Computers in Engineering

COMP 208
1

.

Linear Algebra
Michael A. Hawker

11/29/2007

4
+ Representing Vectors

#* A vector is a sequence of numbers (the
components of the vector)

#* |f there are n numbers, the vector is

4 said to be of dimension n

| =To represent a vector in C, we use an
array of size n, indexed from 0 to n-1

E #* In Fortran we use an array indexed from
1ton

_! Nov. 29th, 2007 Linear Algebra 2

‘4
+ Vector Operations

#Scaling

»Multiply each element by a given
scalar factor

".t #Adding and Subtracting

#»Given two vectors of the same
dimension add the components to get
K a new vector of the same dimension

! Nov. 29th, 2007 Linear Algebra 3

K=

. Vector Operations (cont)

#» Dot Product
» Sum the Products of Vector Components
#» Vector Norm

» Length of the Vector, Square-root of the
sum of squares of Components

Nov. 29th, 2007 Linear Algebra 4

11/29/2007

Dot Product

#include <math.h>

double Vector_dot(double v1l[], double v2[],
int size) {
int i;
double dot = 0.0;
for(i = 0; 1 < size; i++)
dot += v1[i] * v2[i];
return dot;

}
double vector_norm(double v[], int size) (

return sqgrt (vector_dot (v, v, size)

}

Nov. 29th, 2007 Linear Algebra 5

Read a Vector

void fscan_vector (FILE * in, double v[], int size){
int i;

for(i = 0; i < size; i++) {
fscanf (in, "S$1f", &v[i]);
}
}

void scan_vector (double v[], int size)({

fscan_vector(stdin, v, size);

}

Nov. 29th, 2007 Linear Algebra 6

EFT wale T

Output a Vector

void fprint_vector (FILE * out, double v[], int size){
int i;

fprintf (out, "{");

for(i = 0; 1 < size - 1; i++)
fprintf (out, "%g, ", v[i]);

fprintf (out, "$g}\n", vI[i]);

return;

}

void print_vector (double v[], int size)
{
fprint_vector (stdout, v, size);

return;

}
Nov. 29th, 2007 Linear Algebra

11/29/2007

LY. g

Possible Confusion

for(i = 0; i < size - 1; i++)
fprintf (out, "%g, ", v[i]);
fprintf (out, "$g}\n", v[i]);

Does Indentation Always Dictates Meaning?

for(i = 0; i < size - 1; i++)
fprintf (out, "%g, ", vI[il);

fprintf (out,

"$g}\n", v[i]);

for(i = 0; i < size - 1; i++)

fprintf (out,
fprintf (out,

59, ", vI[il);
"$gt\n", v[i]);

#» Same Results

Nov. 29th, 2007 Linear Algebra

F7 il BN

Output a Vector

void fprint_vector (FILE * out, double v[], int size){
int i;

fprintf (out, "{");

for(i = 0; 1 < size - 1; i++) {
fprintf (out, "%g, ", v[i]);

}

fprintf (out, "%g}\n", vI[il]);

return;

}

void print_vector(double v[], int size)
{
fprint_vector (stdout, v, size);
return;

}

Nov. 29th, 2007 Linear Algebra

h

Representing Matrices

A matrix with m rows and n columns can be
represented as a two dimensional array in C
(or Fortran).

In C the declaration could be

double voltage[m] [n];

The first dimension is the number of rows and
the second the number of columns

A specific value in row i, column j is referenced
asvoltage[i] []]

Nov. 29th, 2007 Linear Algebra 10

11/29/2007

h

Initialization

We can initialize a matrix (or any array) when it
is declared:

int val[3][4] = {{8,16,9,24},

{3,7,19,25},
(42,2,4,12}};

Nov. 29th, 2007 Linear Algebra 11

h

Row Major Ordering

What happens if we write
int val[3][4] =
({8,16,9,24,3,7,19,25,42,2,4,12}};
We begin filling in values starting with v[0] [0]
and continue.
If the array is stored in row major order, this has
the same effect as the previous example

Nov. 29th, 2007 Linear Algebra 12

h

Implementing Row Major Order

We can simulate a matrix using a one
dimensional array by taking the two indices
and finding the position in row major order.

We have to know how many columns there
are, that is the number of elements in each
row.

int in2d(int row, int col, int n) {

return col + row * nj;

Nov. 29th, 2007 Linear Algebra 13

11/29/2007

h

Simulating Matrices in One Dimension

= In the previous example we showed how to simulate
a matrix by a one dimensional vector.

#» This may be done in some applications to make
highly computational intensive programs more
efficient

We could also simulate a matrix with a one
dimensional array that stores the values in column
major order

Imagine adding one to every element?

Used with other Data Structures as well

Nov. 29th, 2007 Linear Algebra 14

h

Input of Matrix

void fscan matrix (FILE * in, double **m,
int h, int w){
int i, 3j;

for(i = 0; i < h; ++1i)
for(j = 0; j < w; ++j)
fscanf (in, "%1f", &m[i][j]);

return;

}

void scan matrix(double **m, int h, int w){
fscan_matrix(stdin, m, h, w);
return;

}

Nov. 29th, 2007 Linear Algebra 15

K

** What about [][]?

#Why can't we use [][] in our function
arguments:

void fscan matrix (FILE * in, double m[][],
int h, int w)

#* C needs to know the length of the
second dimension!

