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Preface

Audience: As teachers and students of Combinatorial Optimization, we have often looked
for good teaching material that illustrates the elegance of the classical results on matchings,
trees, matroids and flows while at the same time trying to concentrate on methods that
have seen continued application. With the advent of approximation algorithms, some of
these techniques from exact optimization such as the primal-dual method have indeed
proven their staying power. In this book, we describe what we believe is a simple and
powerful method of the same ilk that is iterative in essence.

The core of the iterative methods we describe relies on a fundamental result in linear
algebra that the row rank and column rank of a real matrix are equal. This seemingly
elementary fact allows us via a counting argument to provide an alternate proof of the
above-mentioned classical results; the method is constructive and the resulting algorithms
are iterative with the correctness proven by induction. What’s more, these methods gen-
eralize to accommodate a variety of additional constraints on these classical problems that
render them NP-hard, but a careful adaptation of the iterative method leads to very effec-
tive approximation algorithms.

Our goal in this book has been to highlight the commonality and uses of this method
and convince the readers of the generality and potential for future applications. We have
used an elementary presentation style that should be accessible to anyone with introductory
college mathematics exposure in linear algebra and basic graph theory. Whatever advanced
material in these areas we require, we develop from scratch along the way. Some basic
background on approximation algorithms such as is provided in the various books and
surveys available on this subject will be useful in appreciating the power of the results
we prove in this area, but other than the basic definition of an approximation algorithm
and the understanding of polynomial-time complexity, no further technical background is
required from this typically more advanced subject.

An important secondary goal of the book is to provide a framework and material
for introductory courses in combinatorial optimization at the upper-class undergraduate
and beginning graduate levels. We hope the common approach across the chapters gives a
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comprehensive way to introduce these topics for the first time. The more advanced applica-
tions are useful illustrations for graduate students of their potential for future application
in their research.

History: This book is inspired by the application of the iterative method in the field
of approximation algorithms and its recent adaptations to prove performance guarantees
for problems with two objectives. This adaptation showed us how the proof technique
can be used to re-prove several classical results in combinatorial optimization and also
in approximation algorithms in a unified way. The book owes its origin to the paper by
Jain [78] describing a 2-approximation algorithm for a large class of minimum-cost network-
design problems in undirected networks. While there are other earlier illustrations of the
method in the literature, it is Jain’s work that inspired the adaptation that led to the
results in this monograph.

Jain’s result itself was a breakthrough when it appeared, and demonstrated the
power of his iterative rounding method to prove this result that was conjectured based on
a long line of earlier papers that applied a different primal-dual method to these problems.
In this sense, his method was a purely primal attack on the problem. His method was
extended by Lau, Naor, Salavatipour and Singh [95] to degree-bounded network design
problems. The adaptation of this method by Singh and Lau [134] to the degree-bounded
minimum-cost spanning tree problem surprisingly involves no rounding at all! Instead,
variables whose value are set to one in the linear programming relaxation are selected and
the program is modified carefully to continue to yield this property. This explains the title
of this monograph and also hints at how this adaptation now allows one to prove exact
results since we no longer have to round any variables and lose optimality.

Acknowledgments: We are grateful to the many organizations whose support
have enabled this work: National Science Foundation, Research Grants Council of Hong
Kong, Microsoft Research, Kyoto University RIMS, Qatar Foundation, Carnegie Mellon
University - Pittsburgh and Doha and the Chinese University of Hong Kong. We are also
grateful to our families for their support of this endeavor. We hope you will enjoy reading
this monograph as much as we did writing it.
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1

Introduction

In this first chapter we motivate our method via the assignment problem. Through this
problem we highlight the basic ingredients and ideas of the method. We then give an
outline of how a typical chapter in the rest of the book is structured, and how the remaining
chapters are organized.

1.1 The Assignment Problem

Consider the classical assignment problem: Given a bipartite graph G = (V1 ∪ V2, E) with
|V1| = |V2| and weight function w : E → R+, the objective is to match every vertex in V1

with a distinct vertex in V2 to minimize the total weight (cost) of the matching. This is
also called the minimum weight bipartite perfect matching problem in the literature, and
is a fundamental problem in combinatorial optimization. See Figure 1.1 for an example of
a perfect matching in a bipartite graph.
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Fig. 1.1. The solid edges form a perfect matching in the bipartite graph.

One approach to the assignment problem is to model it as a linear programming
problem. A linear program is a mathematical formulation of the problem with a system
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of linear constraints which can contain both equalities and inequalities, and also a linear
objective function that is to be maximized or minimized. In the assignment problem, we
associate a variable xuv for every (u, v) ∈ E. Ideally, we would like the variables to take
one of two values, zero or one (hence in the ideal case, they are binary variables). When
xuv is set to one, we intend the model to signal that this pair is matched; when xuv is set
to zero, we intend the model to signal that this pair is not matched. The following is a
linear programming formulation of the assignment problem.

minimize
∑
u,v

wuv xuv

subject to
∑

v:{u,v}∈E

xuv = 1 ∀u ∈ V1

∑

u:{u,v}∈E

xuv = 1 ∀ v ∈ V2

xuv ≥ 0 ∀ {u, v} ∈ E

The objective function is to minimize the total weight of the matching, while the two sets
of linear equalities ensure that every vertex in V1 is matched to exactly one vertex in V2

in the assignment and vice-versa.

A fundamental result in the Operations Research literature [73] is the polynomial
time solvability (as well as the practical tractability) of linear programming problems.
There is also a rich theory of optimality (and certificates for it) that has been developed
(see e.g., the text by Chvatal [29]). Using these results, we can solve the problem we have
formulated above quite effectively for even very large problem sizes.

Returning to the formulation however, our goal is to find a "binary" assignment of
vertices in V1 to vertices in V2, but in the solution returned, the x-variables may take
fractional values. Nevertheless, for the assignment problem, a celebrated result that is
a cornerstone of combinatorial optimization [30] states that for any set of weights that
permit a finite optimal solution, there is always an optimal solution to the above LP
(linear program) that takes binary values in all the x-variables.

Such integrality results of LPs are few and far between, but reveal rich underlying
structure for efficient optimization over the large combinatorial solution space [130]. They
have been shown using special properties of the constraint matrix of the problem (such
as total unimodularity), or of the whole linear system including the right hand side (such
as total dual integrality). This book is about a simple and fairly intuitive method that
is able to re-prove many (but not all) of the results obtained by these powerful methods.
One advantage of our approach is that it can be used to incorporate additional constraints
that make the problem computationally hard, and allow us to derive good approximation
algorithms with provable performance guarantee for the constrained versions.
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1.2 Iterative Algorithm

Our method is iterative. Using the following two steps, it works inductively to show that
the LP has an integral optimal solution.

• If any xuv is set to 1 in an optimal solution to the LP, then we take this pair as matched
in our solution, and delete them both to get a smaller problem, and proceed to the next
iteration.

• If any variable xuv is set to 0 in an optimal solution, we remove the edge (u, v) to again
get a smaller problem (since the number of edges reduces by 1) and proceed to the next
iteration.

We continue the above iterations till all variables have been fixed to either 0 or 1.
Given the above iterative algorithm, there are two claims that need to be proven. Firstly,
that the algorithm works correctly, i.e., it can always find a variable with value 0 or 1
in each iteration and secondly, the matching selected is an optimal (minimum weight)
matching. Assuming the first claim, the second claim can be proved by a simple inductive
argument. The crux of the argument is that in each iteration our solution pays exactly
what the fractional optimal solution pays. Moreover, the fractional optimal solution when
restricted to the residual graph remains feasible for the residual problem. This allows us to
apply an inductive argument to show that the matching we construct has the same weight
as the fractional optimal solution, and is thus optimal. For the first claim, it is not clear
a-priori that one can always find a variable with value 1 or 0 at every step. Indeed the
example in Figure 1.2 shows that there might not be such a variable at some fractional
optimal solution. However, we use the important concept of the extreme point (or vertex)
solutions of linear program to show that the above iterative algorithm works correctly.
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Fig. 1.2. In Figure (a), the fractional solution which places 1
2 on all the edges is an optimal

fractional solution but not an extreme point solution. The fractional solution in Figure (a) is the
convex combination of the integral solutions in Figure (b) and Figure (c).

Definition 1.2.1 Let P = {x : Ax = b, x ≥ 0} ⊆ Rn. Then x ∈ Rn is an extreme point
solution of P if there does not exist a non-zero vector y ∈ Rn such that x + y, x− y ∈ P .
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Extreme point solutions are also known as vertex solutions and are equivalent to
basic feasible solutions. These concepts are defined in Chapter 2. Pictorially extreme
point solutions are the corner points of the set of feasible solutions. The following basic
result shows that there is always an optimal extreme point solution to bounded linear
programs.

Lemma 1.2.2 Let P = {x : Ax = b, x ≥ 0} and assume that the optimum value min{cT x :
x ∈ P} is finite. Then for any feasible solution x ∈ P , there exists an extreme point
solution x′ ∈ P with cT x′ ≤ cT x.

The following Rank Lemma is an important ingredient in the correctness proofs of
almost all iterative algorithms in this monograph (see Chapter 2).

Lemma 1.2.3 (Rank Lemma) Let P = {x : Ax = b, x ≥ 0} and let x be an extreme
point solution of P such that xi > 0 for each i. Then the number of variables is equal to
the number of linearly independent constraints of A, i.e. the rank of A.

1.2.1 Contradiction Proof Idea: Lower Bound > Upper Bound

We give an outline of the proof that at each iteration there exists a variable with value 0
or 1. Suppose for contradiction that 0 < xe < 1 for every edge e. We use this assumption
to derive a lower bound on the number of variables of the linear program. Let n be the
remaining vertices in V1 (or V2, they have the same cardinality) at the current iteration.
Then each vertex in V1 must have two edges incident on it, since

∑
v∈V2:(u,v)∈E xuv = 1

and xuv < 1 for each (u, v) ∈ E. Thus the total number of edges is at least 2n. This is a
lower bound on the number of variables of the linear program, since we have one variable
for each edge.

On the other hand, using the Rank Lemma, we derive an upper bound on the number
of variables of the linear program. In the linear program for bipartite matching, we have
only 2n constraints (one for each vertex in V1 ∪ V2). Moreover, these 2n constraints
are dependent since the sum of the constraints for vertices in V1 equals the sum of the
constraints for vertices in V2. Hence, the number of linearly independent constraints is at
most 2n−1. By the Rank Lemma, the number of variables is at most 2n−1. This provides
us an upper bound on the number of variables. Since our upper bound is strictly smaller
than the lower bound, we obtain the desired contradiction. Therefore, in an extreme point
solution of the linear program for bipartite matching, there must exist a variable with value
0 or 1, and thus the iterative algorithm works. The number of iterations can be simply
bounded by the number of edges in the bipartite graph. We give a formal proof of the
above outline in Chapter 3.
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1.2.2 Approximation Algorithms for NP-hard Problems

The above framework can be naturally adapted to provide an approximation algorithm via
the iterative method. In particular, for this, the iterative algorithm above typically has
one or both of two additional steps: Rounding and Relaxation.

(i) Rounding: Fix a threshold α ≥ 1. If there is a variable xi that has a value of at
least 1

α in the optimal extreme point solution then pick the corresponding element
in the solution being constructed.

(ii) Relaxation: Fix a threshold β. If there is a constraint
∑

i aixi ≤ b such that∑
i ai ≤ b + β then remove the constraint in the residual formulation.

For the bipartite matching problem, we will see how the iterative algorithm presented
above can be adapted to give approximation algorithms for the generalized assignment
problem in Chapter 3. Other generalizations include the budgeted allocation problem in
Chapter 3 and the hypergraph matching problem in Chapter 9.

1.3 Approach Outline

We now give an overview of the structure of the rest of the monograph. Early chapters in
the book contain two main components: the first deals with proving the integrality of the
LP relaxation of a well-studied problem, while the second shows how the iterative proof
of integrality can be extended to design approximation algorithms for NP-hard variants of
these basic problems. Both components follow the natural outline described below.

(i) Linear Programming Formulation: We start by giving a linear programming
relaxation for the optimization problem we study. If the problem is polynomially
solvable, this relaxation will be one with integral extreme points and that is what
we will set out to show. If the problem is NP-hard, we state an approximation
algorithmic result which we then set out to prove.

(a) Solvability: Sometimes the linear programming relaxation we start with
will be exponential in size. We then show that the linear program is solv-
able in polynomial time. Usually, this would entail providing a polynomial
time separation oracle for the program using the formalism of the ellipsoid
method [68]. Informally, the separation oracle is a procedure that certifies
that any given candidate solution for the program is either feasible or not,
and in the latter case provides a separating hyperplane which is a violated in-
equality of the formulation. In programs with an exponential number of such
inequalities that are implicity described, the design of the separation oracle
is itself a combinatorial optimization problem, and we sketch the reduction
to one.
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(ii) Characterization of Extreme Point Solution: We then give a characterization
result for the optimal extreme point solutions of the linear program based on the
Rank Lemma (Lemma 1.2.3). This part aims to show that any maximal set of
linearly independent tight constraints at this extreme point solution can be captured
by a sparse structure. Sometimes the proof of this requires the use of the uncrossing
technique [30] in combinatorial optimization, which will be introduced in Chapter 4.

(iii) Iterative Algorithm: We present an iterative algorithm for constructing an in-
tegral solution to the problem from an extreme point solution. The algorithm has
two simple steps.

(a) If there is a variable in the optimal extreme point solution that is set to a
value of 1, then include the element in the integral solution.

(b) If there is a variable in the optimal extreme point solution that is set to a
value of 0, then remove the corresponding element.

In each of the above cases, at each iteration, we reduce the problem and
arrive at a residual version, then we recompute an optimal extreme point solution
and iterate the above steps until all variables have been set this way. In designing
approximation algorithms we also use the rounding and relaxation steps as stated
earlier.

(iv) Analysis: We then analyze the algorithm. This involves arguing the following
two facts. First, we establish that the algorithm runs correctly and second, that it
returns an optimal solution.

(a) Correctness: We show that the iterative algorithm is correct by arguing
that there is always an 1-element or a 0-element to pick in every iteration.
This crucially uses the characterization of tight constraints at this optimal
extreme point solution. The argument here also follows the same contradic-
tion proof idea (lower bound > upper bound): We assume for a contradiction
that there is no 1-element or 0-element and get a large lower bound on the
number of nonzero variables in the optimal extreme point solution. On the
other side, we use the sparsity of the linearly independent tight constraints
to show an upper bound on the number of such constraints. This then con-
tradicts the Rank Lemma that insists that both these numbers are equal,
and proves that there is always an 1- or 0-element.

(b) Optimality: We finally show that the iterative algorithm indeed returns
an optimal solution using a simple inductive argument. The crux of this
argument is to show that the extreme point solution induced on the residual
problem remains a feasible solution to this residual problem.

For the NP-hard variants of the problems we study, our goal is to show that the
above framework can be naturally adapted to provide an approximation algorithm via the
iterative method. In particular, recall that the iterative algorithm above typically has one
or both of two additional steps: Rounding and Relaxation.

13



(i) Rounding: Fix a threshold α ≥ 1. If there is a variable xi which in the optimal
extreme point solution has a value of at least 1

α then include the corresponding
element in the solution.

Adding this rounding step does not allow us to obtain optimal integral solution
but only near-optimal solutions. Using the above step, typically one obtains an
approximation ratio of α for covering problems addressed using this framework.

(ii) Relaxation: Fix a threshold β. If there is a constraint
∑

i aixi ≤ b such that∑
i ai ≤ b + β then remove the constraint in the residual formulation.

The iterative relaxation step removes a constraint and hence this constraint
can be violated in later iterations. But the condition on the removal of the con-
straints ensures that the constraint is only violated by an additive amount of β.
This step enables us to obtain additive approximation algorithms for a variety of
problems.

To summarize, for designing approximation algorithms, we first study the exact op-
timization problem in the above framework. We then use the above two steps in various
combinations to derive strong approximation algorithms for constrained versions of these
exact problems. In the last few chapters we find a few examples of approximation algo-
rithms that do not strictly fit this framework (e.g. multicriteria versions, cut problems,
bin packing) but the overall approach for these problems remains the same.

1.4 Book Chapters Overview

In the next chapter, we develop all the preliminaries needed in the following chapters.
We discuss linear programs, and their polynomial time solvability using the separation
oracle. We also outline the important Rank Lemma and other properties about the extreme
point solutions. We also discuss the LP duality theorem and the complementary slackness
conditions, and some basic facts about submodular functions and graphs.

A first stream of chapters study problems in undirected graphs. In Chapter 3, we give
the first example to illustrate the iterative method on bipartite matching and vertex cover
problems. We also show how the proof for the bipartite matching leads to approximation
algorithms for the generalized assignment problem and the budgeted allocation problem. In
Chapter 4, we study the classical spanning tree problem and its extension to the minimum
bounded degree spanning tree problem. This chapter introduces the uncrossing technique
in combinatorial optimization. In Chapter 5, we generalize the arguments for undirected
spanning trees to bases of matroids as well as to the common bases in the intersection of
two matroids, and also to the minimum bounded degree matroid basis problem and the
maximum common independent set problem in the intersection of k matroids. We also
show integrality of the dual of matroid and matroid intersection problems which lead to
certain min-max results.

A second stream of chapters study problems in directed graphs. In Chapter 6, we
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study the directed rooted spanning tree (or arborescence) problem, along with a degree-
bounded version, and then generalize the method developed here to a rooted k-connected
subgraph problem providing a self-contained proof of a result of Frank and Tardos. This
is developed further in Chapter 7 to showing the integrality of submodular flow problems.
For this last problem, we again complement the proof of exact LP characterization with a
description of an approximation algorithm for the degree-bounded version built upon the
proof of the exact counterpart. For the submodular flow problem, we also give a proof of
the integrality of its dual.

We then present a few more advanced chapters applying the iterative method. In
Chapter 8, we apply the iterative method to general problems involving network matrices
as constraint matrices (with integral right hand sides) and their duals. We then show
the application of network matrices to derive integrality of the duals of various linear
programs encountered in earlier chapters (such as those for matroid bases, matroid in-
tersection and submodular flow). In Chapter 9, we address the generalization of perfect
and maximum matchings in bipartite graphs to general graphs, and also address higher
dimensional matching problems and other matching variants. We then present a common
generalization of Jain’s 2-approximation algorithm for the survivable network design prob-
lem (SNDP), and a result of Boyd and Pulleyblank on 1-edges in the Held-Karp relaxation
for the Symmetric Traveling Salesman Problem (STSP) in Chapter 10. This chapter also
generalizes Jain’s result to degree bounded network design problems. In Chapter 11, we
extend the application of the method to constrained optimization problems such as partial
covering and multicriteria problems. In Chapter 12, we add the primal-dual complemen-
tary slackness conditions to the iterative method to derive approximation results for some
cut problems. In Chapter 13 we present some early examples of iterative methods, includ-
ing the Beck-Fiala theorem on discrepancy and Karmarkar-Karp algorithm for bin packing.
Most chapters contain selected historical notes as well as exercises.

1.5 Historical Remarks

Polyhedral combinatorics, the compact polyhedral description of important combinatorial
optimization problems, is a fundamental and unifying tool in algorithms, combinatorics and
optimization. A highlight of this line of research is the pioneer work by Jack Edmonds [37];
we refer the reader to the book [130] and the historical survey [128] by Schrijver for an
encyclopedic treatment of this subject.

