑n
j=i+1 xj − zi + zi−1 ≥ iyi∑n
j=2 xj − z1 ≥ y1

zn−1 ≥ nyn
(Efficiency) ∀ 1 ≤ i ≤ n xi + yi ≥ 1

n

(Revenue) ∀ 1 ≤ i ≤ n xi + yi ≥ i−1
n(n−1)

∀ 1 ≤ i ≤ n xi ≥ 0, yi ≥ 0, zi ≥ 0

Fig. 2. (P ) is an LP for Maximizing efficiency/revenue with pi ≥ pi+1. (D) is the
corresponding dual LP of (P )

by the secretary mechanisms. For any position 1 ≤ i ≤ n − 1, probability that
a candidate is selected at position i is more than the probability a candidate
is selected at position i + 1. The above property will be crucial in establishing
incentive compatibility of mechanisms for the online auction problem and there-
fore, we call an interview mechanism incentive compatible if it satisfies the above
mentioned property.

In this section, we give incentive compatible mechanisms for the secretary
problem and prove the following Theorem 2.

Theorem 2. There is a mechanism Mτ for each 0 ≤ τ ≤ 1 which is incentive
compatible. The mechanism picks the best candidate with probability τ

4+
τ
2 ln(1/τ)

(efficiency) and picks the best candidate and the second best candidate appeared

before the first with probability τ
2 − τ2

3 (revenue). In particular, there exists a
mechanism that is 3/16 = 0.1875-competitive for revenue, and a (different)
mechanism that is 0.303-competitive for efficiency and these are optimal.

The proof the theorem follows from mapping the feasible mechanisms for the
secretary problem to feasible solutions to a linear program and then optimizing
the desired objective function of efficiency or revenue. This follows the technique
introduced by Buchbinder et al[BJS10]. We state the following two lemmas which
will prove Theorem 2.

Lemma 1. (Mechanism to LP solution) Let π be any incentive compatible
mechanism for the secretary problem. Let pπi denote the probability of selecting
the candidate at position i and fπ

i denote the probability of selecting the candidate
at position i given that the best candidate is at position i. Then (pπ, fπ) is a



feasible solution to the linear program (P). Moreover the efficiency of π is at
least 1

n ·
∑n

i=1 f
π
i and the revenue is at least 1

n(n−1) ·
∑n

i=1(i− 1) · fπ
i .

Proof. We first show that the solution (pπ, fπ) is a feasible solution to the linear
program (P ). The first two set of constraints are satisfied follows from Lemma
3.1 from Buchbinder et al [BJS10]. The last set of constraints is satisfied since
π is incentive compatible for delay only strategies. Thus, probability that π of
accepting a candidate at position i must be decreasing function of i.

Lemma 1 shows that the optimal solution to (P) is an upper-bound on the
performance of the mechanism. The following lemma shows that every LP solu-
tion actually corresponds to a mechanism which performs as well as the objective
value of the solution.

Lemma 2. (LP solution to Mechanism) Let (pi, fi) for 1 ≤ i ≤ n be
any feasible LP solution to (P). Then there is a mechanism π with efficiency
1
n

∑n
i=1 fi and revenue 1

n(n−1) ·
∑n

i=1(i− 1) · fi.

Proof. Consider the mechanism π defined as follows. Let ri = ⌊ ipi

1−
∑i−1

j=1 pj
⌋. Then

the mechanism selects the candidate at position i with probability 1 if the rank
of ith candidate among the candidates 1, . . . , i is less than or equal to ri. If the
rank of the candidate i is ri + 1 then it selects the candidate with probability

ipi

1−
∑i−1

j=1 pj
− ri. A simple calculation shows that the probability the mechanism

accepts the ith candidate is exactly pi and probability of selecting the best can-
didate given that it is best over all, fπ

i , is at least fi. Hence, the efficiency
of the mechanism is at least 1

n

∑n
i=1 fi. Moreover, the mechanism is incentive

compatible for delay only strategies since pi ≥ pi+1 for each i.
Let fπ

ij denote the probability that the mechanism accepts the candidate at

position i given that it is the best and the jth candidate is the second best. Then
we have the following claim.

Claim. For each i > 1: fπ
i = 1

i−1

∑i−1
j=1 f

π
i,j .

