
Proof The routed �ow is unsplittable by construction. The capacities are violated in

Step (ii)(a) when they are rounded up. Let the demands be d1 ≤ d2 ≤ . . . ≤ dk in the

increasing order. Observe that d1|d2| . . . |dk. We now show by induction that when the

demands d1, . . . , di have been routed, the capacity on each arc is at most di more than

its initial capacity and is a multiple of di for each 1 ≤ i ≤ k. The claim clearly holds for

i = 1. By the induction hypothesis we assume the claim is true for i− 1, i.e, the capacity

is violated by at most di−1 and is a multiple of di−1. While routing di, the capacity is

increased to a multiple of di. Since di−1|di, the increase in the ith step is bounded by

di − di−1 which bounds the total violation at the end of ith step by di as required.

13.5 Bin Packing

In this section we show the Karmarkar-Karp algorithm for the bin packing problem. This is

one of the earliest and is still one of the most sophisticated instances of using the iterative

technique for an approximation algorithm. In an instance I of the one-dimensional bin

packing problem, we are given n items each of which has a size between 0 and 1. The

objective is to pack the items into a minimum number of unit-size bins. Let opt(I) denote

the number of bins required in an optimal solution to instance I. We present the following

theorem due to Karmarkar and Karp.

Theorem 13.5.1 There is a polynomial time algorithm which returns a solution with at

most opt(I) +O(log2 opt(I)) bins.

13.5.1 Linear Programming Relaxation

A natural linear programming relaxation is to require that each item is put in at least

one bin and each bin can pack items of total size at most one, but this relaxation has a

(multiplicative) integrality gap of 2; see exercises. To obtain an additive approximation,

we need a so-called con�guration linear programming relaxation for the problem. Consider

an instance I of the bin packing problem with n(I) items of m(I) di�erent types. For

1 ≤ i ≤ m(I), let bi be the total number of items of type i and si be the common size of

these items. Let T1, . . . , TN be all the possible con�gurations in which a single bin can be

packed:

{T1, . . . , TN} := {(k1, . . . , km(I)) ∈ Zm+ :

m∑
i=1

kisi ≤ 1}.

Note that N can be exponential in n(I) and m(I). Let Tj = (tj1, . . . , tjm(I)) where

tji denotes the number of items of type i in con�guration j. The con�guration linear

202

programming relaxation for the bin packing problem is as follows.

minimize
N∑
j=1

xj

subject to
N∑
j=1

tjixj ≥ bi ∀ 1 ≤ i ≤ m(I)

xj ≥ 0 ∀ 1 ≤ j ≤ N,

where the constraints ensure that the con�gurations chosen contain at least bi items for

each type i. This linear programming has exponentially many variables, but there is a

polynomial time algorithm to compute a fractional solution di�ering from the optimum by

at most δ. Consider the dual of the linear program.

maximize

m(I)∑
i=1

biyi

subject to

m(I)∑
i=1

tjiyi ≤ 1 ∀ 1 ≤ j ≤ N

yi ≥ 0 ∀ 1 ≤ i ≤ m(I),

The dual program has m variables but exponentially many constraints, but if there is a

polynomial time separation oracle to determine if a given y is a feasible solution, then the

dual program can be solved by the ellipsoid algorithm. The separation problem for the dual

linear program is to determine, given y, if there exists a con�guration T = {t1, t2, . . . , tm}
so that

∑m(I)
i=1 tiyi > 1. This is equivalent to the following maximization problem on the

variables ti. Recall that si denotes the size of items of type i.

maximize

m(I)∑
i=1

yiti

subject to

m(I)∑
i=1

siti ≤ 1

ti ∈ Z+ ∀ 1 ≤ i ≤ m(I),

where the constraint is the de�nition of a con�guration. This is a knapsack problem where

si and yi correspond to the size and pro�t of item i respectively. So the separation problem

is equivalent to a knapsack problem, which is NP-hard to solve optimally. Nevertheless,

if there is a polynomial time weak separation oracle to determine whether a given y is a

feasible dual solution with error at most δ on the dual objective function or y is an infeasible

dual solution, then the dual program can be approximated by the ellipsoid algorithm with

an error at most δ.