In approximation algorithms, the first use of the iterative rounding method is due to
Jain [78], and the first uses of the iterative relaxation method can be traced back to the
proof of a discrepancy theorem by Beck and Fiala [18] and the approximation algorithm
for the bin packing problem by Karmarkar and Karp [80].
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2

Preliminaries

In this chapter we discuss linear programming and basic facts about extreme point solu-
tions to linear programs. We then briefly discuss solution methods for linear programs,
particularly stating the sufficiency of finding a separation oracle for the program to be able
to solve it. We then state some concepts from graph theory which are used throughout
the book. The last part of the chapter discusses submodular and supermodular func-
tions. These functions give a general tool for modeling a variety of optimization problems.
Excellent introductory textbooks or surveys in all three areas are available for further
reference [16, 76, 139].

2.1 Linear Programming

Using matrix notation, a linear program is expressed as follows.

minimize cT x

subject to Ax ≥ b

x ≥ 0

If x satisfies (Ax ≥ b, x ≥ 0), then x is a feasible solution. If there exists a feasible
solution to the linear program, it is feasible; otherwise it is infeasible. An optimal solution
x∗ is a feasible solution such that cT x∗ = min{cT x s.t. Ax ≥ b, x ≥ 0}. The linear program
is unbounded (from below) if ∀λ ∈ R, ∃ feasible x such that cT x < λ.

There are different forms in which a linear program can be represented. However,
all these forms are equivalent to the form we consider above and can be converted into one
another by simple linear transformations (see e.g., [29]).
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2.1.1 Extreme Point Solutions to Linear Programs

In this subsection, we discuss basic properties about extreme point solutions. First, we
have the following definition.

Definition 2.1.1 Let P be a polytope and let x be an extreme point solution of P then
x is integral if each co-ordinate of x is an integer. The polytope P is called integral if
every extreme point of P is integral.

We now show basic properties about extreme point (or vertex) solutions. Most proofs
are quite standard and we give a short sketch. The reader is referred to standard texts on
Linear Programming (e.g. Chvatal [29]) for details. We now prove Lemma 1.2.2. We state
it again for completeness.

Lemma 2.1.2 Let P = {x : Ax ≥ b, x ≥ 0} and assume that min{cT x : x ∈ P} is finite.
Then for every x ∈ P , there exists an extreme point solution x′ ∈ P such that cT x′ ≤ cT x,
i.e., there is always an extreme point optimal solution.

Proof The idea of the proof is to show by how we can move from a current optimal solution
to one that has more zero components or more tight constraints and is thus closer to being
an extreme point solution.

Consider x such that it is optimal but not an extreme point solution. That implies
there exists y 6= 0 such that x + y ∈ P and x− y ∈ P . Therefore,

A(x + y) ≥ b, x + y ≥ 0
A(x− y) ≥ b, x− y ≥ 0

Let A= be the submatrix of A restricted to rows which are at equality at x, and b=

be the vector b restricted to these rows. Thus we have A=x = b=. Hence, we must have
A=y ≥ 0 and A=(−y) ≥ 0. Subtracting, we get A=y = 0. Since x is optimal, the following
holds.

cT x ≤ cT (x + y)
cT x ≤ cT (x− y)

⇒ cT y = 0

Moreover, since y 6= 0, without loss of generality assume there exists j such that
yj < 0 (if not then use −y). Consider x + λy for λ > 0 and increase λ until x + λy is no
longer feasible due to the non-negativity constraints. Formally, let

λ∗ = min{ min
j:yj<0

xj

−yj
, min
i:Aix>bi,Aiy<0

Aix− bi

−Aiy
}

We now show that x+λ∗y is a new optimal solution with one more zero coordinate or
one extra tight constraint. Since x+ y ≥ 0 and x− y ≥ 0, if xi = 0 then yi = 0. Therefore,
the coordinates that were at 0, remain at 0. Moreover A=(x+y) = A=x = b since A=y = 0,
hence tight constraints remain tight. Since we assume that min{cT x : x ∈ P} is finite, λ∗
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is finite and the solution x + λ∗y has one more zero coordinate (when λ∗ = (xj)/(−yj)) or
one extra tight constraint (when λ∗ = (Aix− bi)/(−Aiy)).

Proceeding this way, we can convert any optimal solution to one that is also an
extreme point solution, proving the claim.

The next theorem relates extreme point solutions to corresponding non-singular
columns of the constraint matrix.

Lemma 2.1.3 Let P = {x : Ax ≥ b, x ≥ 0}. For x ∈ P , let A= be the submatrix of
A restricted to rows which are at equality at x, and let A=

x denote the submatrix of A=

consisting of the columns corresponding to the nonzeros in x. Then x is an extreme point
solution if and only if A=

x has linearly independent columns (i.e., A=
x has full column rank).

Proof (⇐) If x is not an extreme point solution, we will show that A=
x has linearly

dependent columns. By the hypothesis, there exists y 6= 0 such that A=y = 0 (see the proof
of the previous theorem). Therefore A=

y (the columns where y has a nonzero coordinate)
has linearly dependent columns. By the observation made at the end of the previous proof,
xj = 0 ⇒ yj = 0. Therefore, A=

y is a submatrix of A=
x . Therefore, the columns of A=

x are
linearly dependent.

(⇒) We want to show that if A=
x has linearly dependent columns then x is not

an extreme point solution. By the hypothesis, there exists y 6= 0 such that A=
x y = 0.

Complete y to an n-dimensional vector by setting the remaining coordinates to 0. Now
by construction, A=y = 0. Moreover, by construction yj = 0 whenever xj = 0. Note that
there exists ε such that x + εy ≥ 0 and x− εy ≥ 0. Also x + y and x− y are feasible since
A(x + εy) = Ax + εAy ≥ b and A(x− εy) ≥ b for small enough ε > 0. Hence, x is not an
extreme point solution.

We now prove the important Rank Lemma. We restate the Lemma (in canonical
form) for completeness.

Lemma 2.1.4 (Rank Lemma) Let P = {x : Ax ≥ b, x ≥ 0} and let x be an extreme
point solution of P such that xi > 0 for each i. Then any maximal number of linearly
independent tight constraints of the form Aix = bi for some row i of A equals the number
of variables.

Proof Since xi > 0 for each i, we have A=
x = A=. From Lemma 2.1.3 it follows that A=

has full column rank. Since the number of columns equals the number of non-zero variables
in x and row rank of any matrix equals the column rank†, we have that row rank of A=

equals the number of variables. Then any maximal number of linearly independent tight
constraints is exactly the maximal number of linearly independent rows of A= which is
exactly the row rank of A= and hence the claim follows.

† Important check: If you are rusty on why this statement is true, a crisp proof of the equality of the row rank and
column rank can be found in the short note due to Andrea and Wong [3] that is available on the web.
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Next, we highlight various methods of solving linear programs. First we introduce the
concept of basic feasible solutions and show their equivalence to extreme point solutions.
Basic feasible solutions form a key ingredient in the Simplex algorithm which is the most
widely used algorithm for solving linear programs in practice.

2.1.1.1 Basic Feasible Solution

Consider the linear program

minimize cT x

subject to Ax ≥ b

x ≥ 0

By introducing slack variables sj for each constraint, we obtain an equivalent linear
program in standard form.

minimize cT x

subject to Ax + s = b

x ≥ 0

s ≥ 0

Henceforth, we study linear program in standard form: {min cx : Ax = b, x ≥ 0}.
Without loss of generality, we can assume that A is of full row rank. If there are dependent
constraints, we can remove them without affecting the system or its optimal solution.

A subset of columns B of the constraint matrix A is called a basis if the matrix of
columns corresponding to B, i.e. AB, is invertible. A solution x is called basic if and only
if there is a basis B such that xj = 0 if j /∈ B and xB = A−1

B b. If in addition to being
basic, it is also feasible, i.e., A−1

B b ≥ 0, it is called a basic feasible solution for short. The
correspondence between bases and basic feasible solutions is not one to one. Indeed there
can be many bases which correspond to the same basic feasible solution. The next theorem
shows the equivalence of extreme point solutions and basic feasible solutions.

Theorem 2.1.5 Let A be a m × n matrix with full row rank. Then every feasible x to
P = {x : Ax = b, x ≥ 0} is a basic feasible solution if and only if x is an extreme point
solution.

Proof (⇒) If x is a basic feasible solution, then AB is invertible. Since Ax is a submatrix
of AB (it is a proper submatrix if some basic variable is at 0), Ax has linearly independent
columns. Therefore, by Lemma 2.1.3, x is an extreme point solution.

(⇐) If x is an extreme point solution, then by Lemma 2.1.3, Ax has linearly inde-
pendent columns. Now we can add columns to Ax from A to convert it into an invertible
matrix AB. Note that since Ax = b, ABxB + ANxN = b, where AN and xN denote the
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non-basic parts of A and x respectively. By construction of AB, xN = 0 and so xB = A−1
B b.

So x is a basic feasible solution with AB as the basis.

2.1.2 Algorithms for Linear Programming

The simplex algorithm solves linear programs to get a basic feasible optimal solution.
It works by starting at any basic feasible solution and moving to a neighboring basic
feasible solution which improves the objective function. The convexity of the linear program
ensures that once the simplex algorithm ends at a local optimum basic feasible point, it
has achieved the global optimum as well. Many variants of the simplex algorithm have
been considered, each defined by which neighboring basic feasible solution to move in case
there are more than one improving basic feasible points in the neighborhood. Although
the simplex algorithm works efficiently in practice, there are examples where each variant
of the simplex algorithm runs in exponential time. Again, for more details, see e.g. [29].

Polynomial-time algorithms for solving linear programs fall in two categories: ellip-
soid algorithms [82] and interior point algorithms [79]. We refer the reader to Nemhauser
and Wolsey [113] and Wright [143] for details about these algorithms. Both these algo-
rithms solve linear programs to obtain near optimal solution in polynomial time. Moreover,
there are rounding algorithms [113] which, given a sufficiently near optimal solution to a
linear program, return an optimal extreme point solution.

Theorem 2.1.6 There is an algorithm which returns an optimal extreme point solution to
a linear program. Moreover, the running time of the algorithm is polynomial in the size of
the linear program.

2.1.3 Separation and Optimization

In this book, we will also encounter linear programs where the number of constraints is
exponential in the size of the problem (e.g., in the spanning tree problem in Chapter 4,
we will write linear programs where the number of constraints is exponential in the size
of the graph) and it is not obvious that one can enumerate them, let alone solve them in
polynomial time. We use the notion of separation to show that many exponentially sized
linear programs can be solved in polynomial time.

Definition 2.1.7 Given x∗ ∈ Rn and a polytope P = {x : Ax ≥ b, x ≥ 0}, the separation
problem is the decision problem whether x∗ ∈ P . The solution of the separation problem
is the answer to the membership problem and in case x∗ /∈ P , it should return a valid
constraint Aix ≥ bi for P which is violated by x∗, i.e., Aix

∗ < bi.

The following theorem of Grotschel, Lóvasz and Schrijver [68] shows that polynomial
time separability is equivalent to polynomial time solvability of a linear program; we state
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it in a form that is convenient for combinatorial optimization problems. The basis of this
equivalence is the ellipsoid algorithm.

Theorem 2.1.8 Given a full-dimensional polytope P and a polynomial-time separation
oracle for P , one can find an optimal extreme point solution to a linear objective function
over P (assuming it is bounded) via the Ellipsoid algorithm that uses a polynomial number
of operations and calls to the separation oracle.

Clearly, one can solve the separation problem by checking each constraint but for
problems where the number of constraints is exponential in size such a method is too slow.
In this book, as we consider LP formulations with an exponential number of constraints,
we will often provide efficient separation oracles showing that the linear program for the
problem is solvable in polynomial time.

2.1.4 Linear Programming Duality

Linear programming duality is a key concept to certify and characterize optimal solutions
to linear programs. Consider the following primal linear program in the standard form:

minimize
n∑

j=1

cjxj

subject to
n∑

j=1

aijxj ≥ bi ∀ 1 ≤ i ≤ m

xj ≥ 0 ∀ 1 ≤ j ≤ n

The corresponding dual program is

maximize
m∑

i=1

biyi

subject to
m∑

i=1

aijyi ≤ cj ∀ 1 ≤ j ≤ n

yi ≥ 0 ∀ 1 ≤ i ≤ m

It is not difficult to show that the optimal value of the primal linear program is at least
the optimal value of the dual linear program, and thus any dual feasible solution provides
a lower bound on the optimal value of the primal program. This is called the weak LP
duality theorem, whose proof also follows from the derivation of the complementary slack-
ness conditions below. A fundamental result in linear programming is the strong duality
theorem, which shows that the optimal value of the primal linear program is actually equal
to that of the dual linear program.

Theorem 2.1.9 (Strong Duality Theorem) If the primal linear program has an optimal
solution, so does its dual, and the respective optimal costs are equal.
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Many combinatorial min-max theorems can be derived from the strong duality the-
orem. For example, we will see in Chapter 3 the min-max theorem for bipartite matching,
and in Chapter 5 for the min-max theorem for matroid intersection. We refer the reader to
any textbook on linear programming (e.g. [29]) for the proof of the strong duality theorem.

2.1.4.1 Complementary Slackness Conditions

The complementary slackness conditions provide a characterization for an optimal primal
solution x and an optimal dual solution y. We will use the complementary slackness
conditions in Chapter 12.

Primal complementary slackness conditions:

Either xj = 0 or
m∑

i=1

aijyi = cj .

Dual complementary slackness conditions:

Either yi = 0 or
n∑

j=1

aijxj = bi.

These conditions can be derived as follows:
n∑

j=1

cjxj ≥
n∑

j=1

( m∑

i=1

aijyi

)
xj

=
m∑

i=1

( n∑

j=1

aijxj

)
yi

≥
m∑

i=1

biyi,

where the first inequality is by the constraints in the dual linear program, the second
equality is by interchanging the order of the summations, and the third inequality is by
the constraints in the primal linear program. Note that this shows the weak duality the-
orem. Since x and y are optimal solutions, by the strong duality theorem, we have that∑n

j=1 cjxj =
∑m

i=1 biyi, and thus equality must hold throughout. The primal comple-
mentary slackness conditions follow from the first inequality holding as an equality, while
the dual complementary slackness conditions follow from the last inequality holding as an
equality.

2.2 Graphs and Digraphs

Most problems addressed in this book are on networks connecting nodes with edges or
links. We define graph theoretic concepts which will be encountered in later chapters.
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Given an undirected graph G = (V,E) and a set S ⊆ V , we denote δG(S) or δE(S) be the
set of edges which have exactly one endpoint in S. For a vertex v ∈ V , δG({v}) is simply
denoted by δG(v). We also denote dG(v) or dE(v) to be degree of v, i.e., |δG(v)|. For sets
X, Y ⊆ V , we denote EG(X, Y ) to be the set of edges which has exactly one endpoint in X

and one in Y . We also denote EG(X, X) by EG(X). Observe that δG(X) = EG(X,V \X).
We also denote |δG(X)| by dG(X). The subscript G or E is sometimes dropped from the
notation if the graph G is clear from the context. A subgraph H of G is spanning if it
contains all the vertices of G, connected if there is a path between any two vertices of H,
a tree if it is acyclic and connected. An important concept is a spanning tree, subgraph
which is both spanning and a tree. Observe that a spanning tree is a also a minimally
spanning connected subgraph.

Given a directed graph D = (V, A) and a set S ⊂ V , we denote δin
D (S) to be the set

of arcs whose head is in S but tail is not in S. Similarly, δout
D (S) is the set of arcs whose

tail is in S but the head is not in S. For a vertex v ∈ V , we denote δin
D ({v}) as δin

D (v) and
δout
D ({v}) as δout

D (v). The in-degree of v, |δin
D (v)| is denoted by din

D (v) and the out-degree
of v, |δout

D (v)| is denoted by dout
D (v). The degree of v, dD(v) is the sum of its in-degree and

out-degree. For sets X, Y ⊆ V , we denote ED(X, Y ) to be the set of arcs whose tail is
in X and the head is in Y . Observe that δout

D (X) = ED(X, V \ X). We denote |δin
D (X)|

and |δout
D (X)| by din

D (X) and dout
D (X) respectively. A subgraph H of D is called strongly

connected if there is a directed path from each vertex of H to every other vertex, weakly
connected if the underlying undirected graph is connected, acyclic if there is no directed
cycle in H. H is called an arborescence the underlying graph is a spanning tree and the
graph has only one vertex with no in-edges which is called the root. If the root of an
arborescence is the vertex r then it is also called an r-arborescence.

We will use frequently the following fundamental min-max theorem in graph theory.

Theorem 2.2.1 (Menger’s Theorem [105]) Let D = (V, A) be a directed graph, and
s, t ∈ V be two distinct vertices. The maximum number of arc-disjoint s-t paths in D is
equal to the minimum din

D (X) over all X ⊂ V with s /∈ X and t ∈ X.

Menger’s theorem shows a close connection between disjoint paths and cuts, which will be
used in writing linear programs and constructing separation oracles. One can also obtain
the corresponding min-max theorems for undirected graphs and for vertex connectivity by
simple transformations (see the exercises).

2.3 Submodular and Supermodular Functions

In this section, we define special classes of set functions with some nice convexity-like
properties. Typically, in our applications, these functions are defined over a set of vertices
of a graph we will be working with; most of the time, they will also be integer valued and
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positive. More comprehensive treatments on these topics are available in the monograph
by Fujishige [53] and the book by Schrijver [130].

2.3.1 Submodularity

Definition 2.3.1 A function f : 2V → R is submodular if for every pair A, B of subsets
of V , we have

f(A) + f(B) ≥ f(A ∩B) + f(A ∪B).

A simple example of a submodular set function defined on the vertices of an undi-
rected graph G = (V, E) is cardinality of the cut function d : 2V → Z+ where d(S) = |δ(S)|.

Proposition 2.3.2 The cut function d of any undirected graph is submodular.

Proof To see that d is submodular, note that on the right hand side, we have

d(A ∩B) = |E(A ∩B,A \B)|+ |E(A ∩B, B \A)|+ |E(A ∩B, V \ (A ∪B))|.

A B

Fig. 2.1. In this example the solid edges are counted exactly once in both the LHS d(A) + d(B),
and the RHS d(A∩B) + d(A∪B), and the bold edge is counted exactly twice on both sides. The
dashed edge is counted in LHS but not in RHS.

Similarly we also have

d(A ∪B) = |E(A ∩B, V \ (A ∪B))|+ |E(A \B, V \ (A ∪B))|+ |E(B \A, V \ (A ∪B))|.
On the left hand side we have

d(A) = |E(A∩B, V \(A∪B))|+|E(A∩B, B\A)|+|E(A\B, V \(A∪B))|+|E(A\B, B\A)|.
Similarly we get

d(B) = |E(A∩B, V \(A∪B))|+|E(A∩B,A\B)|+|E(B\A, V \(A∪B))|+|E(B\A,A\B)|.
Comparing the above expressions shows that the edges in E(A \B,B \A) are responsible
for the inequality (rather than equality). Also see Figure 2.1.
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Note that the edge cut function can be extended to the case when nonnegative
weights, say x : E → R+ are assigned to the edges. Instead of d(S) = |δ(S)|, we have
x(δ(S)) =

∑
e∈δ(S) xe. The above proof also shows that the function x is submodular as

well.

Proposition 2.3.3 The weighted-cut function of any undirected graph is submodular.