Need to use a double pointer if we want
to allow for completely dynamic
matrices

Nov. 29th, 2007 Linear Algebra 16

11/29/2007

3

K

How do we allocate a dynamic
matrix?

double ** make matrix(int h, int w) {

int i;
double **array2 = (double **)malloc(h * sizeof (double *));
if (array2) {

array2[0] = (double *)malloc(h * w * sizeof (double));

if(array2(0]) {

for(i = 1; i < h; i++)
array2[i] = array2(0] + i * w;

return array?2;
) else {
free(array2);
)
)

return NULL;

Nov. 29th, 2007 Linear Algebra 17

I

Matrix Output

void fprint matrix (FILE * out, double **m, int h, int w){
int i, 3;
fprintf (out, "{\n");
for(i = 0; i < h - 1; ++i) {
fprintf (out, " (");
for(j = 0; § <w - 1; ++3)
fprintf (out, "%g, ", m[i][§]);
fprintf (out, "%g},\n", m{i][j]]);
}
fprintf(out, " {(");
for(j = 0; j <w - 1; ++3)
fprintf (out, "%g, ", m[il[j1);
fprintf (out, "$g}\n}\n", m[i][3]);
return;

}

void print_matrix(double **m, int h, int w){
fprint_matrix(stdout, m, h, w);
return;

}
Nov. 29th, 2007 Linear Algebra 18

K

Matrix Transposition

A common operation is to compute the
transpose of a matrix

#*\We could do this in place and overwrite
the contents of the matrix

* [n the following algorithm, we compute a
new matrix containing the transposed
matrix

Nov. 29th, 2007 Linear Algebra 19

11/29/2007

K

Matrix Transposition

double ** matrix transpose(double ** ml, int h, int w){

int i, j;
double ** mr = make _matrix(w, h);

if (mr)

for(i = 0; i < h; ++i)
0; 3 < wi ++3)
il = ml(i](31;

return mr;
} else {
return NULL;
}
}

Nov. 29th, 2007 Linear Algebra 20

|

Example

int main() {
//double m[4]1(3] = { (0, 1, 2}, {2, 3, 4}, {5, 6, 7}, {9, 1, 0}};
int h = 2, w = 3;
double ** m = make_matrix(h, w);
scan_matrix(m, h, w);

print_matrix(m, h, w);
double ** mt = matrix_transpose(m, h, w);

if (mt)
print_matrix(mt, w, h);

free_matrix (mt);
b

free_matrix(m);

return 0;

)
Nov. 29th, 2007 Linear Algebra 21

h

Matrix Multiplication

#» Matrix multiplication is a fundamental
operation that occurs in many
applications

#» Given two matrices A, a matrix with h1
rows and w1 columns and B a matrix
with w1 rows and h2 columns, we can
compute their product matrix C

#» Note that the number of columns of A
must equal the number of rows of B

Nov. 29th, 2007 Linear Algebra 22

11/29/2007

h

Matrix Multiplication

#* The element c[i][j] is computed as the
dot product of the ith row of A and the
jth column of B

The overall algorithm computes has two
nested loops that vary i and j,
computing each dot product

The computation of the dot product is
done in another loop nested inside
those two

Nov. 29th, 2007 Linear Algebra 23

h

Matrix Multiplication

double ** matrix_mult(double **ml, double **m2,
int hml, int wml, int wm2){
int i, j, k;
double sum;

double ** mr = make_matrix (hml, wm2);
if (mr) {

for(i = 0; 1
for (3

Nov. 29th, 2007 Linear Algebra 24

h

Solving Linear Systems

One of the most widespread
applications of computers is the solving
of systems of linear equations

These systems arise in numerous
application areas

#* There is a large body of literature and
research on how to solve these systems
efficiently and accurately

#»\We examine two simple approaches

Nov. 29th, 2007 Linear Algebra 25

11/29/2007

h

An Easy Example

If the system of equations is triangular, we
can solve it by a process called back
substitution:

w - 1.5x + y + 2.5z = 1.5
x + Oy - z = -1
y + 0z = -2
z =1

Nov. 29th, 2007 Linear Algebra 26

h

Matrix Representation

We can represent this system of
equations using an upper triangular
matrix, A and a vector b. The equations
can be written Ax=b, where x is a vector
of length 4 representing the values of
(W,X,y,Z)

Nov. 29th, 2007 Linear Algebra 27

11/29/2007

A=1-1.5 1 2.5 b= (1.5
0 1 0o -1 -1
0 0 1 0 -2
0 0 0 1 7)
Nov. 29th, 2007 Linear Algebra 28
Back Substitution

First solve for z and then substitute in the
previous equation to solve fory.

