- 1. (10 points) Problem 6.2.
- 2. (10 points) Problem 6.5.
- 3. (10 points) Problem 6.6.
- 4. (10 points) Problem 11.3. (Hint: Follow the argument for the 2-approximation algorithm for the survivable network design problem and instead of a $\frac{1}{2}$ -edge argue that there is a 1-edge. Use a different token argument where 1 token for an edge is given $\frac{x_{uv}}{2}$ for vertex constraints of u and v and rest $1 x_{uv}$ to the smallest set in laminar family containing both u and v. Then show that the above token argument does give one token to each constraint and achieve a contradiction.)
- 5. (10 points) In an instance of the minimum bounded weighted-degree spanning tree we are given a graph G = (V, E) and cost function $c : E \to \mathbb{R}^+$, a weight function $w : E \to \mathbb{R}^+$, a degree bound B_v on each vertex v, and the task is to find a spanning tree T with minimum cost and $\sum_{e \in \delta_T(v)} w(e) \leq B_v$ for all $v \in V$. Give a good bi-criteria approximation algorithm for the problem.