Using the same method as above, it is not hard to also verify that we also have

d(A) + d(B) ≥ d(A \B) + d(B \A). (2.1)

A B

Fig. 2.2. In this example the solid edges are counted exactly once in both the LHS d(A) + d(B),
and the RHS d(A \B) + d(B \A), and the bold edge is counted exactly twice on both sides. The
dashed edge, however is counted in the LHS but not in the RHS.

Let us define a stronger notion of submodularity to capture these properties of edge
cut function.

Definition 2.3.4 A function f : 2V → R is strongly submodular if for every pair A,B of
subsets of V , we have

f(A) + f(B) ≥ f(A ∩B) + f(A ∪B)

and

f(A) + f(B) ≥ f(A \B) + f(B \A).

As noted above, edge cut functions in undirected graphs are strongly submod-
ular. The second property in the definition above has also been referred to as posi-
modularity [108, 109].

2.3.2 Supermodularity

We move on to a symmetric concept, supermodularity.
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Definition 2.3.5 A function f : 2V → R is supermodular if for every pair A,B of subsets
of V , we have

f(A) + f(B) ≤ f(A ∩B) + f(A ∪B).

As before, a simple example of a supermodular set function defined on the vertices
of an undirected graph G = (V,E) is the induced edge function d : 2V → Z+ where i(S)
is the number of edges in E with both endpoints in S, i.e., i(S) = |E(S)|. A verification
similar to the above can be carried out to establish that the induced edge function is
supermodular. Also, if nonnegative values, say x : E → R+ are assigned to the edges and
we consider x(S) =

∑
e∈E(S) xe, it follows that this function is supermodular as well.

Proposition 2.3.6 The induced edge function i(.) for any undirected graph is supermod-
ular. This is also true for the weighted version with nonnegative weights.

2.3.3 Refinements

Definition 2.3.7 Two subsets A and B of a ground set V are intersecting if A ∩B 6= ∅.
A function f : 2V → R is intersecting-submodular if for every pair A,B of intersecting
subsets of V , we have

f(A) + f(B) ≥ f(A ∩B) + f(A ∪B).

Definition 2.3.8 Two subsets A and B of a ground set V are crossing if none of the
four subsets A ∩ B, A \ B, B \ A and V \ (A ∪ B) are empty. A function f : 2V → R is
crossing-submodular if for every pair A,B of crossing subsets of V , we have

f(A) + f(B) ≥ f(A ∩B) + f(A ∪B).

To distinguish the regular submodular functions from the more restricted intersecting
and crossing varieties, they are also sometimes dubbed fully submodular. Other important
examples of fully submodular functions arises as cut functions of directed graphs D =
(V, A). Define δin(S) for a subset S of vertices as the set of arcs whose heads are in S and
tails are in V \ S, which we can denote as A(V \ S, S). Symmetrically, define δout(S) as
the set A(S, V \S). Denote |δin(S)| and |δout(S)| by din(S) and dout(S) respectively. Both
these functions din and dout defined on vertex subsets are fully submodular; see Figure 2.3.
Unlike undirected graphs, however, the functions din and dout are not strongly submodular.

Proposition 2.3.9 The cut functions din and dout of any directed graph are submodular.
This is also true for the weighted directed cut functions with non-negative weights.

A broader class of functions generalizing supermodularity is useful in specifying con-
nectivity requirements for network design problems.
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A B

Fig. 2.3. In this example the solid arcs are counted exactly once in both the LHS δout(A)+δout(B)
and the RHS δout(A∪B)+δout(A∩B) and the bold edges are counted exactly twice on both sides.
The dashed edges are counted in the LHS but not in the RHS.

Definition 2.3.10 A function f : 2V → R is skew (or weakly) supermodular if for every
pair A,B of subsets of V , at least one of the following inequalities is true.

f(A) + f(B) ≤ f(A ∩B) + f(A ∪B)

f(A) + f(B) ≤ f(A \B) + f(B \A)

In the survivable network design problem on an undirected graph G = (V, E), we
are given nonnegative integral edge-connectivity requirements ruv for all pairs of vertices,
and we are interested in finding a subgraph with at least ruv edge-disjoint paths between
u and v for every pair u, v. If we define the connectivity requirement function f for any
set S as f(S) = maxu∈S,v/∈S ruv, it is not hard to verify that f is skew supermodular.

Functions that are both submodular and supermoduar are modular - the typical
example being the cardinality (or "modulus") function. Furthermore, f is submodular
iff −f is supermodular, and if f is submodular and g is supermodular, then f − g is
submodular. Finally, if f is skew supermodular and g is strongly submodular, then f − g

is weakly supermodular. These follow directly as a consequence of the definitions.

2.3.3.1 Minimizing submodular function

A rich literature examines the minimization of submodular functions in (strongly) poly-
nomial time - Chapter 45 of the book by Schrijver [130] contains most references on this
topic. We mention three important results in this vein: Queyranne [117] gave an algorithm
for minimizing symmetric submodular functions, building on earlier work of Nagamochi
and Ibaraki for finding a minimum cut in an undirected graph. Grotschel, Lovasz and
Schrijver [69] gave a strongly polynomial time algorithm for finding the minimum of a
submodular function only over sets of odd cardinality, building on earlier work of Padberg
and Rao. Finally, for the general case of submodular function with only oracle access to
values, strongly polynomial time algorithms were first presented by Iwata, Fleischer and
Fujishige [77] and also independently by Schrijver [127]. More generally defined submodu-
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lar function (e.g., on intersecting or cross-free families) can also be minimized in polynomial
time - see Chapter 49 in [130].

We will be making use of submodular (and supermodular) functions extensively
in this monograph. In a typical application, the set of tight constraints at an extreme
point solution corresponds to a set of cuts in a graph for which a (submodular) function
value is an integer. Depending on the type of submodular function (full, intersecting or
crossing), these tight constraints can then be uncrossed to result in a nicely structured
basis for them: For instances, for fully submodular constraints, the basis is a chain; for
intersecting submodular constraint forms, the basis is a laminar family representable by
the forest capturing set-inclusion relation; for crossing submodular constraint systems, the
basis is a cross-free family which can also be turned into a laminar family. Such structured
sparse representations of the tight constraints at any extreme point solution are the key to
proving integrality for many problems – they pave the way to show the upper bound part
of the general argument outlined in the beginning of this chapter, typically by a counting
argument that is carried out inductively on a representation of these sparse families.

Exercises

2.1 Consider a bounded linear program. Prove that an LP solution x is a basic feasible
solution (or extreme point solution) if and only if there is an objective function c

such that x is the unique optimum solution.

2.2 Prove Menger’s theorem for undirected graphs: The maximum number of edge-
disjoint s-t paths is equal to the minimum d(X) over all sets X ⊂ V with s /∈ X

and t ∈ X. (Hint: “bidirect” the edges and apply Theorem 2.2.1.)

2.3 Two directed s-t paths P1 and P2 are internally vertex-disjoint if V (P1)∩ V (P2) =
{s, t}. A vertex set U ⊂ V is an s-t cut if there is no directed s-t paths in
G − U . Prove Menger’s theorem for vertex connectivity: The maximum number
of internally vertex-disjoint s-t paths is equal to the minimum size of a vertex s-t
cut. (Hint: “split” each vertex appropriately and apply Theorem 2.2.1.)

2.4 Derive a corresponding Menger’s theorem for vertex connectivity in undirected
graphs.

2.5 Verify Proposition 2.3.9 that the in- and out-cut functions din and dout for a digraph
are indeed submodular but not strongly submodular.

2.6 Verify Proposition 2.3.6. Is the induced edges (arcs) function supermodular for
digraphs?

2.7 Show that a function f : 2V → R+ is (fully) submodular if and only if f(X + v)−
f(X) ≥ f(Y + v)− f(Y ) whenever X ⊆ Y and v ∈ V −X.

2.8 Use the above equivalent definition of submodular function to derive Proposi-
tion 2.3.2 and Proposition 2.3.9.

28



2.9 Show that the connectivity requirement function for the survivable network design
problem, f(S) = maxu∈S,v/∈S ruv for all S ⊂ V is skew supermodular.

2.10 Show that the connectivity requirement function for the k-connected subgraph
problem, f(S) = k for every non-empty S ⊂ V is crossing supermodular.

2.11 Show that the connectivity requirement function for the rooted-connectivity prob-
lem, f(S) = k for every non-empty S ⊂ V with r /∈ S for a specified vertex r is
intersecting supermodular.
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3

Matching and Vertex Cover in Bipartite Graphs

In this chapter we consider two very closely related problems, maximum weighted matching
and minimum cost vertex cover in bipartite graphs. Linear programming duality plays a
crucial role in understanding the relationship between these problems. We will show that
the natural linear programming relaxations for both the matching problem and the vertex
cover problem are integral, and then use duality to obtain a min-max relation between
them. Nevertheless, our proofs of integrality use the iterative method by arguing the
existence of 1-elements in an extreme point solution.

In the first section, we show the integrality of the more standard maximization version
of the matching problem introduced in the previous chapter. In the following sections, we
show two applications of the proof technique for integrality to derive approximation results
for NP-hard problems. We first present a new proof of an approximation result for the
generalized assignment problem, and then present an approximation result for the budgeted
allocation problem. The proofs of both of these results develop on the integrality result for
the bipartite matching problem. Following this, we discuss the integrality of the bipartite
vertex cover problem formulation and conclude with a short section on the duality relation
between these problems and some historical notes.

3.1 Matchings in Bipartite Graphs

In this section, we show that the matching polytope in bipartite graphs is integral. Given
a bipartite graph G = (V1 ∪ V2, E) and a weight function w : E → R, the maximum
matching problem is to find a set of vertex-disjoint edges of maximum total weight.

3.1.1 Linear Programming Relaxation

The linear programming relaxation for the bipartite matching problem is given by the
following LPbm. In the following δ(v) denotes the set of edges incident to v.
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maximize
∑

e∈E

we xe

subject to
∑

e∈δ(v)

xe ≤ 1 ∀ v ∈ V1 ∪ V2

xe ≥ 0 ∀ e ∈ E

Observe that the linear program LPbm(G) is compact, i.e., the number of constraints
and variables is polynomially bounded in the size of the problem. Hence, the linear program
can be solved optimally in polynomial time using Theorem 2.1.6.

We prove the following theorem by an iterative algorithm in the next section.

Theorem 3.1.1 Given any weight function w there exists an integral matching M such
that w(M) ≥ w · x where x is an optimal solution to LPbm(G).

Our proof of Theorem 3.1.1 as a corollary implies the following theorem.

Theorem 3.1.2 The linear programming formulation LPbm(G) is integral.

3.1.2 Characterization of Extreme Point Solutions

Before we prove Theorem 3.1.1 we give a characterization of extreme point solutions of
LPbm(G) for which we need a few definitions.

For a set F ⊆ E, let χ(F ) denote the vector in R|E| that has an 1 corresponding to
each edge e ∈ F , and 0 otherwise. This vector is called the characteristic vector of F . In
the following lemma which follows by a direct application of the Rank Lemma 1.2.3, we
characterize an extreme point solution by a set of tight linearly independent constraints.

Lemma 3.1.3 Given any extreme point solution x to LPbm(G) such that xe > 0 for each
e ∈ E there exists W ⊆ V1 ∪ V2 such that

(i) x(δ(v)) = 1 for each v ∈ W .
(ii) The vectors {χ(δ(v)) : v ∈ W} are linearly independent.
(iii) |W | = |E|.

3.1.3 Iterative Algorithm

We now give the algorithm which constructs an integral matching of weight at least the
optimal solution to LPbm(G) proving Theorem 3.1.1. The algorithm is a simple iterative
procedure as shown in Figure 3.1.
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Iterative Bipartite Matching Algorithm

(i) Initialization F ← ∅.
(ii) While E(G) 6= ∅ do

(a) Find an optimal extreme point solution x to LPbm(G) and remove every
edge e with xe = 0 from G.

(b) If there is an edge e = {u, v} such that xe = 1, then update F ← F ∪ {e}
and G ← G \ {u, v}.

(iii) Return F .

Fig. 3.1. Bipartite Matching Algorithm

3.1.4 Correctness and Optimality

We prove the correctness of the algorithm in two steps. First, we show that the algorithm
returns a matching of optimal weight if the algorithm always finds an edge e with xe = 0
in Step (ii)(a) or an edge e with xe = 1 in Step (ii)(b). In the second part, we show that
the algorithm will always find such an edge completing the proof.

Claim 3.1.4 If the algorithm, in every iteration, finds an edge e with xe = 0 in Step (ii)(a)
or an edge e with xe = 1 in Step (ii)(b), then it returns a matching F of weight at least
the optimal solution to LPbm(G).

Proof The proof will proceed by induction on the number of iterations of the algorithm.
The base case is trivial when the algorithm proceeds for only one iteration.

If we find an edge e such that xe = 0 in Step (ii)(a) of the algorithm, then the
residual problem is to find a matching in the graph G \ {e}, where we remove the edge
e from G. The residual solution xres, x restricted to G \ {e}, is a feasible solution to
the linear programming relaxation of the residual problem. By induction, the algorithm
returns a matching F ′ ⊆ E(G′) with weight at least the optimal solution to LPbm(G′).
Since w(F ′) ≥ w · xres = w · x, the induction hypothesis holds in this case.

In the other case, if we find an edge e = {u, v} such that xe = 1 in Step (ii)(b)
of the algorithm then the residual problem is to find a matching which contains the edge
e. This is exactly the matching problem in graph G′ = G \ {u, v}, where we remove the
vertices u and v and their incident edges from G. Moreover xres, x restricted to edges in
G′, is a feasible solution to the linear programming relaxation for the residual problem.
Inductively, the algorithm will return a matching F ′ of weight at least the weight of the
optimum solution of LPbm(G′), and hence w(F ′) ≥ w · xres, as xres is a feasible solution
to LPbm(G′). The algorithm returns the matching F = F ′ ∪ {e} and we have

w(F ) = w(F ′) + we and w(F ′) ≥ w · xres
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which implies that

w(F ) ≥ w · xres + we = w · x
since xe = 1. Therefore, the weight of the matching returned by the algorithm is at least
the weight of the LP solution x, which is a lower bound on the optimal weight.

We now complete the proof of Theorem 3.1.1 by showing that the Algorithm always
finds an edge e such that xe = 0 or xe = 1. The proof of the following lemma crucially
uses the characterization of extreme point solutions given in Lemma 3.1.3.

Lemma 3.1.5 Given any extreme point solution x of LPbm(G) there must exist an edge e

such that xe = 0 or xe = 1.

Proof Suppose for sake of contradiction 0 < xe < 1 for each edge e ∈ E. Lemma 3.1.3
implies that there exists W ⊆ V1∪V2 such that constraints corresponding to W are linearly
independent and tight, and |E| = |W |.

Claim 3.1.6 We must have dE(v) = 2 for each v ∈ W and dE(v) = 0 for each v /∈ W .

Proof Firstly, dE(v) ≥ 2 for each v ∈ W , since x(δ(v)) = 1 for each v and 0 < xe < 1 for
each e ∈ E. This implies that:

2|W | = 2|E| =
∑

v∈V

dE(v) ≥
∑

v∈W

dE(v) ≥ 2|W |.

This implies the inequalities must hold as equalities, and thus dE(v) = 0 for each v /∈ W

by the first inequality and dE(v) = 2 for each v ∈ W by the second inequality.

Hence, E is a cycle cover on the vertices in W . Let C be any such cycle with all vertices
in W . Since C is an even cycle because G is bipartite we also have

∑

v∈C∩V1

χ(δ(v)) =
∑

v∈C∩V2

χ(δ(v)),

which contradicts the independence of constraints in condition (ii) of Lemma 3.1.3. There-
fore any extreme point solution x to LPbm(G) must have an edge e with xe = 0 or xe = 1.

Thus we obtain from Lemma 3.1.5 that the algorithm in Figure 3.1 returns a matching
with total weight at least the weight of the linear program. This completes the proof of
Theorem 3.1.1.

3.2 Generalized Assignment

In the section, we use the iterative relaxation method to obtain an approximation algorithm
for the generalized assignment problem. The generalized assignment problem models the
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following scheduling problem on unrelated parallel machines with costs. We are given a
set of jobs J and machines M , for each job j and machine i there is a processing time pij

and cost cij . Machine i is available for Ti time units and the objective is to assign each
job to some machine such that the total cost is minimized and no machine is scheduled for
more than its available time.

Shmoys and Tardos [131] gave an algorithm which returns an assignment of cost at
most C and each machine is used for at most 2Ti time units, where C is the cost of the
optimal assignment which uses machine i for at most Ti time units (if such an assignment
is possible). In this section, we prove the result of the Shmoys and Tardos [131] using the
iterative relaxation method. This proof develops on the iterative proof of the integrality
of the bipartite matching given in Section 3.1. We shall prove the following theorem.

Theorem 3.2.1 There exists a polynomial time algorithm for the generalized assignment
problem which returns a solution of cost at most C that uses each machine i for at most
2Ti time units, where C is the cost of an optimal assignment that uses each machine i for
at most Ti time units.

3.2.1 Linear Programming Relaxation

Before we write the linear program for the problem, we first model the problem as a
bipartite matching problem. We start with a complete bipartite graph G with jobs J and
machines M as the two sides of the bipartite graph. The edge between job j and machine
i has cost cij . The generalized assignment problem can be reduced to finding a subgraph
F of G such that dF (j) = 1 for each job j ∈ J , so that the edge incident at j denotes
which machine job j is assigned to. The time constraint at machines can be modeled
by restricting that

∑
e∈δ(i)∩F pij ≤ Ti for each machine i. We strengthen this model by

disallowing certain assignments using the following observation: If pij > Ti then no optimal
solution assigns job j to i, and hence we can remove all such edges from graph G.

We model the above matching problem by the following natural linear programming
relaxation LPga to prove Theorem 3.2.1. Observe that we do not place time constraints
for all machines but a subset M ′ ⊆ M which is initialized to M . We have a variable xe for
each e = ij denoting whether job j is assigned to machine i.

minimize
∑

e=(i,j)∈E

cij xij

subject to
∑

e∈δ(j)

xe = 1 ∀ j ∈ J

∑

e∈δ(i)

pexe ≤ Ti ∀ i ∈ M ′

xe ≥ 0 ∀ e ∈ E
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3.2.2 Characterization of Extreme Point Solutions

The following lemma follows from a direct application of the Rank Lemma.

Lemma 3.2.2 Let x be an extreme point solution to the linear program LPga such that
0 < xe < 1 for each edge e. Then there exist J ′ ⊆ J and M ′′ ⊆ M ′ such that

(i)
∑

e∈δ(j) xe = 1 for each j ∈ J ′ and
∑

e∈δ(i) pexe = Ti for each i ∈ M ′′.

(ii) The constraints corresponding to J ′ and M ′′ are linearly independent.

(iii) |J ′|+ |M ′′| = |E(G)|

3.2.3 Iterative Algorithm

We present a simple iterative procedure which returns an assignment of optimal cost in
Figure 3.2. Observe that the iterative procedure generalizes the iterative procedure for
bipartite matching in Section 3.1. The bipartite graph F with vertex set in M ∪ J returns
the assignment found by the algorithm.