Proof. First, by the definition of fπ
i and fπ

i,j ,

fπ
i =

1

n− 1

i−1∑
j=1

fπ
i,j +

n∑
j=i+1

fπ
i,j


We claim that for each j > i, fπ

i,j = fπ
i . The reason is that given that when

j > i is second best the probability the algorithm accepts i only depends on the
first i numbers and doesn’t use their values at all. The argument follows since
the first i− 1 numbers forms a random permutation. Thus we get:

fπ
i =

1

n− 1

i−1∑
j=1

fπ
i,j +

n− i

n− 1
· fπ

i

and so we get our claim.



Using this claim it is easy to derive the lemma since the total revenue of the
mechanism is:

1

n(n− 1)

n∑
i=2

i−1∑
j=1

fπ
i,j =

1

n(n− 1)

n∑
i=1

(i− 1) · fπ
i ≥ 1

n(n− 1)

n∑
i=1

(i− 1) · fi

since fπ
i ≥ fi for each i.

Thus solving the primal program we can derive a family of mechanisms for
the problem. The mechanisms are parameterized by a real number 0 ≤ τ ≤ 1
and are as follows.

Incentive Compatible Mechanism Mτ :

– Let 0 ≤ τ ≤ 1. For each 1 ≤ i ≤ n, while no candidate is selected, do
• If 1 ≤ i ≤ τn, select the ith candidate with probability i

2τn−i+1 if
she is the best candidate so far.

• If τn < i ≤ n, select the ith candidate if she is the best candidate
so far.

The following claim shows that each of the mechanisms Mτ is incentive
compatible.

Lemma 3. For each 1 ≤ i ≤ n− 1, we have pi ≥ pi+1.

Proof. A simple calculation shows that pi = 1
2τn for each 1 ≤ i ≤ τn and

pi =
τn

2i(i−1) for each τn < i ≤ n and hence the claim holds.

By selecting τ , we obtain mechanisms with different values of efficiency and
revenue. A simple calculation then yields the following lemma about the perfor-
mance of the mechanisms.

Lemma 4. The mechanism Mτ for any 0 ≤ τ ≤ 1,

– (Efficiency) Picks the best candidate with probability τ
4 + τ

2 ln(1/τ).
– (Revenue) Picks the best candidate when the second best candidate appeared

before the first with probability τ
2 − τ2

3 .

Optimizing for τ , the best efficiency of 1
2
√
e
is obtained when τ = 1√

e
while the

best revenue of 3
16 is obtained when τ = 3

4 . Moreover, all values of τ are in the
range [ 1√

e
, 3/4] = [0.606, 0.75] results in a mechanism with efficiency and revenue

that is Pareto optimal.
We also show that the mechanism for efficiency and revenue are optimal by

giving dual solutions to the dual linear program (D) of the corresponding value.

Lemma 5. Let π be any mechanism which is incentive compatible. Then the
efficiency of π cannot be better than 1

2
√
e
and the revenue of π cannot be better

than 3/16.

Proof. We give two dual solutions to the linear program (D) in figure 2 where
the corresponding constraint for the efficiency and revenue are present. Observe
that each dual solution is an upper bound on performance of any mechanism.



Efficiency Let τ = 1√
e
. Let xi = 0 and yi =

1
n and zi = iτ

∑n
j=(τn+1)

1
j − i(i+1)

2n

for 1 ≤ i ≤ τn and xi = 1
n (1 −

∑n−1
j=i

1
j ) and yi = 1

n

∑n−1
j=i

1
j , zi = 0 for

τn < i ≤ n. We now show that the above dual solution is feasible and has
an objective value of ≈ 1

2
√
e
. A simple calculation shows that xi, yi, zi ≥ 0 for

each 1 ≤ i ≤ n. We now calculate the objective value before verifying all the
constraints.

s =

n∑
i=1

xi =
1

n

n∑
i=τn+1

(1−
n−1∑
j=i

1

j
)

=
1

n
(n− τn−

n−1∑
j=τn+1

j∑
i=τn+1

1

j
) =

1

n
(n− τn−

n−1∑
j=τn+1

(1− τn

j
))

=
1

n
(1 + τn ln

n

τn
) ≈ τ ln

1

τ
=

1

2
√
e

Observe that the constraint xi + yi ≥ 1
n is satisfied at equality for each

1 ≤ i ≤ n.

We now verify the constraint
∑n

j=i+1 xj − zi + zi−1 ≥ iyi. For 1 ≤ i ≤ τn,

observe that zi = is+ i(i+1)
2n . Thus we have

n∑
j=i+1

xj − zi + zi−1 = s− zi + zi−1 =

= s− s+
i(i+ 1)− (i− 1)i

2n
=

i

n
= iyi

as required. For τn+ 2 ≤ i ≤ n− 1, we have

n∑
k=i+1

xk − zi + zi−1 =
1

n

n∑
k=i+1

(1−
n−1∑
j=k

1

j
) =

i

n

n−1∑
j=i

1

j
= iyi

The constraints for boundary cases i = ⌈t⌉ and i = n can be verified similarly.