In the following we sketch how to obtain an approximate solution to the (primal)

con�guration linear program using the ellipsoid algorithm. For the dual program, we

203

can solve the weak separation problem by rounding each yi down to the nearest rational

number that is a multiple of δ
2n , and then use a dynamic programming algorithm to solve

the resulting knapsack problem optimally in polynomial time. Using the ellipsoid algorithm

with the weak separation oracle, we can then obtain a solution y∗ to the dual problem with

y∗b ≥ optdual−δ, where b is the vector of the number of items of each type and optdual is

the optimal value of the dual program. Let T ′
1, T

′
2, . . . , T

′
N ′ be the bin con�gurations that

appeared as a separating hyperplane during the execution of the ellipsoid algorithm, where

N ′ is bounded by a polynomial in n(I) and m(I). Consider the dual program restricted to

the constraints that correspond to T ′
1, . . . , T

′
N ′ and let the optimal value of this restricted

dual program be opt
′
dual. Then y∗b ≥ opt

′
dual − δ, since the weak separation oracle can

always give the same answer as for the original problem. To obtain an approximate solution

to the primal program, we obtain an optimal solution to the restricted primal program in

which we use only the variables that correspond to the con�gurations in T ′
1, . . . , T

′
N ′ and

delete all other variables; in other words, we obtain an optimal solution to the dual of the

restricted dual program. Since there are only polynomially many variables and constraints,

this resticted primal program can be solved optimally in polynomial time. Let opt′
primal

be the optimal value of the restricted primal program. Then we have

opt
′
primal − δ = opt

′
dual − δ ≤ y∗b ≤ optdual = optprimal.

Therefore an optimal solution to the restricted primal program is an approximate solution

to the primal program with additive error at most δ.

13.5.2 Characterization of Extreme Point Solutions

The following lemma is a direct consequence of the Rank Lemma.

Lemma 13.5.2 Given any extreme point solution to the con�guration linear program, there

are at most m(I) nonzero variables, where m(I) is the number of di�erent types of items

in instance I.

To illustrate the use of Lemma 13.5.2, we show a very simple algorithm with a

good performance guarantee when the number of di�erent types of items is small. Let

lin(I) denote the optimal value of the con�guration LP associated with instance I. Let

size(I) =
∑m(I)

i=1 sibi be the sum of the sizes of all the items in instance I.

Lemma 13.5.3 opt(I) ≤ lin(I) + m(I)+1
2 .

Proof Let x be an optimal extreme point solution of the con�guration LP for instance I.

Then, by Lemma 13.5.2, x has at most m(I) nonzero variables. We open ⌊xj⌋ bins with
con�guration j for each j. The remaining items form an instance I ′. Let fj = xj − ⌊xj⌋.
Then size(I ′) ≤ lin(I ′) =

∑
j fj . We now �nd a packing for instance I ′ of cost at most

size(I ′) + m(I)+1
2 . A packing for instance I ′ of cost at most m(I) can be constructed by

204

using one new bin for each con�guration j with nonzero fj , and then removing excess items

(the items that appear in more than one con�guration). On the other hand, any greedy

packing algorithm will give a solution for instance I ′ of cost at most 2size(I ′)+1, since each

bin, except possibly one, will be at least half full. Hence, the better of these two packings

has cost at most the average, which is size(I ′) + m(I)+1
2 ≤

∑
j fj +

m(I)+1
2 , which in turn

gives a packing for instance I with cost at most
∑

j⌊xj⌋+
∑

j fj+
m(I)+1

2 = lin(I)+m(I)+1
2 ,

proving the lemma.

13.5.3 De�ning Residual Problems: Grouping and Elimination

Given Lemma 13.5.3, one would like to reduce the number of distinct item sizes of the

input instance. The idea of grouping is to divide the items into groups of similar sizes, and

create a residual problem by increasing the sizes of each item to the largest item size in

its group, so as to decrease the number of distinct item sizes in the residual problem. By

doing so, however, the total item size of the residual problem and hence the optimum of

the residual problem increases, and so there is a tradeo� in choosing the parameters. The

main idea of the Karmarkar-Karp algorithm is to de�ne the residual problem iteratively,

so that in each iteration the number of distinct item sizes decrease by a constant factor,

while the optimum in the residual problem increases by only an extra O(log(opt)) number

of bins. Applying this procedure inductively will lead to Theorem 13.5.1.