This procedure demonstrates our first example of the iterative relaxation method
in Step (ii)(c). Here in addition to the usual step of picking an integral element in the
solution, we identify carefully chosen constraints to relax or remove. The choice is dictated
by ensuring that the removal will allow us to argue that the final integral solution does
not have too much violation; at the same time, we need to ensure that in the absence of
an integral element, such a constraint can always be found to be removed. The crux of
the relaxation method is to find the right relaxation condition that balances this trade-off
nicely.

Iterative Generalized Assignment Algorithm

(i) Initialization E(F ) ← ∅, M ′ ← M .
(ii) While J 6= ∅ do

(a) Find an optimal extreme point solution x to LPga and remove every vari-
able with xij = 0.

(b) If there is a variable with xij = 1, then update F ← F ∪{ij}, J ← J \{j},
Ti ← Ti − pij .

(c) (Relaxation) If there is a machine i with d(i) = 1, or a machine i with
d(i) = 2 and

∑
j∈J xij ≥ 1, then update M ′ ← M ′ \ {i}.

(iii) Return F .

Fig. 3.2. The Generalized Assignment Algorithm
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3.2.4 Correctness and Near-Optimality

The following lemma shows that the algorithm makes progress at each step of the algorithm.

Lemma 3.2.3 Consider any extreme point solution x to LPga. One of the following must
hold.

(i) There exists an edge e ∈ E with xe ∈ {0, 1}.
(ii) There exists a machine i ∈ M ′ with d(i) = 1, or d(i) = 2 and

∑
j∈J xij ≥ 1.

Proof Suppose for sake of contradiction that both the conditions do not hold. By
Step (ii)(a) and Step (ii)(b), we have 0 < xe < 1 for each edge e. Each job j has de-
gree at least two since

∑
e∈δ(j) xe = 1 and there is no edge with xe = 1 by Step (ii)(b).

Moreover, each machine in M ′ has degree at least two, because the constraints for ma-
chines with degree one have been removed in Step (ii)(c). From Lemma 3.2.2 we have that
|E| = |J ′|+ |M ′′|. This implies that:

|J ′|+ |M ′′| = |E| ≥
∑

j∈J d(j) +
∑

i∈M ′ d(i)
2

≥ |J |+ |M ′| ≥ |J ′|+ |M ′′|,
and hence all inequalities must hold as equalities. The first inequality implies that each
machine i ∈ M \M ′ has degree zero; the second inequality implies that each job j ∈ J ′ and
each machine i ∈ M ′′ have degree exactly two; the last inequality implies that J = J ′ and
M ′ = M ′′. Therefore, G is a union of cycles, with vertices in J ′ ∪M ′′ (tight constraints).
Consider any cycle C. The total number of jobs in C is exactly equal to the total number
of machines in C. Therefore, since each job j ∈ J ′ has

∑
i∈M ′′ xij = 1, there must be a

machine i with
∑

j∈J ′ xij ≥ 1. Hence, this machine i has degree two and
∑

j∈J ′ xij ≥ 1,
contradicting that Step (ii)(c) cannot be applied.

We now prove Theorem 3.2.1 by a simple inductive argument.

Proof of Theorem 3.2.1: We first prove that the algorithm returns an assignment
of optimal cost. We claim that at any iteration of the algorithm the cost of assignment
given by F plus the cost of the current linear programming solution to LPga is at most the
cost of the initial linear programming solution. This can be shown by a simple inductive
argument on the number of iterations. Observe that the claim holds trivially before the
first iteration. In any iteration, if we assign job j to machine i in Step (ii)(b) then the cost
of F increases by cij and the current linear programming solution decreases by cijxij = cij

as xij = 1. Hence, the claim holds. If we remove a constraint in Step (ii)(c), then the cost
of F remains the same, while the cost of the current linear program can only decrease.
Hence, the claim holds in this case as well. Thus, finally when F is a feasible assignment,
by induction, the cost of assignment given by F is at most the cost of the initial linear
programming solution.

Now, we show that machine i is used at most 2Ti units for each i. Fix any machine
i. We first argue the following claim. If i ∈ M ′, then at any iteration we must have
T ′i + Ti(F ) ≤ Ti, where T ′i is the residual time left on the machine at this iteration and
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Ti(F ) is the time used by jobs assigned to machine i in F . The proof of the claim follows
by a simple inductive argument as in the above inductive argument for costs. Now consider
when the machine i is removed from M ′. There are two possibilities. If there is only one
job j in machine i, then the total processing time at machine i is at most Ti + pij ≤ 2Ti,
where the inequality holds because of the pruning step (where we deleted edges assigning
a job to machine i if its processing time exceeded Ti). If there are two jobs j1 and j2

in machine i then let x denote the linear programming solution when the constraint for
machine i is removed. The total processing time at machine i at most

Ti(F ) + pij1 + pij2

≤ Ti − xij1pij1 − xij2pij2 + pij1 + pij2

≤ Ti + (1− xij1)pij1 + (1− xij2)pij2

≤ Ti + (2− xij1 − xij2)Ti

≤ 2Ti,

because pij1 , pij2 ≤ Ti again by the pruning step and xij1 + xij2 ≥ 1 by Step (ii)(c). This
completes the proof of Theorem 3.2.1.

3.3 Maximum Budgeted Allocation

In this section we consider the maximum budgeted allocation problem, which is similar to
the general assignment problem but is a maximization problem instead of a minimization
problem. There are a set Q of indivisible items and a set A of agents. Each agent i ∈ A

is willing to pay a maximum of bij dollars for item j ∈ Q, but has a maximum budget
Bi on total spending. The maximum budgeted allocation problem is to allocate items to
agents to maximize revenue. The main result of this section is the following theorem by
Chakrabarty and Goel [22].

Theorem 3.3.1 There is a 4/3-approximation algorithm for the maximum budgeted allo-
cation problem.

3.3.1 Linear Programming Relaxation

This problem can be formulated as an integer linear programming, in which there is a
variable xij for agent i and item j to indicate whether item j is assigned to agent i.

maximize
∑

i∈A

min(Bi,
∑

j∈Q

bijxij)

subject to
∑

i∈A

xij ≤ 1 ∀ j ∈ Q

xij ∈ {0, 1} ∀ i ∈ A, j ∈ Q
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The constraints require that each item is allocated to at most one agent. The objec-
tive function can be rewritten as a linear function by adding auxiliary constraints. Thus
we obtain a linear programming relaxation by relaxing the integrality constraints. Ob-
serve that by appropriate scaling there is always an optimal fractional solution in which∑

j∈Q bijxij ≤ Bi for all i ∈ A. Henceforth we consider the following equivalent linear pro-
gramming relaxation, denoted by LPmba, which is similar to that of the general assignment
problem. Throughout this section we assume without loss of generality that bij ≤ Bi for
each j ∈ Q (for otherwise, we can reset bij to Bi).

maximize
∑

i∈A,j∈Q

bijxij

subject to
∑

j∈Q

bijxij ≤ Bi ∀ i ∈ A

∑

i∈A

xij ≤ 1 ∀ j ∈ Q

xij ≥ 0 ∀ i ∈ A, j ∈ Q

3.3.2 Characterization of Extreme Point Solutions

Given a fractional solution x to LPmba, we construct a bipartite graph Gx = (A ∪ Q,E)
with ij ∈ E if and only if xij > 0. The following lemma is a direct application of the Rank
Lemma 1.2.3.

Lemma 3.3.2 Given any extreme point solution x to LPmba such that xij > 0 for each
i ∈ A, j ∈ Q there exist A′ ⊆ A,Q′ ⊆ Q such that

(i)
∑

j∈Q bijxij = Bi for each i ∈ A′ and
∑

i∈A xij = 1 for each j ∈ Q′.
(ii) The corresponding row vectors in A′ and Q′ are linearly independent.
(iii) |E| = |A′|+ |Q′|.

Similar to the bipartite matching problem and the generalized assignment problem,
the above lemma implies that each connected component of Gx has at most one cycle.
With an additional cycle elimination argument that shifts the values of the solution along
such a cycle without decreasing the objective value, one can prove that Gx is a forest (see
exercises). We call an item a leaf item if it is a leaf in Gx. We call an agent i a leaf agent
if all but one neighbor of i are leaf items (i itself may not be a leaf). Every tree in the
forest has at least one leaf item and one leaf agent. Since x is an extreme point solution
and Gx is a forest, there is at most one non-tight constraint in each component. For an
agent that is a leaf of a tree, as its bid to the item is at most the agent’s budget, such an
agent must be non-tight in a tree with at least two agents (if such an agent is tight then
the component has only this agent and this item). It follows that there is at least one
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tight leaf agent in a tree with at least two agents. The following lemma summarizes the
properties of the extreme point solutions that we will use.

Lemma 3.3.3 [22] Given any extreme point solution x to LPmba:

(i) The graph Gx is a forest;

(ii) There is at least one leaf agent in each component of Gx.

(iii) There is at least one tight leaf agent in a component of Gx with at least two agents.

3.3.3 An Iterative 2-Approximation Algorithm

We first present a simple iterative 2-approximation algorithm for the problem. In the
following N(i) denotes the set of neighbors (items) of agent i in Gx.

Iterative 2-Approximation Algorithm for Maximum Budgeted Allocation

While Q 6= ∅ do

(i) Find an optimal extreme point solution x to LPmba. Remove all edges with
xij = 0.

(ii) Pick a leaf agent i. Let L be the set of leaf items in N(i). Assign each item l ∈ L

to i and then remove L. Modify B′
i := Bi −

∑
l∈L bilxil.

(a) If i has a non-leaf item j, modify the bid of i on j to be bij ← min(bij , B
′
i).

Fig. 3.3. The Maximum Budgeted Allocation 2-Approximation Algorithm

We now prove that the above algorithm is a 2-approximation algorithm. Consider an
arbitrary iteration. The increase of the integral solution is at least

∑
l∈L bilxil. Note that x

restricted to the remaining edges is a feasible solution to the residual problem. If b′ij = bij ,
then the decrease of the fractional solution is at most

∑
l∈L bilxil. Let b′ij = min(bij , B

′
i)

denote the new bid of agent i to item j. Otherwise, if b′ij = B′
i, then the decrease of the

fractional solution is at most

∑

l∈L

bilxil + (bij − b′ij)xij ≤
∑

l∈L

bilxil + (Bi −B′
i) = 2

∑

l∈L

bilxil,

where the first inequality follows because bij ≤ Bi and b′ij = B′
i and xij ≤ 1. Hence,

in either case, the increase of the integral solution is at least half the decrease of the
fractional solution in each iteration. It follows by an inductive argument that the final
integral solution is at least half the initial fractional solution.
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3.3.4 An Iterative 4
3-Approximation Algorithm

Here we present an improved iterative approximation algorithm for the problem. In
Step (ii)(a) of the algorithm in Figure 3.3, the bid of agent i on item j is decreased
by the amount collected from the leaf items, and this is the bottleneck of achieving a bet-
ter approximation algorithm. The new idea is to keep the new bid slightly higher. The
intuition is that there is some “surplus” from the amount collected from the leaf items,
since they are collected with “factor one” while we only require an approximate solution.
The improved algorithm is presented in Figure 3.4.

Iterative 4
3-Approximation Algorithm for Maximum Budgeted Allocation

While Q 6= ∅ do

(i) Find an optimal extreme point solution x to LPmba. Remove all edges with
xij = 0.

(ii) If there is a leaf agent i with all the items in N(i) being leaf items, then assign
each item l ∈ N(i) to i and remove N(i) and i.

(iii) Pick a tight leaf agent i. Let L be the set of leaf items in N(i), and j be the
unique non-leaf item in N(i). Assign each item l ∈ L to i and then remove L.
Modify both

Bi, bij ← max(0,
4bijxij −Bi

3xij
)

Fig. 3.4. The Maximum Budgeted Allocation 4/3-Approximation Algorithm

3.3.5 Correctness and Performance Guarantee

Lemma 3.3.3 guarantees that the algorithm will terminate successfully. Therefore, it re-
mains to prove that the returned integral solution is at least 3

4 of the initial fractional
solution. As in the proof of the 2-approximation algorithm, we apply the following lemma
inductively to complete the proof.

Lemma 3.3.4 In any iteration the increase of the integral solution is at least 3
4 of the

decrease of the fractional solution.

Proof Consider any iteration and first suppose that Step (ii) is applied on a leaf agent
i in this iteration. Let x denote the optimal fractional solution at the end of the itera-
tion. Note that Bi is modified at most once throughout the algorithm. Suppose Bi has
not been modified before this iteration. Then the increase of the integral solution is at
least

∑
l∈N(i) bilxil. Since the current solution x restricted to the remaining edges is a

feasible solution in the residual problem, the decrease of the fractional solution is at most
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∑
l∈N(i) bilxil, and thus the lemma holds. Now suppose that Bi has been modified before

this iteration. In this case let j be the unique neighbor of i. Let y denote the fractional
solution when Bi was modified. Let Bi denote the original budget, bij denote the original
bid and b′ij denote the current bid. The decrease in the fractional solution in the current
step is at most its current bid

b′ij =
4bijyij −Bi

3yij
.

However, from the iteration when its budget was modified, the unspent budget left on
agent i is at least bijyij and hence the increase of the integral solution is at least

bijyij ≥ 3
4
· 4bijyij −Bi

3yij
.

Therefore the lemma holds if Step (ii) is applied.
Now consider the case when Step (iii) is applied on a tight leaf agent i. Let j be the

unique non-leaf item in N(i). Let b′ij denote the new bid and B′
i denote the new budget.

Since the current solution x restricted to the remaining edges is a feasible solution in the
residual problem, the decrease of the fractional solution is at most

∑

l∈L

bilxil + (bij − b′ij)xij .

On the other hand, the increase of the integral solution is at least
∑

l∈L

bilxil.

To complete the proof, we need to show that the increase of the integral solution is at least
3/4 of the decrease of the fractional solution, which is equivalent to

1
3

∑

l∈L

bilxil ≥ (bij − b′ij)xij .

Since i is a tight agent, it is equivalent to showing that

1
3
(Bi − bijxij) ≥ (bij − b′ij)xij .

This holds for b′ij = max{0,
4bijxij−Bi

3xij
} = 0, because in this case 4bijxij ≤ Bi, and thus the

above inequality holds. Otherwise, we have

bijxij − b′ijxij = bijxij − 4bijxij −Bi

3xij
· xij =

Bi − bijxij

3
.

This completes the proof of the lemma, and thus the proof of Theorem 3.3.1.
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3.4 Vertex Cover in Bipartite Graphs

In this section we study the vertex cover problem in bipartite graphs. Given a graph
G = (V, E) with cost function c : V → R+ the vertex cover problem asks for a set of
vertices V ′ such that e ∩ V ′ 6= ∅ for each e ∈ E and c(V ′) =

∑
v∈V ′ cv is minimized. We

restrict our attention to bipartite graphs, i.e, V = V1 ∪ V2.

3.4.1 Linear Programming Relaxation

We first give the following natural linear programming relaxation LPbvc(G) for the vertex
cover problem in bipartite graphs. We have a variable xv for each vertex v denoting its
inclusion in the solution.

minimize
∑

v∈V

cv xv

subject to xu + xv ≥ 1 ∀ e = {u, v} ∈ E

xv ≥ 0 ∀ v ∈ V

As in the previous two sections, the linear program LPbvc(G) is compact, i.e., the
number of constraints and variables is polynomially bounded in the size of the problem.
Hence, the linear program can be solved optimally in polynomial time by Theorem 2.1.6.

We prove the following theorem by an iterative algorithm.

Theorem 3.4.1 Given any cost function c there exists an integral vertex cover U such that
c(U) ≤ c · x where x is an optimal solution to LPbvc(G).

As before, our proof of Theorem 3.4.1 as a corollary implies the following theorem.

Theorem 3.4.2 The linear programming formulation LPbvc(G) is integral.

3.4.2 Characterization of Extreme Point Solutions

Before we prove Theorem 3.4.1 we give a characterization of extreme points of LPbvc. For a
set W ⊆ V , let χ(W ) denote the vector in R|V |: the vector has an 1 corresponding to each
vertex v ∈ W , and 0 otherwise. This vector is called the characteristic vector of W , and
is denoted by χ(W ). In the following lemma, which follows by a direct application of the
Rank Lemma 1.2.3, we characterize an extreme point solution by a set of tight independent
constraints.

Lemma 3.4.3 Given any extreme point x to LPbvc(G) with xv > 0 for each v ∈ V there
exists F ⊆ E such that
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(i) xu + xv = 1 for each e = {u, v} ∈ F .
(ii) The vectors {χ({u, v}) : {u, v} ∈ F} are linearly independent.
(iii) |V | = |F |.

3.4.3 Iterative Algorithm

We now give the algorithm which constructs an integral vertex cover of cost at most the
optimal solution to LPbvc(G) proving Theorem 3.4.1. The algorithm is a simple iterative
procedure and shown in Figure 3.5.

Iterative Bipartite Vertex Cover Algorithm

(i) Initialization U ← ∅.
(ii) While V (G) 6= ∅ do

(a) Find an optimal extreme point solution x to LPbvc(G) and remove every
vertex v with xv = 0 and dE(v) = 0 from G.

(b) If there is a vertex v ∈ V such that xv = 1 then update U ← U ∪ {v},
V (G) ← V (G) \ {v} and E(G) ← E(G) \ δ(v).

(iii) Return U .

Fig. 3.5. Bipartite Vertex Cover Algorithm

3.4.4 Correctness and Optimality

Following the approach we used for bipartite matching, we prove the correctness of the
algorithm in two steps. First, we show that the algorithm returns a vertex cover of optimal
cost if the algorithm always finds a vertex v with xv = 0 in Step (ii)(a) or a vertex v with
xv = 1 in Step (ii)(b) . In the second part, we show that the algorithm will always find
such an vertex completing the proof.

Claim 3.4.4 If the algorithm, in every iteration, finds a vertex v with xv = 0 and dE(v) = 0
in Step (ii)(a) or a vertex v with xv = 1 in Step (ii)(b), then it returns a vertex cover U of
cost at most the optimal solution to LPbvc(G).

The proof of this claim is identical to the proof of Claim 3.1.4. We leave the details
to the reader. We now complete the proof of Theorem 3.4.1 by showing that we can always
find a vertex v with xv = 0 and dE(v) = 0, or a vertex with xv = 1. The proof of the
following lemma crucially uses the characterization of extreme point solutions given in
Lemma 3.4.3.

Lemma 3.4.5 Given any extreme point solution x to LPbvc(G) there must exist a vertex
v with xv = 0 and dE(v) = 0, or a vertex with xv = 1.
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Proof Suppose for sake of contradiction that xv < 1 and xv = 0 implies that dE(v) ≥ 1 for
each vertex v ∈ V . This implies that there is no vertex with xv = 0. This follows from the
fact that any neighbor u of v must have xu = 1 since xu + xv ≥ 1. Lemma 3.4.3 implies
that there exists F ⊆ E such that constraints corresponding to F are tight and |F | = |V |.

Claim 3.4.6 F is acyclic.

Proof Suppose for sake of contradiction C ⊆ F is a cycle. Since G is bipartite C is an even
cycle. Then C is the disjoint union of two matchings M1 and M2. But then the sum of the
constraints corresponding to edges in M1 equals the sum of the constraints corresponding
to edges in M2, contradicting the independence of constraints for edges in F .

Since F is acyclic, we must have |F | ≤ |V | − 1, a contradiction.

Thus, by Lemma 3.4.5, the algorithm in Figure 3.5 returns a vertex cover that
costs at most the cost of the optimal solution to the linear program LPbvc(G), proving
Theorem 3.4.1.