Revenue Due to lack of space we defer the proof to the full version of the paper.

3 The Online Auction Mechanism

Given the family of mechanisms in Section 2, we design mechanisms for the online
auction problem which prove Theorem 1. The family of mechanisms, parame-
terized by parameter τ is given below. The mechanism Aτ selects two random
permutations π1 and π2 on bidders. The permutation π1 is used to break ties
among bidders who arrive at the same time and the permutation π2 is used to
break ties among bidders who have the same valuation.



Auction mechanism Aτ : Let Bt be the set of agents arriving at time t.

– Order the bidders in Bt by permutation π1. Use the valuation to define
the ranks of the bidders while breaking ties according to permutation
π2.

– Feed the bidders one-by-one according to their order in Bt along with
their rank to the mechanism Mτ in Section 2.

– If the mechanism decides to accept the bidder then allocate the item to
that bidder.

– Set the price p for the bidder to be the highest value of any bid that
arrived prior to this bidder.

Observe that the mechanism indeed satisfies the online requirement of al-
locating the item and setting a price for it immediately at the arrival time of
the bidder. We now prove that for every τ , the mechanism Aτ given above is
incentive compatible.

Lemma 6. For any 0 ≤ τ ≤ 1, the mechanism Aτ is incentive compatible for
both valuation and time arrival.

Proof. First, we prove that the online mechanism is incentive compatible for
valuation. This follows simply since the price a bidder has to pay, in case she wins
the item, is the maximum price seen so far by the mechanism and is independent
of her bid. Moreover, the mechanism gives the item only to the person with the
highest valuation so far, therefore the mechanism is incentive compatible for
valuation.

We now show that the mechanism is incentive compatible for time strategies.
For simplicity, we assume that no two bidders arrive at the same time. We prove
that for any bidder, conditioned on her beliefs, the expected utility of the bidder
is a decreasing function of the position. Thus, the bidder has no incentive to
delay her arrival time.

Consider a bidder with valuation v. Let S be a random variable of the values
of the n−1 bidders (except the bidder we currently consider) arranged according
to their arrival time. For each i, let Si be the first i values in S, and let v(Si)
be the maximal value in Si. Let Xi be the indicator random variable that the
bidder that arrived at the ith position is assigned the item. First observe that the
mechanism allocates the item only to the highest bid seen so far and thus Xi = 0
if v is not the highest until the ith position. Therefore, the expected profit of the
bidder had she arrived just before the ith arrival time is E[(v − v(Si−1)) ·Xi].
We next prove that the expected profit for any bidder conditioned on her beliefs
is a decreasing function of the position at which the bidder appears. Since,
all expectations are evaluated conditioned on the bidder’s beliefs, we omit this
conditioning from the notation. Formally, for each 1 ≤ i ≤ n− 1, we prove that

E[(v − v(Si−1)) ·Xi] ≥ E[(v − v(Si)) ·Xi+1] (1)

Observe that we have the following.



E[(v − v(Si−1)) ·Xi] = E[(v − v(Si−1)) ·Xi|v > v(Si−1)] · Pr[v > v(Si−1)]

= E[(v − v(Si−1))|v > v(Si−1)] · Pr[Xi = 1|v > v(Si−1)] · Pr[v > v(Si−1)]

The second equality follows by the fact that given the event that v > v(Si−1),
i.e. the bidder has the highest valuation so far, the probability of allocating the
item to bidder i is independent of v− v(Si−1). This follows since the underlying
mechanism Mτ , and thus Aτ , does not look at the actual values but only the
relative ordering when deciding whether to give the item or not to a bidder.

Conditioned on the beliefs of the bidder, we have Pr[v > v(Si−1)] = 1/i
and that the set of valuations in Si−1 when ordered by position form a random
permutation. Thus,

Pr[Xi = 1|v > v(Si−1)] · Pr[v > v(Si−1)] = pi

where pi is the probability of accepting the ith candidate by Mτ . But for
mechanism Mτ , pi is a decreasing function of i. Thus, it suffices to show that
E[v(Si−1)|v ≥ v(Si−1)] is a non-decreasing function of i. Before we prove this,
we prove the following technical claim which is crucial in comparing the expected
profit if the bidder arrives in position i or i+1. Here vi is the random valuation
of the ith bidder by arrival order excluding the bidder with valuation v.