Continue until all of the variables have been

solved.

z =7

y = -2 - 0*%7 = -2
x=-1-0%2+7=6

w=1.5+ 1.5%6 - (-2) - 2.5%7 = -5

Nov. 29th, 2007 Linear Algebra 29

K ¥

Gaussian Elimination

The Gaussian elimination algorithm
attempts to transform a system of linear
equations into a triangular system

As we have seen by example, a
triangular system is easy to solve by
back substitution

#» We transform the system by eliminating
one variable at each step

Nov. 29th, 2007 Linear Algebra 30

10

11/29/2007

A Linear System Example

Consider the system of equations:

2w - 3x + 2y + 5z = 3
w- X+ y+ 2z =1
3w + 2x + 2y + z =0
w+ x -3y - z =20

Nov. 29th, 2007 Linear Algebra 31

A Linear System Example

Again we can write this in the form Ax=b
where A is a 4x4 matrix, x is a 1x4
vector and b is a 1x4 vector:

A: b:
2 -3 2 5 3
1 -1 1 2 1
3 2 1 0
1 3 -1 0

Nov. 29th, 2007 Linear Algebra 32

Gaussian Elimination Example

We first eliminate the first entry in the second
row, by multiplying the first row by 1.0/2.0 and
subtracting the rows.

We do the same to the second entry in b.

A: b:

2 -3 2 5 3
0.5 0 -.5 -.5
3 2 2 1 0
1 1 3 -1 0

Nov. 29th, 2007 Linear Algebra 33

11

h

Gaussian Elimination Example

Repeat this process for each row

A: b:
2 -3 2 5
0 .5 0 - .5 -.
0 6.5 -1 -6.5 -4.5
0 2.5 -4 -3.5 -1.5

Nov. 29th, 2007 Linear Algebra 34

11/29/2007

h

Gaussian Elimination Example

Now eliminate the second non-zero entries in
the second column below the diagonal in the
same way

A: b
2 -3 2 5 3
0 .5 0 -.5 -.5
0 0 -1 0 2
0 0 -4 -1

Nov. 29th, 2007 Linear Algebra 35

h

Gaussian Elimination Example

Do the same for the third column. Notice that it
is not necessary to continue with the last
column

A: b
2 -3 2 5 3
0 .5 0 -.5 -.5
0 0 -1 0 2
0 0 0 -1 =7

Nov. 29th, 2007 Linear Algebra 36

12

A
.

| -

Gaussian Elimination

void genp (double **m, double v[], int h, int w){
int row, next_row, col;
double factor;

for (row = 0; row < (h - 1); ++row) {
for (next_row = row + 1; next_row < h; ++next_row) {

factor = m[next_row] [row] / m[row] [row];

for(col = 0; col < w; ++col)

m[next_row] [col] -= factor * m[row] [col];
v[next_row] -= factor * v[row];
}
}
}
Nov. 29th, 2007 Linear Algebra 37

11/29/2007

A
.

A

X

| -

Problems with Gaussian Elimination

If there is a zero on the diagonal that of the
row we are processing, there will be an
attempt to divide by zero, causing an error

Even if there isn’t a zero, dividing by a small
number causes large roundoff errors and
inaccurate results.

#* These problems can be reduced by pivoting

#» We rearrange the rows at each step so that
the largest possible value is the next one we
chose to eliminate

Nov. 29th, 2007 Linear Algebra 38

%

.

W

Gaussian Elimination with
Partial Privoting

void gepp (double **m, double v[], int h, int w){
int row, next_row, col, max_row;
double tmp, factor;
for (row = 0; row < (h - 1); ++row) {
// Find row with largest pivot.

// Swap rows.

// Rest like Gaussian Elimination without Pivoting.

Nov. 29th, 2007 Linear Algebra 39

13

I

Finding a Pivot

max_row = row;

for (next_row = row + 1; next row < h; ++next_row)
if (m[next_row] [row] > m[max_row] [row])

max_row = next_ row;

K

Nov. 29th, 2007 Linear Algebra 40

11/29/2007

Swapping Two Rows

if (max_row != row) {
for(col = 0; col < w; ++col) {
tmp = m[row] [col];
[row] [col] = m[max_row] [col]
m[max_row] [col] = tmp;
}

tmp = v[row];
v[row] v[max_row];
v[max_row] = tmp;
}
i
_l Nov. 29th, 2007 Linear Algebra 41

Back Substitution

Once we have an upper triangular
matrix, we can solve the system of
equations by back substitution

#* We first solve for the last variable and

use the solution to solve for the second
last and so on.

Nov. 29th, 2007 Linear Algebra 42

14

5

Back Substitution

void back_substitute(double **m, double v[],
int h, int w){
int row, next_row;

for(row = h - 1; row >= 0; --row) {
virow] /= m[row] [row];
m[row] [row] = 1;
for (next _row = row - 1; next row >= 0; --next_ row)
v[next_row] -= v[row] * m[next_row] [row];
m[next_row] [row] = 0;
}
}
}
Nov. 29th, 2007 Linear Algebra

43

11/29/2007

15