3.5 Vertex Cover and Matchings: Duality

In this section we prove the following min-max theorem between the size of minimum
vertex covers and maximum matchings in bipartite graphs using the integrality proofs we
have seen in previous sections.

Theorem 3.5.1 Given an unweighted bipartite graph G = (V,E) we have

max{|M | : M is a matching} = min{|U | : U is a vertex cover}

Proof Let M∗ be the maximum weight matching returned by the Iterative Algorithm in
Figure 3.1 when the weight function we = 1 for all e ∈ E. Also, let U∗ denote the minimum
cost vertex cover returned by the iterative algorithm in Figure 3.5 when the cost function
cv = 1 for each v ∈ V . From Theorem 3.1.1 and Theorem 3.4.1 we have that M∗ is an
optimal solution to LPbm(G) and U∗ is an optimal solution to LPbvc(G). But LPbm(G) and
LPbvc(G) are duals of each other when w and c are uniformly one (see Section 2.1.4). By
the strong duality theorem (Theorem 2.1.9) both the linear programs must have optimal
solutions of equal value:

|M∗| = max{|M | : M is a matching} = min{|U | : U is a vertex cover} = |U∗|.

A weighted generalization of the above theorem is true. It can be similarly shown us-
ing duality and the fact that the corresponding linear programming problems have integral
optima. For more details, see Chapter 18 of Schrijver’s book [130].
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Notes

The bipartite perfect matching problem (also known as the Assignment problem) is one
of the oldest problems in Combinatorial Optimization (see e.g. [128]). The first proof of
polynomial solvability of maximum weight bipartite matching via the Hungarian method
was given by Egervary [44], sharpened by Kuhn [94] and shown efficient by Munkres [107].
The unweighted case was addressed earlier by Frobenius [52]. Birkhoff [15] was the first
to show that the extreme points of the bipartite matching polyhedron (defined by the
so-called "doubly stochastic" constraint matrix) are integral.

The generalized assignment problem was first studied by Shmoys and Tardos [131]
following up on a bi-criteria approximation algorithms for the problem due to Lin and
Vitter [98]. Trick [136] studied the version minimizing the weighted sum of cost and
makespan of the underlying scheduling problem, while Lenstra, Shmoys and Tardos [97]
study the makespan problem and give the 2-approximation that was generalized in the
subsequent work of Shmoys and Tardos [131]

The maximum budgeted allocation problem is NP-hard. The first approximation al-
gorithm is a (1 +

√
5)/2-approximation algorithm given by Garg, Kumar and Pandit [60].

The approximation ratio was subsequently improved to e/(e− 1) by Andelman and Man-
sour [2], and 3/2 by Azar et al. [6]. The result presented in this chapter is by Chakrabarty
and Goel [22]. The same result is also obtained independently by Srinivasan [135] by a
dependent rounding algorithm.

The bipartite minimum vertex cover problem is the linear programming dual to the
maximum matching problem. The min-max theorem relating them is due to König [90].
The Hungarian method and LP duality can be used to show the integrality of the weighted
vertex cover problem. An alternate approach is to use the total unimodularity (see e.g.,
the book by Nemhauser and Wolsey [113]) of the constraint matrix which is the edge-node
incidence matrix of the bipartite graph, which is also an example of a Network Matrix that
we will study in Chapter 8.

Exercises

3.1 Given a bipartite graph G = (V,E) and a cost function c : E → R, a perfect
matching is a subgraph with degree exactly one at any node.

(a) Write a linear programming formulation for the minimum cost perfect match-
ing problem.

(b) Give an iterative proof of integrality of the linear programming formulation
for the minimum cost perfect matching problem. (Hint: Adapt the proof for
maximum weight matchings.)

3.2 Show that LPbm(G) and LPbvc(G) are not integral when G is not bipartite.

3.3 Generalize the methods given in this chapter for maximum weight matchings and
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minimum weight vertex covers in bipartite graphs to the case when the right hand
side of the LP constraints are positive integers (rather than all 1’s as we consid-
ered). Note that the two resulting integrality proofs, along with strong duality, will
imply the general min-max relation between maximum-weight matchings with arbi-
trary vertex degree bounds and minimum-cost vertex cover with arbitrary coverage
requirements at the edges.

3.4 Given a set of intervals [ai, bi] for each 1 ≤ i ≤ n and a weight function w on
intervals, the maximum weight k-interval packing problem asks for a subset J of
intervals of maximum weight such that there are at most k intervals in J at any
point on the line.

(a) Formulate a linear program for the maximum weight k-interval packing prob-
lem.

(b) Show that only n − 1 point constraints need to be imposed apart from the
bound constraints.

(c) Show that the linear program is integral.

3.5 Can you solve the maximum weight k-interval packing problem for intervals on a
tree rather than a path (as was the case in the previous problem) using the same
approach? If you can, give an integral description for the problem. If not, argue
why natural formulations are not integral.

Consider the case when all the intervals in a tree are monotone, i.e., they
go from a point in a rooted version of the tree to its ancestor (thus there are no
intervals whose endpoints are two incomparable points in the tree). Can you give
an integral LP formulation in this case using the approach of the previous problem?

3.6 Prove Lemma 3.3.3 starting from Lemma 3.3.2.

3.7 Construct an example for LPmba of the maximum budgeted allocation problem
with integrality gap 4

3 .
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4

Spanning Trees

In this chapter we will study the spanning tree problem in undirected graphs. First, we
will study an exact linear programming formulation and show its integrality using the
iterative method. To do this, we will introduce the uncrossing method, which is a very
powerful technique in combinatorial optimization. The uncrossing method will play a
crucial role in the proof and will occur at numerous places in later chapters. We will show
two different iterative algorithms for the spanning tree problem, each using a different
choice of 1-elements to pick in the solution. For the second iterative algorithm, we show
three different correctness proofs for the existence of an 1-element in an extreme point
solution: a global counting argument, a local integral token counting argument and a local
fractional token counting argument. These token counting arguments will be used in many
proofs in later chapters.

We then address the degree-bounded minimum-cost spanning tree problem. We show
how the methods developed for the exact characterization of the spanning tree polyhedron
are useful in designing approximation algorithms for this NP-hard problem. We give two
additive approximation algorithm: the first follows the first approach for spanning trees
and naturally generalizes to give a simple proof of the additive two approximation result
of Goemans [62]; the second follows the second approach for spanning trees and uses the
local fractional token counting argument to provide a very simple proof of the additive one
approximation result of Singh and Lau [134].

4.1 Minimum Spanning Trees

In an instance of the minimum spanning tree (MST) problem we are given an undirected
graph G = (V, E), edge costs given as c : E → R, and the task is to find a spanning tree
of minimum total edge cost.
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4.1.1 Linear Programming Relaxation

In this section two formulations of the minimum spanning tree problem are discussed (some
more are discussed in the Exercises). A spanning tree is a minimal 1-edge-connected
subgraph. Thus, a natural formulation (sometimes called the undirected LP or the cut
LP), is to require that every pair of vertices has a path connecting them. Or equivalently,
we can require that there is at least one edge crossing each proper subset of vertices.

minimize
∑

e∈E

ce xe

subject to x(δ(S)) ≥ 1 ∀ S ⊂ V

xe ≥ 0 ∀ e ∈ E

There is a variable xe corresponding to each edge e, to indicate that whether e is
included in the spanning tree, and ce denotes the cost of e. For a set F of edges, the
shorthand x(F ) is used to denote

∑
e∈F xe. Recall that δ(S) is the set of edges with

exactly one endpoint in S.

There are exponentially many constraints in the undirected LP. However, from The-
orem 2.1.8 in Chapter 1, the undirected LP can still be solved in polynomial time if a
polynomial time separation oracle can be constructed. Constructing such a polynomial-
time oracle is equivalent to finding a cut of total capacity less than one in the graph with
capacities x, and can be accomplished using a global minimum-cut algorithm. (In detail,
given a solution to the above linear program, one needs to determine whether it is a fea-
sible solution, and if not, provides a violating inequality. A polynomial time separation
oracle for the undirected LP is easy to construct. Given a fractional solution, check first if
every variable is nonnegative. Then, for every pair of vertices, check if the maximum flow
between them is at least 1. If this condition is satisfied for every pair, then clearly the given
fractional solution is a feasible solution. On the other hand, if for some pair this condition
is not satisfied, by the max-flow min-cut theorem, there is a set S with x(δ(S)) < 1, and
such a set can be found in polynomial time.) Unfortunately, the undirected LP is not an
exact formulation of the minimum spanning tree problem as shown in Figure 4.1.

Another formulation is the subtour elimination LP which is related to the study of
the traveling salesman problem (TSP). For S ⊆ V , define E(S) to be the set of edges
with both endpoints in S. For a spanning tree, there are at most |S| − 1 edges in E(S),
where |S| denotes the number of vertices in S. Insisting on this for every set by using the
constraint (4.2) eliminates all the potential subtours that can be formed in the LP solution:
this is how the formulation gets its name.
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Fig. 4.1. Consider a cycle of n vertices, where every edge has the same cost, say 1. Any spanning
tree requires at least n− 1 edges, and thus has cost at least n− 1. However, by setting xe = 1/2
for each edge, it can be easily checked that this is a feasible solution to the undirected LP, and has
total cost only n/2.

minimize
∑

e∈E

ce xe (4.1)

subject to x(E(S)) ≤ |S| − 1 ∀ ∅ 6= S ⊂ V (4.2)
x(E(V )) = |V | − 1 (4.3)

xe ≥ 0 ∀ e ∈ E (4.4)

In the next section we will give an iterative algorithm which will prove that the
subtour LP is integral.

Theorem 4.1.1 Every extreme point solution to the subtour LP is integral and corresponds
to the characteristic vector of a spanning tree.

Before we give the iterative algorithm and proof of Theorem 4.1.1, we show that one
can optimize over the subtour LP in polynomial time. We show this by giving a polynomial
time separation oracle for the constraints in subtour LP. Polynomial time solvability now
follows from Theorem 2.1.8.

Theorem 4.1.2 There is a polynomial time separation oracle for the subtour LP.

Proof The separation oracle, given a fractional solution x, needs to find a set S ⊆ V such
that x(E(S)) > |S|−1 if such a set exists. It is easy to check the equality x(E(V )) = |V |−1.
Thus, checking the inequality for S is equivalent to checking if minS{|S|−1−x(E(S))} < 0.
Using x(E(V )) = |V | − 1 we obtain that it is enough to check minS{|S| − 1 + x(E(V ))−
x(E(S))} < |V | − 1} or equivalently if minS{|S|+ x(E(V ))− x(E(S))} < |V |}.

We set up a min-cut problem in a new digraph D with a new source s and a new
sink t. We also have one node in the digraph per edge e in the support (i.e. with xe > 0)
and a node per vertex of G. The source s has an arc to every edge e (i.e. the node in D

corresponding to e in G) with capacity xe. For every edge e = i, j in G, its corresponding
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node in D has two arcs of infinite capacity, one to each of the nodes in D corresponding
to the vertices i and j in G. Finally, every node i in D has an arc of unit capacity to the
sink t. To find a violated cut, we check if the min s− t cut is smaller than |V |.

Suppose there is a violated set S with x(E(S)) > |S| − 1. Then consider the cut
formed by including on the side of s, all the nodes of D corresponding to edges in E(S)
as well as all the nodes of D corresponding to the vertices of S. The set of arcs coming
out of this cut are those coming out of the vertices of S and hence have capacity |S|. All
edges not in E(S), namely in E(V ) − E(S), must now have their incoming arc from s in
the cut for a total capacity contribution of x(E(V )) − x(E(S)). Thus a violated set will
correspond to a cut with value less than |V |.

Conversely, suppose the min-cut solution returns one of value less than |V |: we show
how to extract a violated set from it. Since every node in D corresponding to an edge e

of G has both its outgoing arcs with infinite capacity, if such a node (say e = i, j) is in
the s-side of the min cut, then both its successors (i.e. both i and j) must also be in the
s-side of the minimum cut. Similarly, if we take all the vertices of G in the s-side of the
min-cut, all edges of G which do not have both their endpoints in this set will have to lie
on the t-side of this cut. If the min-cut found has the set S′ in the s-side of the cut, the
capacity of the cut is precisely |S′| (from the unit arcs going from these nodes to t) plus the
x-value of all edges that do not have both end points in S, namely x(E(V ))−x(E(S′)), as
required. If this min-cut value is less than |V |, we can see that S′ is a violating set.

4.1.2 Characterization of Extreme Point Solutions

In this subsection, we analyze the extreme point solutions to the subtour LP. Recall that
an extreme point solution is the unique solution defined by n linearly independent tight
inequalities, where n is the number of variables in the linear program. There are expo-
nentially many inequalities in the subtour LP, and an extreme point solution may satisfy
many inequalities as equalities. To analyze an extreme point solution, an important step
is to find a “good” set of tight inequalities defining it. If there is an edge e with xe = 0,
this edge can be removed from the graph without affecting the feasibility and the objective
value. So henceforth assume every edge e has xe > 0.

4.1.3 Uncrossing Technique

The uncrossing technique is a powerful technique and we shall use it to find a good set of
tight inequalities for an extreme point solution in the subtour LP. Let E(X, Y ) denotes the
set of edges with one endpoint in X and the other endpoint in Y , and let E(X) = E(X,X)
denote the set of edges of G induced in X ⊆ V (G). For a set F ⊆ E, let χ(F ) denote
the vector in R|E| that has an 1 corresponding to each edge e ∈ F , and 0 otherwise. This
vector is called the characteristic vector of F . The following proposition follows from the
supermodularity of |E(X)|; see also Proposition 2.3.6.
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Proposition 4.1.3 For X,Y ⊆ V ,

χ(E(X)) + χ(E(Y )) ≤ χ(E(X ∪ Y )) + χ(E(X ∩ Y )),

and equality holds if and only if E(X \ Y, Y \X) = ∅.

Proof Observe that

χ(E(X)) + χ(E(Y )) = χ(E(X ∪ Y )) + χ(E(X ∩ Y ))− χ(E(X \ Y, Y \X))

and proof follows immediately. See Figure 4.2.

X Y

Fig. 4.2. In this example the solid edges are counted exactly once in both the LHS χ(E(X)) +
χ(E(Y )), and the RHS χ(E(X ∪ Y )) + χ(E(X ∩ Y )), and the bold edge is counted exactly twice
on both sides. The dashed edge, however is counted in the RHS but not in the LHS.

Given an extreme point solution x to the subtour LP, let F = {S | x(E(S)) = |S|−1}
be the family of tight inequalities for x. The following lemma shows that this family is
closed under intersection and union.

Lemma 4.1.4 If S, T ∈ F and S∩T 6= ∅, then both S∩T and S∪T are in F . Furthermore,
χ(E(S)) + χ(E(T )) = χ(E(S ∩ T )) + χ(E(S ∪ T )).

Proof Observe that

|S| − 1 + |T | − 1 = x(E(S)) + x(E(T ))

≤ x(E(S ∩ T )) + x(E(S ∪ T )))

≤ |S ∩ T | − 1 + |S ∪ T | − 1

= |S| − 1 + |T | − 1.

The first equality follows from the fact that S, T ∈ F . The second inequality follows
from Proposition 4.1.3 (or from Proposition 2.3.6). The third inequality follows from
the constraints for S ∩ T and S ∪ T in the subtour LP. The last equality is because
|S| + |T | = |S ∩ T | + |S ∪ T | for any two sets S, T . Thus equality must hold everywhere
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and we have x(E(S ∩ T )) + x(E(S ∪ T )) = |S ∩ T | − 1 + |S ∪ T | − 1. Hence, we must
have equality for constraints for S ∩ T and S ∪ T , i.e., x(E(S ∩ T )) = |S ∩ T | − 1 and
x(E(S ∪ T )) = |S ∪ T | − 1, which implies that S ∩ T and S ∪ T are also in F . Moreover,
equality holds for Proposition 4.1.3 and thus χ(E(S \ T, T \ S)) = ∅ and χ(E(S)) +
χ(E(T )) = χ(E(S ∩ T )) + χ(E(S ∪ T )).

Denote by span(F) the vector space generated by the set of vectors {χ(E(S)) | S ∈
F}. Call two sets X,Y intersecting if X ∩ Y , X − Y and Y − X are nonempty. A
family of sets is laminar if no two sets are intersecting. The following lemma says that an
extreme point solution is characterized by tight inequalities whose corresponding sets form
a laminar family. This is a crucial structure theorem on the extreme point solutions for
the subtour LP.

Lemma 4.1.5 If L is a maximal laminar subfamily of F , then span(L) = span(F).

Proof Suppose, by way of contradiction, that L is a maximal laminar subfamily of F but
span(L) ⊂ span(F). For any S /∈ L, define intersect(S,L) to be the number of sets in
L which intersect S, i.e. intersect(S,L) = |{T ∈ L | S and T are intersecting}|. Since
span(L) ⊂ span(F), there exists a set S with χ(E(S)) /∈ span(L). Choose such a set S

with minimum intersect(S,L). Clearly, intersect(S,L) ≥ 1; otherwise L ∪ {S} is also a
laminar subfamily, contradicting the maximality of L. Let T be a set in L which intersects
S. Since S, T ∈ F , by Lemma 4.1.4, both S∩T and S∪T are in F . Also, both intersect(S∩
T,L) and intersect(S ∪ T,L) are smaller than intersect(S,L), which will be proved next
in Proposition 4.1.6. Hence, by the minimality of intersect(S,L), both S ∩ T and S ∪ T

are in span(L). By Lemma 4.1.4, χ(E(S))+χ(E(T )) = χ(E(S∩T ))+χ(E(S∪T )). Since
χ(E(S ∩ T )) and χ(E(S ∪ T )) are in span(L) and T ∈ L, the above equation implies that
χ(E(S)) ∈ span(L), a contradiction. It remains to prove Proposition 4.1.6.

Proposition 4.1.6 Let S be a set that intersects T ∈ L. Then intersect(S ∩ T,L) and
intersect(S ∪ T,L) are smaller than intersect(S,L).

Proof Since L is a laminar family, for a set R ∈ L with R 6= T , R does not intersect T

(either R ⊂ T , T ⊂ R or T ∩ R = ∅). So, whenever R intersects S ∩ T or S ∪ T , R also
intersects S. Also, T intersects S but not S ∩ T or S ∪ T . Therefore, intersect(S ∩ T,L)
and intersect(S ∪ T,L) are smaller than intersect(S,L)

This completes the proof of Lemma 4.1.5.

The following proposition about the size of a laminar family will be used to bound
the number of variables in an extreme point solution.

Proposition 4.1.7 A laminar family L over the ground set V without singletons (subsets
with only one element) has at most |V | − 1 distinct members.
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Proof The proof is by induction on the size of the ground set. If |V | = 2, clearly the claim
follows. Let n = |V | and the claim be true for all laminar families over ground sets of size
strictly smaller than n. Let S be a maximal set in the laminar family which is not equal
to V . Each set in L, except for V , is either contained in S or does not intersect S. The
number of sets in L contained in S (including S itself) is at most |S| − 1 by the induction
hypothesis. The sets in L not intersecting with S form a laminar family over the ground
set V \ S and hence there are at most |V | − |S| − 1 such sets. Along with V , this gives a
total of at most (|S| − 1) + (|V | − |S| − 1) + 1 = |V | − 1 sets.

The following corollary follows immediately from Proposition 4.1.7.