Claim. For each i, we have

E[v(Si−1)|v > v(Si−1) & v < vi] ≤ E[v(Si−1)|v > v(Si)]

Proof. Let v2(Si) be a random variable for the second maximal value in Si.

E[v(Si−1)|v > v(Si−1) & v < vi]

= E[v(Si−1)|vi > max{v(Si−1), v} & v > v(Si−1)]

= E[v(Si−1)|v > max{Si−1, vi} & vi > v(Si−1)] (2)

= E[v2(Si)|v > v(Si) & vi > v(Si−1)] = E[v2(Si)|v > v(Si)] (3)

≤ E[v(Si−1)|v > v(Si)] (4)

Where equality (2) follows by the symmetry arguments on v and vi. This is
done by pairing each permutation in which vi > v to a permutation in which
v > vi. Second equality in (3) follows since for any permutation on v1 to vi the
second highest value is the same. Equality (4) follows since for any permutation
on the values the second highest value among the first i values is at most the
highest value among the first i− 1 values.

Now we prove the following claim which shows that E[v(Si−1)|v > v(Si−1)]
is a non-decreasing function of i. This will complete the proof. Observe that

E[v(Si−1)|v > v(Si−1)]

= E[v(Si−1)|v > v(Si−1), v > vi] · Pr[v > vi|v > v(Si−1)]

+E[v(Si−1)|v > v(Si−1), v < vi] · Pr[v < vi|v > v(Si−1)]

≤ E[v(Si−1)|v > v(Si−1), v > vi] · Pr[v > vi|v > v(Si−1)]

+E[v(Si−1)|v > v(Si−1),v > vi] · Pr[v < vi|v > v(Si−1)] (5)

= E[v(Si−1)|v ≥ v(Si)] ≤ E[v(Si)|v ≥ v(Si)] (6)



Inequality (5) follows by Claim 3. Inequality (6) follows since in every term we
maximize over more elements.

Now, we prove the main theorem which follows directly from Lemma 6.

Proof. of Theorem 1 Given that the mechanism is incentive compatible for time
strategies (Lemma 6), we get that the dominant strategy of the bidders is not
to delay their arrival time. Thus, the rank given to the underlying mechanism is
a random permutation of the bidders. Thus, the performance of the mechanism
follows directly by Lemma 4.

References

[AAM03] Baruch Awerbuch, Yossi Azar, and Adam Meyerson. Reducing Truth-Telling
Online Mechanisms to Online Optimization. In In Proc. ACM Symposium
on Theory of Computing, pages 503–510, 2003.

[BIK07] M. Babaioff, N. Immorlica, and R. Kleinberg. Matroids, Secretary Problems,
and Online Mechanisms. In Proceedings 18th ACM-SIAM Symposium on
Discrete Algorithms, 2007.

[BIKK07] M. Babaioff, N. Immorlica, D. Kempe, and R. Kleinberg. A Knapsack Secre-
tary Problem with Applications. In Proceedings of 10th International Work-
shop on Approximation Algorithms for Combinatorial Optimization Problems
(APPROX), 2007.

[BIKK08] M. Babaioff, N. Immorlica, D. Kempe, and R. Kleinberg. Online Auctions
and Generalized Secretary Problems. SIGecom Exchange, 7:1–11, 2008.

[BJS10] Niv Buchbinder, Kamal Jain, and Mohit Singh. Secretary problems via linear
programming. In 14th Conference on Integer Programming and Combinato-
rial Optimization, 2010.

[Fer89] T. S. Ferguson. Who Solved the Secretary Problem? Statist. Sci., 4:282–289,
1989.

[Gar60] M. Gardner. Mathematical Games. Scientific American, pages 150–153,
1960.

[HKP04] M. T. Hajiaghayi, R. Kleinberg, and D. C. Parkes. Adaptive Limited-Supply
Online Auctions. In Proceedings of the 5th ACM Conference on Electronic
Commerce, 2004.

[Kle05] R. Kleinberg. A Multiple-Choice Secretary Algorithm with Applications
to Online Auctions. In Proceedings of the Sixteenth Annual ACM-SIAM
Symposium on Discrete algorithms, 2005.

[LN00] Ron Lavi and Noam Nisan. Competitive Analysis of Incentive Compatible
On-line Auctions. In In Proc. 2nd ACM Conf. on Electronic Commerce,
pages 233–241, 2000.

[Vic61] William Vickrey. Counterspeculation, auctions, and competitive sealed ten-
ders. The Journal of Finance, 16(1):8–37, 1961.