The following is a simple method to bound the optimum of the residual problem. Let

I and J be two bin packing instances. We write I ≼ J if there is an injective function f

mapping items in I into items in J so that size(a) ≤ size(f(a)) for each item a ∈ I, where
size(a) is the size of item a. Clearly, if I ≼ J , then opt(I) ≤ opt(J), lin(I) ≤ lin(J)

and size(I) ≤ size(J). This method will be used throughout to analyze the performance

of the grouping techniques.

13.5.3.1 Linear Grouping

The following process is called linear grouping with parameter k. Let I be an instance

of the bin packing problem and let k be a positive integer. Divide the set I into groups

G1, G2, . . . , Gq so that G1 contains the k largest items, G2 contains the next k largest items

and so on. Hence G1 ≽ G2 ≽ · · · ≽ Gq and |Gi| = k for all groups except the last group.

Let G′
i be the multi-set of items obtained by increasing the size of each item in group Gi

to the maximum size of an item in that group. Then G1 ≽ G′
2 ≽ G2 ≽ · · · ≽ G′

q ≽ Gq.

Let J := ∪qi=2G
′
i and J

′ := G1. Then J ≼ I ≼ J ∪ J ′. Note that the items in J ′ can be

trivially packed in k new bins, by using one new bin for each item. Therefore, we have the

following after linear grouping.

Lemma 13.5.4 After linear grouping with parameter k, we have

• opt(J) ≤ opt(I) ≤ opt(J) + k,

205

• lin(J) ≤ lin(I) ≤ lin(J) + k,

• size(J) ≤ size(I) ≤ size(J) + k.

13.5.3.2 Geometric Grouping

The following re�nement of linear grouping is called geometric grouping with parameter

k. This is the key idea in the Karmarkar-Karp algorithm to reduce the number of distinct

item sizes iteratively.

Let I be an instance of the bin packing problem. Let α(I) denote the size of the

smallest item in instance I. For 0 ≤ r ≤ ⌊log2 1
α(I)⌋, let Ir be the instance consisting of

those items from I whose sizes are in the interval [2−(r+1), 2−r). Let Jr and J ′
r be the

instances obtained by applying linear grouping with parameter k · 2r to Ir. Let J := ∪rJr
and J ′ := ∪rJ ′

r.

Lemma 13.5.5 After geometric grouping with parameter k, we have

• opt(J) ≤ opt(I) ≤ opt(J) + k⌈log2 1
α(I)⌉,

• lin(J) ≤ lin(I) ≤ lin(J) + k⌈log2 1
α(I)⌉,

• size(J) ≤ size(I) ≤ size(J) + k⌈log2 1
α(I)⌉,

• m(J) ≤ 2
ksize(I) + ⌈log2

1
α(I)⌉.

Proof From Lemma 13.5.4 it follows that Jr ≼ Ir ≼ Jr∪J ′
r and thus J ≼ I ≼ J∪J ′. Hence

opt(J) ≤ opt(I) ≤ opt(J ∪ J ′) ≤ opt(J) + opt(J ′). Note that opt(J ′) ≤
∑

r opt(J
′
r).

Each J ′
r contains at most k · 2r items each of size less than 2−r. Hence J ′

r can be packed

into at most k bins. Thus opt(J ′) ≤ k⌈log2 1
α(I)⌉, and therefore opt(J) ≤ opt(I) ≤

opt(J) + k⌈log2 1
α(I)⌉. The proofs of the next two inequalities are similar.

For each r, since we apply linear grouping with parameter k · 2r, all except the last
group in Jr have k · 2r items and the items in each group are of the same size. Also, each

item in Ir has size at least 2
−(r+1), and thus we have

size(Ir) ≥ 2−(r+1) · n(Ir) ≥ 2−(r+1)
(
(m(Jr)− 1) · k · 2r

)
.

Therefore m(Jr)− 1 ≤ 2
ksize(Ir) and thus

m(J) ≤ 2

k
size(I) + ⌈log2

1

α(I)
⌉.

13.5.3.3 Elimination of Small Items

In the geometric grouping process, the performance depends on the smallest item size.

In the following we show that we can eliminate items of small sizes without a�ecting the

approximation performance ratio much. Let I be an instance of the bin packing problem.

Let g be a real number between 0 and 1. We say an item is large if its size is larger than g
2

206

and small otherwise. Consider a process which starts with a given packing of large items

into bins, and then inserts the small items, using a new bin only when necessary. If the

cost of the given packing of the large pieces is C, then the cost of the packing resulting

from the process is at most max{C, (1 + g)opt(I) + 1}; see the exercises.