Corollary 4.1.8 A laminar family L over the ground set V (potentially including singletons
now) has at most 2|V | − 1 distinct members.

4.1.4 Leaf-finding Iterative Algorithm

In this subsection, an iterative procedure to find a minimum spanning tree from an optimal
extreme point solution of the subtour LP is presented. The algorithm is shown in Figure 4.3.

Iterative Leaf-finding MST Algorithm

(i) Initialization F ← ∅.
(ii) While |V (G)| ≥ 2 do

(a) Find an optimal extreme point solution x to the subtour LP and remove
every edge e with xe = 0 from G.

(b) Find a vertex v with at most one edge e = uv incident on it, then update
F ← F ∪ {e} and G ← G \ {v}.

(iii) Return F .

Fig. 4.3. Iterative Leaf-finding MST Algorithm

4.1.5 Correctness and Optimality of Leaf-finding Algorithm

First, we prove that the algorithm will terminate in the following lemma.

Lemma 4.1.9 For any extreme point solution x to the subtour LP with xe > 0 for every
edge e, there exists a vertex v with d(v) = 1.

Proof Suppose each vertex is of degree at least two. Then |E| = 1
2

∑
v∈V d(v) ≥ |V |. On

the other hand, since there is no edge e with xe = 0, every tight inequality is of the form
x(E(S)) = |S|−1. By Lemma 4.1.5, there are |L| linearly independent tight constraints of
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the form x(E(S)) = |S| − 1, where L is a laminar family with no singleton sets. It follows
that |E| = |L| by the Rank Lemma 1.2.3. By Proposition 4.1.7, |L| ≤ |V | − 1 and hence
|E| ≤ |V | − 1, a contradiction.

Next we show that the returned solution is a minimum spanning tree in the following
theorem.

Theorem 4.1.10 The Iterative MST Algorithm returns a minimum spanning tree in poly-
nomial time.

Proof This is proved by induction on the number of iterations of the algorithm. If the
algorithm finds a vertex v of degree one (a leaf vertex) in Step (ii)(b) with an edge e = {u, v}
incident at v, then we must have xe = 1 since x(δ(v)) ≥ 1 is a valid inequality of the LP
(subtracting the constraint x(E(V −v)) ≤ |V |−2 from the constraint x(E(V )) = |V |−1).
In the iterative leaf-finding algorithm, e is added to the solution F (starting with an
initial F = ∅), and v is removed from the graph. Note that for any spanning tree T ′ of
G′ = G \ {v}, we can construct a spanning tree T = T ′ ∪ {e} of G. Hence, the residual
problem is to find a minimum spanning tree on G \ v, and the same procedure is applied
to solve the residual problem recursively.

Since xe = 1, the restriction of x to E(G′), denoted by xres, is a feasible solution
to the subtour LP for G′. Inductively, the algorithm will return a spanning tree F ′ of G′

of cost at most the optimal value of the subtour LP for G′, and hence c(F ′) ≤ c · xres.
Therefore,

c(F ) = c(F ′) + ce and c(F ′) ≤ c · xres

which imply that

c(F ) ≤ c · xres + ce = c · x
as xe = 1. Hence, the spanning tree returned by the algorithm is of cost no more than
the cost of an optimal LP solution x, which is a lower bound on the cost of a minimum
spanning tree. This shows that the algorithm returns a minimum spanning tree of the
graph.

Remark 4.1.11 If x is an optimal extreme point solution to the subtour LP for G, then
the residual LP solution xres, x restricted to G′ = G \ v, remains an optimal extreme point
solution to the subtour LP for G′. Hence, in the Iterative MST Algorithm we only need to
solve the original linear program once and none of the residual linear programs.

Theorem 4.1.10 also shows that the subtour LP is an exact formulation of the mini-
mum spanning tree problem showing the proof of Theorem 4.1.1.

Alternately, note that the proof of Lemma 4.1.9 already showed that |E| = n − 1
and since x(E) = n − 1 and x(e) ≤ 1 for all edges e ∈ E (by considering the constraint
x(E(S)) = |S|−1 for the size-two set S defined by the endpoints of the edge), we must have
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xe = 1 for all edges e ∈ E proving integrality. Thus we have that directly either xe = 0
or xe = 1 for all edges e rather than for a single edge. This gives a direct (non-iterative)
proof of integrality of the subtour LP.

4.2 Iterative 1-edge-finding Algorithm

In this section, we give another iterative procedure to find a minimum spanning tree from
an optimal extreme point solution to the subtour LP is presented. The algorithm is shown
in Figure 4.4. A key difference is that to create the residual problem, the chosen edge e is
contracted from G to identify its endpoints to result in the graph G/e.

Iterative 1-edge-finding MST Algorithm

(i) Initialization F ← ∅.
(ii) While |V (G)| ≥ 2 do

(a) Find an optimal extreme point solution x to the subtour LP and remove
every edge e with xe = 0 from G.

(b) Find an edge e = {u, v} with xe = 1 and update F ← F ∪ {e}, G ← G/e.
(iii) Return F .

Fig. 4.4. Iterative 1-edge-finding MST Algorithm

4.2.1 Correctness and Optimality

Following the discussion in Subsection 4.1.5 it is enough to show that the algorithm will
terminate. An argument similar to one in proof of Theorem 4.1.10 will show that the
output of the algorithm is a minimum spanning tree.

Lemma 4.2.1 For any extreme point solution x to the subtour LP with xe > 0 for each
edge e there exists an edge f such that xf = 1.

Proof We give three alternate proofs of this lemma mainly to illustrate the three types of
counting arguments that can be used to accomplish such proofs.

Proof 1 (Global Counting Argument). This is the proof style of Lemma 4.1.5 which
shows by a global degree counting argument over all (non-leaf) nodes that |E| ≥ |V |, which
contradicts the upper bound of |L| of |V | − 1.

Proof 2 (Local Token Counting Argument). By Lemma 4.1.5, there are |L| linearly
independent tight constraints of the form x(E(S)) = |S| − 1, and so |E| = |L|. We now
show a contradiction to this through a local token counting argument.

We assign one token for each edge e in the support E, for a total of |E| tokens. We
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will redistribute the tokens so that each set in L will receive one token and there are some
extra tokens left. This implies that |E| > |L|, giving us the contradiction. Actually, for
the contradiction, we can collect two tokens for each set S ∈ L. Since |L| ≥ 1, this will
give the desired extra token and hence the contradiction.

To redistribute the tokens, each edge gives its token to the smallest set containing
both of its endpoints. Let S be any set in L with children R1, . . . , Rk (k could be zero).
We have

x(E(S)) = |S| − 1

and for each i,

x(E(Ri)) = |Ri| − 1.

Subtracting, we obtain

x(E(S))−
∑

i

x(E(Ri)) = |S| −
∑

i

|Ri|+ k − 1.

Let A = E(S) \ (∪iE(Ri)). Observe that S obtains exactly one token for each edge in A.
If A = ∅, then χ(E(S)) =

∑
i χ(E(Ri)) which contradicts the linear independence of these

constraints in L. Moreover, |A| 6= 1 as x(A) is an integer but no single edge in it has an
integral value. Hence, |A| ≥ 2 and thus S receives at least two tokens.

Proof 3 (Local Fractional Token Counting Argument). This is a slight modification
of the previous argument but generalizes nicely to the degree-bounded case. As before, we
assign one token for each edge e in the support E, for a total of |E| tokens. For each edge
e, however, we only redistribute xe fractional token to the smallest set containing both the
endpoints. Now, we show that each set in L can collect at least one token, and demonstrate
some extra leftover fractional edge tokens as before giving us the contradiction.

Let S be any set in L with children R1, . . . , Rk. Following the previous proof, we
have that

x(E(S))−
∑

i

x(E(Ri)) = |S| −
∑

i

|Ri|+ k − 1

=⇒ x(A) = |S| −
∑

i

|Ri|+ k − 1

where A = E(S) \ (∪iE(Ri)). Now S obtains exactly xe fractional token for each edge e

in A. If A = ∅, then χ(E(S)) =
∑

i χ(E(Ri)) which contradicts the linear independence
of these sets of constraints in L. Moreover, x(A) is an integer and hence it is at least one,
giving S the one token it needs.

Since every edge is not integral, we have the extra fractional token of value (1− xe)
for every edge e as unused tokens giving the contradiction.
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4.3 Minimum Bounded-Degree Spanning Trees

We next turn to the study of the minimum bounded-degree spanning tree (MBDST) prob-
lem. In an instance of the MBDST problem we are given a graph G = (V,E), edge cost
given by c : E → R, a degree upper bound Bv for each v ∈ V and the task is to find a
spanning tree of minimum cost which satisfies the degree bounds. We prove the following
theorem originally due to Singh and Lau.

Theorem 4.3.1 There exists a polynomial time algorithm which given an instance of the
MBDST problem returns a spanning tree T such that dT (v) ≤ Bv + 1 and cost of the tree
T is at most the cost of any tree which satisfies the degree bounds.

We prove Theorem 4.3.1 using the iterative relaxation technique. However, we first
prove a weaker guarantee where the degree bound is violated by an additive factor of two,
a result first obtained by Goemans and illustrates a simple extension of the leaf-finding
iterative MST algorithm. Later in Section 4.4, we present the proof of Theorem 4.3.1 that
extends the 1-edge-finding iterative MST algorithm.

4.3.1 Linear Programming Relaxation

We use the following standard linear programming relaxation for the MBDST problem,
which we denote by LPmbdst(G, B,W ). In the following we assume that degree bounds are
given for vertices only in a subset W ⊆ V . Let B denote the vector of all degree bounds
Bv, one for each vertex v ∈ W .

minimize
∑

e∈E

ce xe (4.5)

subject to x(E(V )) = |V | − 1 (4.6)
x(E(S)) ≤ |S| − 1 ∀ ∅ 6= S ⊂ V (4.7)
x(δ(v)) ≤ Bv ∀ v ∈ W (4.8)

xe ≥ 0 ∀ e ∈ E (4.9)

Separation over the inequalities in the above linear program can be carried out in
polynomial time and follows from Theorem 4.1.2. An alternative is to write a compact
reformulation of the above linear program which has polynomially many variables and
constraints (see the exercises).

4.3.2 Characterization of Extreme Point Solutions

We first give a characterization of an extreme point solution to LPmbdst(G,B,W ). We
remove all edges with xe = 0 and focus only on the support of the extreme point solution
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and the tight constraints from (4.6)-(4.8). Let F = {S ⊆ V : x(E(S)) = |S|−1} be the set
of tight constraints from (4.6)-(4.7). From an application of Rank Lemma 1.2.3 and the
characterization of extreme point solutions to the spanning tree polyhedron (Lemma 4.1.5),
we have the following characterization.

Lemma 4.3.2 Let x be an extreme point solution to LPmbdst(G,B,W ) with xe > 0 for
each edge e ∈ E. Then there exists a set T ⊆ W and a laminar family L such that

(i) x(δ(v)) = Bv for each v ∈ T and x(E(S)) = |S| − 1 for each S ∈ L.
(ii) The vectors in {χ(E(S)) : S ∈ L} ∪ {χ(δ(v)) : v ∈ T} are linearly independent.
(iii) |L|+ |T | = |E|.

4.3.3 Leaf-finding Iterative Algorithm

In this section, we give an iterative polynomial-time algorithm which returns a tree of
optimal cost and violates the degree bound within an additive error of two. The algorithm
is given in Figure 4.5

Iterative MBDST Leaf-finding Algorithm

(i) Initialization F ← ∅.
(ii) While |V (G)| ≥ 2 do

(a) Find an optimal extreme point solution x to LPmbdst(G,B,W ) and remove
every edge e with xe = 0 from G. Let the support of x be E.

(b) If there exists a vertex v ∈ V with at most one edge e = uv incident on
it, then update F ← F ∪ {e}, G ← G \ {v}, W ← W \ {v}, and set
Bu ← Bu − 1.

(c) (Relaxation) If there exists a vertex v ∈ W with dE(v) ≤ 3, then update
W ← W \ {v}.

(iii) Return F .

Fig. 4.5. MBDST Leaf-finding Algorithm

4.3.4 Correctness and Performance Guarantee

In the next lemma we prove by a simple counting argument that in each iteration we can
proceed by applying either Step (ii)(b) or Step (ii)(c); this will ensure that the algorithm
terminates.

Lemma 4.3.3 Any extreme point solution x to LPmbdst(G,B, W ) with xe > 0 for each
edge e ∈ E must satisfy one of the following.

(a) There is a vertex v ∈ V with dE(v) = 1.
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(b) There is a vertex v ∈ W with dE(v) ≤ 3.

Proof We use a global counting argument. Suppose for sake of contradiction that both
(a) and (b) are not satisfied. Then every vertex has at least 2 edges incident on it and
every vertex in W has at least 4 edges incident on it. Therefore, |E| = 1

2

∑
v∈V d(v) ≥

1
2(2(n− |W |) + 4|W |) = n + |W |, where n = |V |.

On the other hand, by Lemma 4.3.2, there is a laminar family L and a set T ⊆ W

of vertices such that |E| = |L| + |T |. As L is a laminar family which contains subsets of
size at least two, from Proposition 4.1.7 we have |L| ≤ n − 1. Hence, |E| = |L| + |T | ≤
n− 1 + |T | ≤ n− 1 + |W |, a contradiction.

We now prove the performance guarantee of the algorithm.

Theorem 4.3.4 The leaf-finding iterative algorithm in Figure 4.5 returns a tree T of
optimal cost with dT (v) ≤ Bv + 2 for each v ∈ V .

Proof The proof that the cost of tree returned is at most the cost of the linear programming
solution is identical to the proof of the optimality of the iterative spanning tree algorithm
in Section 4.1 and we do not duplicate it here.

We show that the degree of any vertex v is at most Bv + 2. At any iteration, let F

denote the set of edges selected and let B′
v denote the current residual degree bound of v.

Claim 4.3.5 While the degree constraint of v is present, dF (v) + B′
v = Bv.

Proof The proof is by induction on the number of iterations of the algorithm. Clearly,
F = ∅ and B′

v = Bv and the claim holds. At any iteration, whenever we include an edge
e ∈ δ(v) in F , we reduce B′

v by one and hence the equality holds true.

When the degree bound for the vertex v is removed then at most 3 edges are incident
at v. In the worst case, we may select all three edges in the solution. Hence,

dT (v) ≤ Bv −B′
v + 3 ≤ Bv + 2

where B′
v ≥ 1 is the degree bound of v when the degree constraint is removed.

4.4 An Additive One Approximation Algorithm

In this section, we give a very simple iterative algorithm which returns a tree of optimal
cost and violates the degree bound within an additive error of one. This algorithm involves
no rounding at all (not even picking an 1-edge) - it removes degree constraints one by one,
and eventually reduces the problem to a minimum spanning tree problem. This can be
thought of as an analogue of the 1-edge-finding iterative MST algorithm presented earlier.
The algorithm is given in Figure 4.6.
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Iterative Relaxation MBDST Algorithm

(i) While W 6= ∅ do
(a) Find an optimal extreme point solution x to LPmbdst(G,B,W ) and remove

every edge e with xe = 0 from G. Let the support of x be E.
(b) (Relaxation) If there exists a vertex v ∈ W with dE(v) ≤ Bv + 1, then

update W ← W \ {v}.
(ii) Return E.

Fig. 4.6. Additive One MBDST Algorithm

4.4.1 Correctness and Performance Guarantee

In the next lemma we prove that in each iteration, the algorithm can find some vertex for
which the degree constraint can be removed. Observe that once all the degree constraints
are removed we obtain the linear program for the minimum spanning tree problem which
we showed in Section 4.1 to be integral. Hence, the algorithm returns a tree. Moreover,
at each step we only relax the linear program. Hence, the cost of the final solution is at
most the cost of the initial linear programming solution. Thus the tree returned by the
algorithm has optimal cost. A simple inductive argument also shows that the degree bound
is violated by at most an additive one. The degree bound is violated only when we remove
the degree constraint and then dE(v) ≤ Bv + 1. Thus, in the worst case, if we include all
the edges incident at v in T , the degree bound of v is violated by at most an additive one.

It remains to show that the iterative relaxation algorithm finds a degree constraint
to remove at each step. From Lemma 4.3.2 we have that there exists a laminar family
L ⊆ F and T ⊆ W such that |L| + |T | = |E| and constraints for sets in L are linearly
independent. Observe that if T = ∅ then only the spanning tree inequalities define the
solution x. Hence, x must be integral. In the other case, we show that there must be a
vertex in W whose degree constraint can be removed.

Lemma 4.4.1 Let x be an extreme point solution to LPmbdst(G, B, W ) with xe > 0.
Let L and T ⊆ W correspond to the tight set constraints and the tight degree constraints
defining x as given by Lemma 4.3.2. If T 6= ∅ then there exists some vertex v ∈ W with
dE(v) ≤ Bv + 1.

Proof We use the local fractional token argument as in the integrality proof of the 1-edge-
finding iterative MST algorithm we presented earlier.

Suppose for the sake of contradiction, we have T 6= ∅ and dE(v) ≥ Bv + 2 for each
v ∈ W . We now show a contradiction by a fractional token argument. We give one token
for each edge in E. We then redistribute the token such that each vertex in T and each set
in L gets one token and we still have extra tokens left. This will contradict |E| = |T |+ |L|.
The token redistribution is as follows. Each edge e ∈ E gives as before xe fractional token

60



to the smallest set in L containing both endpoints of e, and (1− xe)/2 fractional token to
each of its endpoints for the degree constraints.

We have already argued earlier that the xe assignment suffices to obtain one token
for each member in the laminar family (see the third fractional token argument in the proof
of Lemma 4.2.1).

Thus it suffices to show that each vertex with a tight degree constraint gets one
token. Let v ∈ T be such a vertex. Then v receives (1−xe)/2 token for each edge incident
at v for a total token of value

∑

e∈δ(v)

1− xe

2
=

dE(v)−Bv

2
≥ 1,

where the first equality holds since
∑

e∈δ(v) xe = Bv and the inequality holds since dE(v) ≥
Bv + 2 by Step (i)(b) of the algorithm.

To finish the proof, we argue that there is some extra token left for contradiction.
If V /∈ L then there exists an edge e which is not contained in any set of L and the xe

token for that edge gives us the contradiction. Similarly, if there is a vertex v ∈ W \ T

then v also collects one token which it does not need and we get the desired contradiction.
Moreover, if there is a vertex v ∈ V \ T then each edge e incident at v must have xe = 1
else the (1− xe)/2 > 0 token is extra. Note that e ∈ span(L) for each e with xe = 1, since
e is a tight set of size two. We have

2χ(E(V )) =
∑

v∈V

χ(δ(v)) =
∑

v∈T

χ(δ(v)) +
∑

v∈V−T

χ(δ(v)) =
∑

v∈T

χ(δ(v)) +
∑

v∈V−T

∑

e∈δ(v)

χ(e).

We have argued that V ∈ L and e ∈ span(L) for each edge e ∈ δ(v) for v ∈ V − T . Since
T 6= ∅, this implies the linear independence of the tight constraints in T and those in L,
giving us the contradiction.

Notes

Many variants of the greedy algorithm for finding minimum spanning trees have been
obtained starting from Boruvka [17], Kruskal [93] and Prim [116] (Graham and Hell [65]
have a useful survey of the history). Edmonds [41] gave the integral linear programming
relaxation for minimum spanning tree problem that we presented.

There is a long line of work of successively improving the performance guarantees for
the degree-bounded minimum-cost spanning tree problem. The algorithm with additive
guarantee of one for the unweighted case was first given by Fürer and Raghavachari [57].
The additive algorithm with violation 2 (with both upper and lower degree bounds) was
presented by Goemans [62]. The algorithm with additive violation of 1 was first presented
by Singh and Lau [134], also for the case with upper and lower bounds on the degree.
The fractional token proof which we used for the additive one proof was first presented by
Bansal et al. [8].
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Exercises

4.1 (Partition LP formulation for spanning trees.) Consider the following par-
tition LP for the minimum spanning tree problem. Let π = {V1, . . . , Vl} be a
partition of the vertex set V , and let |π| = l denote the size of the partition. Define
∆(π) to be the set of edges with endpoints in different sets in the partition π. In
any spanning tree, there are at least |π| − 1 edges in ∆(π) for a partition π of V .
Note that the undirected LP is a special case where only partitions of size two are
considered. Show that the partition LP is equivalent to the subtour LP.

minimize
∑

e∈E

ce xe

subject to x(∆(π)) ≥ |π| − 1 for all partitions π of V

x(E(V )) = |V | − 1

xe ≥ 0 ∀ e ∈ E

4.2 Let τ = {S ⊆ V : x(E(S)) = |S| − 1} where x is an extreme point solution to the
spanning tree polyhedron. Solving the linear program using the ellipsoid method
enables us to get a set family F ⊆ τ such that constraints for sets in F are linearly
independent and span all the tight constraints in τ . But F need not be laminar.
Give a polynomial time algorithm that, given F , returns a laminar family L ⊆ τ

such that constraints for sets in L are independent and span all the tight constraints
in τ .

4.3 (Spanning tree formulations.) Another interesting formulation for the mini-
mum spanning tree problem is the bidirected LP, which models the problem as
finding a spanning arborescence (i.e. a directed spanning tree). Given a directed
graph D and a root vertex r, a spanning r-arborescence is a subgraph of D so that
there is a directed path from r to every vertex in V −r. Given an undirected graph
G, we construct a directed graph D by having two opposite arcs (u, v) and (v, u) for
each undirected edge uv in G, and the cost of (u, v) and (v, u) in D are the same as
the cost of uv in G. Then, pick an arbitrary vertex r as the root vertex, and require
that there is a directed path from r to every vertex in V − r. Or equivalently, by
Menger’s theorem, require that there is at least one arc entering every set which
does not contain the root vertex. The bidirected LP formulation for the minimum
spanning tree problem is shown as follows.

minimize
∑

a∈A

ca xa

subject to x(δin(S)) ≥ 1 ∀ S ⊆ V − r

xa ≥ 0 ∀ a ∈ A

It is not clear a-priori whether the different spanning tree formulations are exact
(i.e., give integer solutions at all extreme points) or not. (For example, consider
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the bidirected LP which looks almost the same as the undirected LP.) Also, it is
not clear whether they can be solved in polynomial time. The following theorem
shows that these three formulations are equivalent.

Theorem 4.4.2 Suppose all edge weights are positive. Then the partition LP, the
subtour LP, and the bidirected LP are equivalent. That is, any solution of one can
be translated into a solution of the other with the same cost.

Prove the above theorem and use it to provide separation oracles for these formu-
lations hence proving the theorem below as well.

Theorem 4.4.3 There is a polynomial time separation oracle for the partition LP,
the subtour LP, and the bidirected LP.

4.4 Argue that in the iterative relaxation algorithm in Figure 4.6, one only needs to
compute an optimal extreme point solution once initially, after that one can modify
the current solution to obtain an extreme point solution for the next iteration in
a simple way. (Hint: After we relax a degree constraint, we only need to find
another extreme point solution with cost no more than the original solution, and
the current solution is an “almost” extreme point solution for the next iteration.)

4.5 In an instance of the minimum bounded weighted-degree spanning tree we are given
a graph G = (V, E) and cost function c : E → R+, a weight function w : E → R+,
a degree bound Bv on each vertex v, and the task is to find a spanning tree T

with minimum cost and
∑

e∈δT (v) w(e) ≤ Bv for all v ∈ V . Give a good bi-criteria
approximation algorithm for the problem.

4.6 Can you generalize the result in the previous problem to get good bi-criteria approx-
imation algorithm for the minimum bounded weighted-degree Steiner tree problem?
Why or why not?
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10

Network Design

In this chapter we study the survivable network design problem. Given an undirected
graph G = (V,E) and a connectivity requirement ruv for each pair of vertices u, v, a
Steiner network is a subgraph of G in which there are at least ruv edge-disjoint paths
between u and v for every pair of vertices u, v. The survivable network design problem is
to find a Steiner network with minimum total cost. In the first part of this chapter, we
will present the 2-approximation algorithm given by Jain [78] for this problem. We will
present his original proof, which introduced the iterative rounding method to the design
of approximation algorithms.

Interestingly, we will see a close connection of the survivable network design problem
to the traveling salesman problem (TSP). Indeed the linear program, the characterization
results, and presence of edges with large fractional value are identical for both problems.
In the (symmetric) TSP we are given an undirected graph G = (V, E) and cost function
c : E → R+ and the task is the find a minimum cost Hamiltonian cycle. In the second
part of this chapter, we will present an alternate proof of Jain’s result, which also proves
a structural result about extreme point solutions to the traveling salesman problem.

In the final part of this chapter, we consider the minimum bounded degree Steiner
network problem, where we are also given a degree upper bound Bv for each vertex v ∈ V ,
and the task is to find a minimum cost Steiner network satisfying all the degree bounds.
Using the idea of iterative relaxation, we show how to extend Jain’s technique to this more
general problem. We will first present a constant factor bicriteria approximation algorithm,
and then show how to improve it to obtain additive approximation guarantee on the degree
violation.

10.1 Survivable Network Design Problem

The survivable network design problem generalizes the minimum Steiner tree problem, the
minimum Steiner forest problem, and the minimum k-edge-connected subgraph problem.
Hence the results in this chapter also applies to these problems.
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10.1.1 Linear Programming Relaxation

To formulate the problem as a linear program, we represent the connectivity requirements
by a skew supermodular function. As stated in Definition 2.3.10, a function f : 2V → Z is
called skew supermodular if at least one of the following two conditions holds for any two
subsets S, T ⊆ V .

f(S) + f(T ) ≤ f(S ∪ T ) + f(S ∩ T )

f(S) + f(T ) ≤ f(S\T ) + f(T\S)

It can be verified that the function f defined by f(S) = maxu∈S,v/∈S {ruv} for each subset
S ⊆ V is a skew supermodular function; see Exercise 2.9. Thus one can write the following
linear programming relaxation for the survivable network design problem, denoted by
LPsndp, with the function f being skew supermodular.

minimize
∑

e∈E

ce xe

subject to x(δ(S)) ≥ f(S) ∀S ⊆ V

0 ≤ xe ≤ 1 ∀ e ∈ E

It is not known whether there is a polynomial time separation oracle for a general skew
supermodular function f . This linear program for the minimum Steiner network prob-
lem, however, can be solved in polynomial time by using a minimum cut algorithm as a
separation oracle.

10.1.2 Characterization of Extreme Point Solutions

For a subset S ⊆ V , the corresponding constraint x(δ(S)) ≥ f(S) defines a vector in R|E|:
the vector has an 1 corresponding to each edge e ∈ δ(S), and a 0 otherwise. We call this
vector the characteristic vector of δ(S), and denote it by χ(δ(S)). Recall that two sets
X, Y are intersecting if X ∩ Y , X − Y and Y −X are nonempty and that a family of sets
is laminar if no two sets are intersecting. By the strong submodularity of the cut function
of undirected graphs (see Section 2.3.1), we have

x(δ(X)) + x(δ(Y )) ≥ x(δ(X ∩ Y )) + x(δ(X ∪ Y )) and

x(δ(X)) + x(δ(Y )) ≥ x(δ(X − Y )) + x(δ(Y −X)),

for any two subsets X and Y . When f is skew supermodular, it follows from standard
uncrossing arguments, as in spanning trees (Chapter 4) and maximum matchings (Chap-
ter 9), that an extreme point solution to LPsndp is characterized by a laminar family of
tight constraints. Lemma 10.1.1 below follows from these uncrossing arguments and the
Rank Lemma.
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Lemma 10.1.1 Let the requirement function f of LPsndp be skew supermodular, and let x
be an extreme point solution to LPsndp with 0 < xe < 1 for every edge e ∈ E. Then, there
exists a laminar family L such that:

(i) x(δ(S)) = f(S) for each S ∈ L.
(ii) The vectors in {χ(δ(S)) : S ∈ L} are linearly independent.
(iii) |E| = |L|.

10.1.3 Iterative Algorithm

The following is Jain’s iterative rounding algorithm.

Iterative Minimum Steiner Network Algorithm

(i) Initialization F ← ∅, f ′ ← f ;
(ii) While f ′ 6≡ 0 do

(a) Find an optimal extreme point solution x to LPsndp with cut requirement
f ′ and remove every edge e with xe = 0.

(b) If there exists an edge e with xe ≥ 1/2, then add e to F and delete e from
the graph.

(c) For every S ⊆ V : update f ′(S) ← max{f(S)− dF (S), 0}.
(iii) Return H = (V, F ).

Fig. 10.1. Minimum Steiner Network Algorithm

10.1.4 Correctness and Performance Guarantee

Jain developed a token counting argument and proved an important theorem about the
extreme point solutions to LPsndp.

Theorem 10.1.2 Suppose f is an integral skew supermodular function and x is an extreme
point solution to LPsndp. Then there exists an edge e ∈ E with xe ≥ 1

2 .

Assuming Theorem 10.1.2, the iterative algorithm will terminate, and it can be
shown by an inductive argument that the returned solution is a 2-approximate solution
(see Theorem 6.3.2 for a similar proof). We prove Theorem 10.1.2 by a counting argument,
following the original proof of Jain, which will be useful later for the minimum bounded
degree Steiner network problem.

Suppose for a contradiction that every edge e has 0 < xe < 1
2 . By Lemma 10.1.1,

there is a laminar family L of tight constraints that defines x. We assign two tokens to
each edge, one to each endpoint, for a total of 2|E| tokens. Then we will redistribute the
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tokens so that each member in L receives at least 2 tokens and there are some tokens left.
This would imply that |E| > |L|, contradicting Lemma 10.1.1.

Let S be a subset of vertices. Define its co-requirement coreq(S) :=
∑

e∈δ(S)(
1
2−xe).

We call a set S ∈ L special if coreq(S) = 1
2 . Given a laminar family, it can be represented

as a forest of trees if its sets are ordered by inclusion. Recall that in this forest, a set R ∈ L
is a child of S ∈ L if S is the smallest set in L that contains R. We say an endpoint v is
owned by S if S is the smallest set in L that contains v. The following lemma is useful to
establish that a certain set is special. A proof can be found in Vazirani’s book [140], and
it is omitted here.

Lemma 10.1.3 Suppose S has α children and owns β endpoints where α + β = 3. If all
children of S are special, then S is special.

The redistribution of tokens is by an inductive argument based on the following
lemma, which would yield the contradiction that |E| > |L|.

Lemma 10.1.4 For any rooted subtree of the forest L with root S, the tokens assigned to
vertices in S can be redistributed such that every member in the subtree gets at least two
tokens, and the root S gets at least three tokens. Furthermore, S gets exactly three tokens
only if S is special; otherwise S gets at least four tokens.

Proof The proof is by induction. For the base case, consider a leaf node S in the laminar
family. Since f(S) ≥ 1 and xe < 1

2 for all e, this implies that d(S) ≥ 3 and thus S can
collect three tokens. Furthermore, S collects exactly three tokens only if f(S) = 1 and
d(S) = 3, in which case S is special. This verifies the base case.

For the induction step, consider a non-leaf node S. For a child R of S, we say R has
one excess token if R has three tokens, and R has at least two excess tokens if R has at
least four tokens. By the induction hypothesis, each child has at least one excess token,
and has exactly one excess token only if it is special. We will divide the cases by the
number of children of S.

(i) S has at least 4 children: Then S can collect 4 tokens by taking one excess token
from each child.

(ii) S has 3 children: If any child of S has two excess tokens or if S owns any endpoint,
then S can collect 4 tokens. Otherwise, all three children of S are special and S

does not own any enpdoint, but then S is special by Lemma 10.1.3, and so 3 tokens
are enough for the induction hypothesis.

(iii) S has 2 children: If both children have two excess tokens, then S can collect 4
tokens. So assume that one child of S is special, but then it can be shown that S

must own at least one endpoint (see the exercises or Lemma 23.20 of [140]). If both
children of S are special, then S is special by Lemma 10.1.3, and so three tokens
are enough for the induction hypothesis. Otherwise S can collect 4 tokens.
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(iv) S has one child R: Since χ(δ(S)) and χ(δ(R)) are linearly independent, S must
owns at least one endpoint. As both f(S) and f(R) are integers and there is no
edge of integral value, this actually implies that S cannot own exactly one endpoint,
and thus S owns at least two endpoints. If R is not special, then S can collect 4
tokens; otherwise, S is special by Lemma 10.1.3 and so 3 tokens are enough for the
induction hypothesis.

The extra tokens in the roots of the laminar family give us the desired contradiction.
This proves Theorem 10.1.2, and thus the 2-approximation algorithm for the survivable
network design problem follows.

10.2 Connection to the Traveling Salesman Problem

In this section we formulate a generalization of the survivable network design problem and
the traveling salesman problem. Then we present a proof that any extreme point solution
of this generalization has an edge e with xe ≥ 1

2 , and in some cases, xe = 1. This will
generalize Jain’s result and a result of Boyd and Pulleyblank on the traveling salesman
problem. The new proof uses the fractional token technique, and does not need the notion
of special sets used in the previous section to prove Jain’s result.

10.2.1 Linear Programming Relaxation

The following is a linear programming relaxation which models both the survivable network
design problem and the traveling salesman problem, denoted by LPf , where f is a skew
supermodular function. It is similar to the linear programming relaxation for the minimum
bounded degree Steiner network problem in the next section.

minimize
∑

e∈E

ce xe

subject to x(δ(S)) ≥ f(S) ∀S ⊆ V

x(δ(v)) = f(v) ∀ v ∈ W

0 ≤ xe ≤ 1 ∀ e ∈ E

For the survivable network design problem we set f(S) = maxu∈S,v/∈S ruv for each
subset S ⊆ V and set W = ∅. For the traveling salesman problem we set f(S) = 2 for
each S ⊂ V , f(V ) = 0 and W = V . Note that the same characterization of extreme point
solutions as in Lemma 10.1.1 holds for LPf .
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10.2.2 Existence of Edges with Large Fractional Value

Boyd and Pulleyblank [18] proved that there is an edge e with xe = 1 in any extreme point
solution to the traveling salesman problem. The following theorem provides a common
generalization to their result and Jain’s result (Theorem 10.1.2).

Theorem 10.2.1 Let f be an integral skew supermodular function, and x be an extreme
point solution to LPf with xe > 0 for all e. Then there exists an e ∈ E with xe ≥ 1

2 .
Moreover, if f(S) is an even integer for each subset S ⊆ V then there exists an edge e with
xe = 1.

Proof [First part]: We first prove that xe ≥ 1
2 for some edge e ∈ E in any extreme point

solution x to LPf . Suppose for a contradiction that 0 < xe < 1
2 for each e ∈ E. Then we

will show that |E| > |L|, contradicting Lemma 10.1.1. The proof is by a fractional token
counting argument. We give one token to each edge in E, and then we will reassign the
tokens such that we can collect one token for each member in L and still have extra tokens
left, giving us the contradiction that |E| > |L|. Each edge e = uv is given one token which
is reassigned as follows.

(i) (Rule 1) Let S ∈ L be the smallest set containing u and R ∈ L be the smallest set
containing v. Then e gives xe tokens each to S and R.

(ii) (Rule 2) Let T be the smallest set containing both u and v. Then e gives 1− 2xe

tokens to T .

We now show that each set S in L receives at least one token. Let S be any set with
children R1, . . . , Rk where k ≥ 0 (if S does not have any children then k = 0). We have
the following equalities.

x(δ(S)) = f(S)

x(δ(Ri)) = f(Ri) ∀ 1 ≤ i ≤ k

Subtracting we obtain,

x(δ(S))−
k∑

i=1

x(δ(Ri)) = f(S)−
k∑

i=1

f(Ri). (10.1)

We divide the edges involved in the left hand side of (10.1) into three types, where

A = {e : |e ∩ (∪iRi)| = 0, |e ∩ S| = 1}
B = {e : |e ∩ (∪iRi)| = 1, |e ∩ S| = 2}
C = {e : |e ∩ (∪iRi)| = 2, |e ∩ S| = 2}.

Then (10.1) can be rewritten as:

x(A)− x(B)− 2x(C) = f(S)−
k∑

i=1

f(Ri). (10.2)
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Fig. 10.2. Example for expression x(δ(S))−∑k
i=1 x(δ(Ri)) with k = 2 children. The dashed edges

cancel out in the expression. Edge-sets A,B, C shown with their respective coefficients.

Observe that A ∪ B ∪ C 6= ∅; otherwise the characteristic vectors χ(δ(S)), χ(δ(R1)),
. . . , χ(δ(Rk)) are linearly dependent. For each edge e ∈ A, S receives xe tokens from e

by Rule 1. For each edge e ∈ B, S receives 1 − xe tokens from e by Rule 1 and Rule 2.
For each edge e ∈ C, S receives 1− 2xe tokens from e by Rule 2. Hence, the total tokens
received by S is exactly

∑

e∈A

xe +
∑

e∈B

(1− xe) +
∑

e∈C

(1− 2xe)

= x(A) + |B| − x(B) + |C| − 2x(C)

= |B|+ |C|+ f(S)−
k∑

i=1

f(Ri),

where the last equality follows from (10.2). Since f is integral and the above expression
is non-zero (since A ∪ B ∪ C 6= ∅), the right hand side is at least one, and thus every set
S ∈ L receives at least one token in the reassignment.

It remains to show that there are some unassigned tokens, which would imply the
contradiction that |E| > |L|. Let R be any maximal set in L. Consider any edge e ∈ δ(R).
The fraction of the token by Rule 2 for edge e is unassigned, as there is no set T ∈ L with
|T ∩ e| = 2, gives us the desired contradiction. This proves the first part of the theorem.

[Second part]: The proof of the second part is almost identical to the proof of the first
part, except that we use scaled token assignment rules. Each edge e = uv is given one
token which it reassigns as follows.

(i) (Rule 1’) Let S be the smallest set containing u and R be the smallest set containing
v in L. Then e gives xe/2 tokens each to S and R.

(ii) (Rule 2’) Let T be the smallest set containing both u and v. Then e gives 1− xe

tokens to T .
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We now show that each set in L receives at least one token. Let S be any set with children
R1, . . . , Rk where k ≥ 0. We have the following equalities.

x(δ(S)) = f(S)

x(δ(Ri)) = f(R) ∀ 1 ≤ i ≤ k

Dividing by two and subtracting we obtain,

x(δ(S))−∑
i x(δ(Ri))

2
=

f(S)−∑
i f(Ri)

2

The edges involved in the left hand side are divided into types A,B, C exactly as in the
first part. Then the above equation becomes

x(A)− x(B)
2

− x(C) =
f(S)−∑

i f(Ri)
2

.