13.5.4 Iterative Algorithm

With the grouping technique developed, we present the iterative algorithm in Figure 13.5.

The parameters k and g will be set as k = 4 and g = 1
size(I) .

Iterative Bin Packing Algorithm

(i) Eliminate all small items of size at most g.

(ii) While size(I) > 1 + 1
1− 2

k

⌈log2 1
g ⌉ do

(a) Perform geometric grouping with parameter k to create instance J and J ′.

Pack J ′ using at most k⌈log2 1
g ⌉ new bins.

(b) Compute an optimal extreme point solution x to the con�guration LP on

instance J with error at most 1.

(c) For each j with xj ≥ 1, create ⌊xj⌋ bins with con�guration j and remove

the items packed from the problem.

(iii) Pack the remaining items using at most 2 + 2
1− 2

k

⌈log2 1
g ⌉ bins.

(iv) Insert the small items eliminated in Step 1, using new bins only when necessary.

Fig. 13.5. Karmarkar-Karp Bin Packing Algorithm

13.5.5 Correctness and Performance Guarantee

To prove the correctness and the performance guarantee, we will bound the number of

iterations of the algorithm (in particular it will terminate) and the number of bins used

by the algorithm. Let t be the number of iterations of the algorithm. For 1 ≤ i ≤ t, let Ii
be the instance at the beginning of iteration i, and Ji, J

′
i be the instances resulting from

geometric grouping on Ii, and let Xi and Yi be the number of bins created in Step (ii)(c)

and Step (ii)(a) in iteration i of the algorithm.

Lemma 13.5.6 The iterative algorithm will terminate in at most O(lnn) iterations.

Proof Note that the total size of the residual problem decreases geometrically:

size(Ii+1) ≤ lin(Ii+1) ≤
∑
j

(xj − ⌊xj⌋) ≤ m(Ji) ≤
2

k
size(Ii) + ⌈log2

1

g
⌉,

207

where the second last inequality follows from Lemma 13.5.2 and the last inequality follows

from Lemma 13.5.5. Therefore

size(Ii+1) ≤ (
2

k
)isize(J) + ⌈log2

1

g
⌉[1 + 2

k
+ · · ·+ (

2

k
)i−1] ≤ (

2

k
)isize(I) +

1

1− 2
k

⌈log2
1

g
⌉.

Since size(It) > 1 + 1
1− 2

k

⌈log2 1
g ⌉, this implies that (2k)

t
size(I) ≥ 1 and hence

t ≤ ln size(I)

ln k
2

+ 1 = O(lnn).

Therefore the running time of the algorithm is polynomial.

Lemma 13.5.7 The total number of bins used by the algorithm is at most opt(I) +

O(ln2 opt(I)).

Proof To bound the number of bins used by the algorithm, we note that lin(Ii+1) ≤
lin(Ji) + 1−Xi ≤ lin(Ii) + 1−Xi by Step (ii)(c) of the algorithm, which implies that

t∑
i=1

Xi ≤ lin(I) + t.

By Lemma 13.5.5 we have for each 1 ≤ i ≤ t

Yi ≤ k⌈log2
1

g
⌉.

Note that Step (iii) is always possible by any greedy algorithm. The number of bins

produced by the algorithm after Step (iii) is at most

t∑
i=1

Xi + t · Yi + 2 +
2

1− 2
k

⌈log2
1

g
⌉.

After inserting the small items, the total number of bins used by the algorithm is at most

the maximum of (1 + g)opt(I) + 1 and

opt(I) +
(ln size(I)

ln k
2

+ 1
)(

1 + k⌈log2
1

g
⌉
)
+ 2 +

2

1− 2
k

⌈log2
1

g
⌉,

because
∑t

i=1Xi ≤ lin(I) ≤ opt(I) and t ≤ (lnsize(I)
ln k

2

+ 1) and Yi ≤ k⌈log2 1
g ⌉. By

setting k = 4 and g = 1
size(I) ≥

1
n , and noting that opt(T) ≥ size(I), we see that the

total number of bins is at most opt(I) +O(ln2 opt(I)), proving theorem 13.5.1.

13.6 Iterative Randomized Rounding: Steiner Trees

In this section, we present a recent application of the iterative rounding method augmented

with randomized rounding for the classical undirected Steiner tree problem. The Steiner

208