Observe that A∪B ∪C 6= ∅; otherwise there is a linear dependence among the constraints
for S and its children. Also, S receives xe

2 tokens for each edge e ∈ A by Rule 1’, 1 − xe
2

tokens for each edge e ∈ B by Rule 1’ and Rule 2’, and 1− xe tokens for each edge e ∈ C

by Rule 2’. Hence, the total tokens received by S is exactly
∑

e∈A

xe

2
+

∑

e∈B

(1− xe

2
) +

∑

e∈C

(1− xe)

=
x(A)

2
+ |B| − x(B)

2
+ |C| − x(C)

= |B|+ |C|+ f(S)−∑
i f(Ri)

2
.

Since A ∪ B ∪ C 6= ∅ and f is an even-valued function, this is a positive integer . Thus
every set S ∈ L receives at least one token in the reassignment.

Now, we show that there are some unassigned tokens showing the strict inequality
|L| < |E|. Let R be any maximal set L. Then, consider any edge e ∈ δ(R). Then, token
by Rule 2’ for edge e is unassigned as there is no set T ∈ L with |T ∩ e| = 2. This gives us
the desired contradiction.

10.3 Minimum Bounded Degree Steiner Networks

In general, the minimum bounded degree Steiner network problem does not admit any
polynomial factor approximation algorithm, since the minimum cost Hamiltonian cycle
problem is a special case. Instead, we will present bicriteria approximation algorithms,
that both violate the degree bounds as well as delivers a suboptimal cost solution. In
this section, we will first present a (2, 2Bv + 3)-approximation algorithm for the minimum
bounded degree Steiner network problem, where Bv denotes the degree upper bound on
node v. By this, we mean that the algorithm outputs a Steiner network whose cost is at
most twice that of the objective value of the linear programming relaxation, and whose
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degree at any node v is at most 2Bv + 3. In the next section, we will present an algorithm
with only an additive violation on the degree bounds.

10.3.1 Linear Programming Relaxation

The linear programming formulation for the minimum bounded degree Steiner network
problem, denoted by LPbdsn, is a straightforward generalization of LPsndp for the survivable
network design problem, with f(S) = maxu∈S,v/∈S {ruv} for each subset S ⊆ V . Notice
that the degree constraints are only present on a subset W ⊆ V of vertices.

minimize
∑

e∈E

ce xe

subject to x(δ(S)) ≥ f(S), ∀S ⊆ V

x(δ(v)) ≤ Bv, ∀ v ∈ W

0 ≤ xe ≤ 1 ∀ e ∈ E

10.3.2 Characterization of Extreme Point Solutions

As the degree constraints are defined only on single vertices, the same uncrossing technique
(as in Lemma 10.1.1) can be applied to show that an optimal extreme point solution is
characterized by a laminar family of tight constraints.

Lemma 10.3.1 Let the requirement function of LPbdsn be skew supermodular, and let x
be an extreme point solution to LPbdsn with 0 < xe < 1 for every edge e ∈ E. Then, there
exists a laminar family L of tight sets such that L partitions into a set of singletons L′ for
the degree constraints, and the remaining sets L′′ = L−L′ for the connectivity constraints,
such that:

(i) x(δ(v)) = Bv > 0 for all {v} ∈ L′ and x(δ(S)) = f(S) ≥ 1 for all S ∈ L′′.
(ii) The vectors in {χ(δ(S)) : S ∈ L} are linearly independent.

(iii) |E| = |L|.

10.3.3 Iterative Algorithm

The iterative algorithm is similar to that for the minimum Steiner network problem, with
a new relaxation step where we remove degree constraints of vertices with low degree.
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Iterative Minimum Bounded Degree Steiner Network Algorithm

(i) Initialization F ← ∅, f ′ ← f .
(ii) While f ′ 6≡ 0 do

(a) Find an optimal extreme point solution x with cut requirement f ′ and
remove every edge e with xe = 0.

(b) (Relaxation): If there exists a vertex v ∈ W with degree at most 4, then
remove v from W .

(c) (Rounding): If there exists an edge e = (u, v) with xe ≥ 1/2, then add e

to F and delete e from the graph and decrease Bu and Bv by 1/2.
(d) For every S ⊆ V : update f ′(S) ← max{f(S)− dF (S), 0}.

(iii) Return H = (V, F ).

Fig. 10.3. Minimum Bounded Degree Steiner Network Algorithm

10.3.4 Correctness and Performance Guarantee

The performance guarantee follows by an inductive argument as in Lemma 6.3.2, assuming
the algorithm terminates. We will prove the following lemma showing that the algorithm
will terminate.

Lemma 10.3.2 Let x be an extreme point solution to LPbdsn with xe > 0 for every edge
e, and W be the set of vertices with degree constraints. Then either one of the following
holds:

(i) There exists an edge e with xe ≥ 1
2 .

(ii) There exists a vertex v ∈ W with degree d(v) ≤ 4.

In the following we use a token counting argument to prove Lemma 10.3.2. The
counting argument is similar to that of Theorem 10.1.2. Each edge is assigned two tokens,
for a total of 2|E| tokens. For each edge e, one token is assigned to each endpoint. We
shall show that if none of the steps in the algorithm can be applied, then each set in L′′
and each degree constraint in L′ can collect two tokens, and there are some tokens left.
This would imply |E| > |L|, contradicting that x is an extreme point solution.

We prove the same statement as in Lemma 10.1.4 to get the contradiction. The
counting argument is similar and we only highlight the differences here. By Step 2(b), we
may assume that d(v) ≥ 5 for each v ∈ W , and hence each degree constraint has three
extra tokens. The case when the node S ∈ L does not own a vertex in W is exactly the
same as in Lemma 10.1.4. Henceforth we consider a node S ∈ L that owns a vertex v ∈ W .
If S has another child R, then S can collect three tokens from v and at least one token
from R, as desired. Otherwise, by linear independence of χ(δ(S)) and χ(δ(v)), S owns at
least one endpoint and thus S can collect three tokens from v and at least one more token
from the endpoints it owns as required. This completes the proof of Lemma 10.3.2.
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10.4 An Additive Approximation Algorithm

In this section we show how to achieve additive guarantee on the degree bounds that
depend only on the maximum connectivity requirement, denoted by rmax = maxu,v{ruv}.

Theorem 10.4.1 There is a polynomial time (2, Bv +6rmax +3)-approximation algorithm
for the minimum bounded degree Steiner network problem, which returns a solution with
cost at most twice the optimum while the degree of each vertex v is at most Bv +6rmax +3.

For minimum bounded degree Steiner trees, since the maximum connectivity require-
ment is one, this algorithm will output a solution that violates the degree bounds only by
an additive constant, and of cost within twice the optimal.

10.4.1 Iterative Algorithm

The iterative algorithm uses the same linear programming relaxation LPbdsn as in the
previous section. The difference is that we only pick an edge e with xe ≥ 1

2 when both
endpoints have “low” degrees.

Additive Approximation for Minimum Bounded Degree Steiner Network

(i) Initialization F ← ∅, f ′ ← f .
(ii) While f ′ 6≡ 0 do

(a) Find an optimal extreme point solution x to LPbdsn satisfying f ′ and re-
move every edge e with xe = 0. Set Wh = {v ∈ W | ∑

e∈δ(v) xe ≥ 6rmax}
and Bv =

∑
e∈δ(v) xe for v ∈ W .

(b) If there exists an edge e = (u, v) with xe = 1, then add e to F and remove
e from G and decrease Bu and Bv by 1.

(c) (Relaxation): If there exists a vertex v ∈ W with degree at most 4, then
remove v from W .

(d) (Rounding): If there exists an edge e = (u, v) with xe ≥ 1
2 and u, v /∈ Wh,

then add e to F and remove e from G and decrease Bu and Bv by xe.
(e) For every S ⊆ V : f ′(S) ← max{f(S)− dF (S), 0}.

(iii) Return H = (V, F ).

Fig. 10.4. Additive Approximation for Minimum Bounded Degree Steiner Network

10.4.2 Correctness and Performance Guarantee

First we show that the degree of any vertex v in the returned solution H is at most
Bv + 6rmax + 3, assuming that the algorithm terminates. We define the set Wh of vertices
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(defined in Step (ii)(a) of the algorithm)with fractional degree at least 6rmax as high degree
vertices. Observe that the fractional degree of each vertex is non-increasing during the
algorithm, since we reset the degree upper bound in Step (ii)(a) in each iteration. Consider
an edge e with v as an endpoint. When v ∈ Wh, e is picked only if xe = 1 in Step (ii)(b) of
the algorithm. Hence, while v ∈ Wh, at most Bv − 6rmax edges incident at v are added to
H. While v ∈ W \Wh, e is picked only if xe ≥ 1

2 in Step (ii)(d) of the algorithm. Hence,
while v ∈ W \Wh, strictly less than 12rmax edges incident at v are added to H. Finally, by
Step (ii)(c) of the algorithm, a degree constraint is removed only if v is incident to at most
four edges, where possibly all of them are added to H. Therefore, the degree of v in H is
strictly less than (Bv − 6fmax) + 12fmax + 4 = Bv + 6fmax + 4. As Bv is an integer, the
degree of v in H is at most Bv +6fmax +3. Moreover, since we always included edges with
value at least half in F in each iteration, by induction, the cost of the final solution is at
most twice the optimal objective value of LPbdsn. This proves Theorem 10.4.1, assuming
that the algorithm terminates.

The following lemma proves that the algorithm will always terminate. With the same
characterization as in Lemma 10.3.1, we use a more careful counting argument to prove
stronger properties of the extreme point solutions to LPbdsn than those in Lemma 10.3.2.

Lemma 10.4.2 Let x be an extreme point solution to LPbdsn with xe > 0 for all e, and W

be the set of vertices with degree constraints, and Wh = {v ∈ W | ∑
e∈δ(v) xe ≥ 6rmax}.

Then at least one of the following holds.

(i) There exists an edge e with xe = 1.
(ii) There exists an edge e = {u, v} with xe ≥ 1/2 and u, v /∈ Wh.
(iii) There exists a vertex v ∈ W with degree at most 4.

We will prove Lemma 10.4.2 by a token counting argument as in Lemma 10.3.2.
Suppose for contradiction that none of the conditions in Lemma 10.4.2 holds. Then each
edge e has xe < 1, and each edge e with 1

2 ≤ xe < 1 (we call such an edge a heavy edge)
must have at least one endpoint in Wh, and each vertex in W must have degree at least
five. We give two tokens to each edge for a total of 2|E| tokens. Then, the tokens will be
reassigned so that each member of L′′ gets at least two tokens, each vertex in L′ gets at
least two tokens, and there are still some excess tokens left. This will imply that |E| > |L|,
contradicting Lemma 10.3.1.

The main difference from Lemma 10.3.2 is the existence of heavy edges (with an
endpoint in Wh) which our algorithm is not allowed to pick. Since there exist heavy edges,
a set S ∈ L may only have two edges in δ(S), and hence S may not be able to collect
three tokens as in Lemma 10.1.4. To get around this, we use a different token assignment
scheme and revise the definition of co-requirement, so that a similar induction hypothesis
would work.

Token assignment scheme: If e = uv is a heavy edge with u ∈ Wh and v /∈ W , then v
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gets two tokens from e and u gets zero token. For every other edge e, one token is assigned
to each endpoint of e.

Co-requirement: We revise the definition of co-requirement for the presence of heavy
edges:

coreq(S) =
∑

e∈δ(S), xe<1/2

(1/2− xe) +
∑

e∈δ(S), xe≥1/2

(1− xe).

It is useful to note that this definition reduces to the original definition of co-requirement,
if every edge e with xe ≥ 1

2 is thought of as two parallel edges, each aiming to achieve a
value of 1

2 and each has fractional value xe
2 : summing 1

2 − xe
2 over both edges gives 1− xe.

We say a set is special if coreq(S) = 1
2 as in the proof of Jain’s theorem.

After this initial assignment, each vertex in V \Wh receives at least as many tokens
as their degree. Moreover, each vertex in W \ Wh receive at least five tokens, as their
degree is at least five. Note that a vertex v ∈ Wh might not have any tokens if all the
edges incident at it are heavy edges. However, by exploiting the fact that f(S) ≤ rmax, we
will show that vertices in Wh can get back enough tokens. We prove the following lemma
which shows that the tokens can be reassigned in a similar way as in Lemma 10.1.4.

Lemma 10.4.3 For any subtree of L rooted at S, we can reassign tokens such that each node
in the subtree gets at least two tokens and the root S gets at least three tokens. Moreover,
the root S gets exactly three tokens only if S is special; otherwise it gets at least four tokens.

The following is a key claim showing if S owns a vertex in Wh, then there are enough
tokens for S and the vertices in Wh that it owns.

Claim 10.4.4 Suppose S owns w ≥ 1 vertices in Wh. Then the number of excess tokens
from the children of S, plus the number of tokens owned by S, plus the number of tokens
left with vertices in Wh ∩ S is at least 2w + 4.

Proof Suppose S has c children. As each child has at least one excess token by the induction
hypothesis, if c ≥ 6w then we have 6w tokens which is at least 2w + 4. Henceforth we
assume that c < 6w. Let B :=

∑
v x(δ(v)), where the sum is over all vertices v ∈ Wh

owned by S. Note that B ≥ 6wrmax by the definition of Wh. For a child R of S, as
x(δ(R)) = f(R) ≤ rmax, at most rmax units of B are contributed by the edges in δ(R).
Similarly, at most rmax units of B are contributed by the edges in δ(S). Hence, at least
rmax(6w − c − 1) units of B are from the edges with both endpoints owned by S. Since
there is no edge e with xe = 1, there are at least rmax(6w − c − 1) + 1 such edges. Let
e = uv be such an edge with v ∈ Wh owned by S. If u ∈ W , then both u and v get one
token from e in the initial assignment. If u /∈ W , then u gets two tokens from e in the
initial assignment, but these two tokens are owned by S. Hence, the number of tokens
owned by S plus the number of tokens left with vertices in Wh owned by S is at least
rmax(6w − c − 1) + 1. Furthermore, S can also collect one excess token from each child.
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So, the total number of tokens that S can collect is at least rmax(6w− c−1)+ c+1, which
is a decreasing function of c. As c < 6w, the number of tokens is minimized at c = 6w− 1,
which is at least 2w + 4, proving the claim.

We now proceed by induction on the height of the subtree to prove Lemma 10.4.3.

Base Case: S is a leaf node. Claim 10.4.4 implies that S can collect enough tokens if it
owns vertices in Wh. Hence assume S ∩Wh = ∅. First consider the case when S ∩W 6= ∅.
Any vertex v ∈ W \ Wh has at least five tokens, and thus has three excess tokens. If S

owns two such vertices or S owns another endpoint, then S gets at least four tokens as
required. Otherwise, we have χ(δ(v)) = χ(δ(S)), contradicting Lemma 10.3.1.

Henceforth we consider the case when S ∩W = ∅. Then S can get at least |δ(S)| =
d(S) tokens from the vertices owned by S. Note that d(S) ≥ 2, as x(δ(S)) is an integer
and there is no edge e with xe = 1. If d(S) ≥ 4, then S gets at least four tokens. If
d(S) = 3 and d(S) contains a heavy edge, then S can get four tokens from the vertices it
owns. If it does not contain a heavy edge, then S receives three tokens and coreq(S) = 1

2 ,
for which three tokens are enough. If d(S) = 2, then at least one edge is a heavy edge. If
both edges are heavy then S can get four tokens; otherwise if only one edge is heavy then
coreq(S) = 1

2 and so three tokens are enough.

Induction Step: If S owns any vertex in Wh, then we are done by Claim 10.4.4. Thus we
can assume that S does not own any vertex in Wh. By the induction hypothesis, any child
of S has at least one excess token. So, if S owns a vertex in W \Wh, then S can collect
at least four tokens. Hence, we can assume that S does not own any vertex in W , and
the proof of these cases are almost identical to that in Lemma 10.1.4 with the definition
of co-requirement revised; the details are omitted.

10.4.3 Steiner Forests

In the special cases of Steiner trees and Steiner forests, the connectivity requirement func-
tion is a {0, 1}-function and hence rmax = 1. Theorem 10.4.1 thus implies that there is a
(2, Bv + 9)-approximation algorithm for this problem, but it is possible to obtain a better
bound.

Theorem 10.4.5 There is a polynomial time (2, Bv + 3)-approximation algorithm for the
minimum bounded degree Steiner network problem when rmax = 1.

The iterative algorithm is similar where the improvement comes from the following
fact [96, 133]: there is a heavy edge between two vertices without degree constraints. The
proof is by a more involved counting argument that uses a different induction hypothesis.
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Notes

The algorithm for the survivable network design problem is due to Jain [78], who introduced
the iterative rounding method in the design of approximation algorithms. The existence
of an 1-edge in the traveling salesman problem is due to Boyd and Pulleyblank [18], and
the proof presented in this chapter is from the work of Nagarajan, Ravi and Singh [110].
The algorithm for the minimum bounded degree Steiner network problem is by Lau, Naor,
Salavatipour and Singh [95], who first used the iterative relaxation idea in degree-bounded
network design problems. The subsequent work with additive violation on the degree
bounds is by Lau and Singh [96].

Exercises

10.1 Prove Lemma 10.1.3.

10.2 Show the following statement in the proof of Lemma 10.1.4: If set S has two
children, one of which has a co-requirement of 1/2, then it must own at least one
endpoint.

10.3 Give a 2-approximation algorithm for the traveling salesman problem, using the
fact there is always an edge e with xe = 1 in the linear programming relaxation
LPf .

10.4 Consider the subtour elimination LP for asymmetric TSP [71]. Find the largest
value ρ such that there is always some arc variable with xa ≥ ρ.

10.5 Design a bicriteria approximation algorithm for the minimum bounded degree
strongly k-arc-connected subgraph problem in directed graphs.

(a) Write a “cut-cover” linear programming relaxation for the problem. Show
that the connectivity requirement function for this problem is a crossing
supermodular function.

(b) Use the uncrossing technique to show that an extreme point solution is
defined by a cross-free family of tight constraints.

(c) Prove that there is an arc with value at least 1
3 in any extreme point solution

when there are no degree constraints in the problem.
(d) Apply the iterative relaxation step to obtain a bicriteria approximation al-

gorithm for the problem.

10.6 Let P be the Peterson graph, and let w1, w2, w3 be the neighbors of a vertex v

in P . Take three copies of P − v and three new vertices v1, v2, v3, and attach
them as follows: for 1 ≤ j ≤ 3, add edges from vj to each wj in the three copies of
P−v. Prove that the resulting graph is a 3-regular 3-edge-connected graph with no
Hamiltonian cycle. By setting Bv = 1 for each vertex and connectivity requirement
ruv = 1 for each pair of vertices, show that this is an integrality gap example in
which there is a feasible solution to LPbdsn but there is no Steiner network with
degree at most 2Bv (or Bv + 1) for each vertex.

168



10.7 Show that the following example gives an integrality gap of at least an additive
n/4 for the degree violation for LPbdsn. The input is a complete bipartite graph
B = (X, Y,E) where X = {x1, x2} and Y = {y1, . . . , yn}. We set the connectivity
requirements between yi and yj to be 1 for all i, j, between x1 and x2 to be n

2 , and
0 otherwise.

10.8 Can you use the fractional token technique in Section 10.2 to obtain the results for
the minimum bounded degree Steiner network problem presented in this chapter?
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