Computers in Engineering COMP 208 Linear Algebra Michael A. Hawker

Representing Vectors

- * A vector is a sequence of numbers (the components of the vector)
- If there are n numbers, the vector is said to be of dimension n
- To represent a vector in C, we use an array of size n, indexed from 0 to n-1
- In Fortran we use an array indexed from 1 to n

Nov.	29th,	2007

Linear Algebra

Vector Operations

- Scaling
 - Multiply each element by a given scalar factor
- *Adding and Subtracting
 - Given two vectors of the same dimension add the components to get a new vector of the same dimension

Nov.	29th,	2007

Linear Algebra

Vector Operations (cont)

- * Dot Product
 - * Sum the Products of Vector Components
- * Vector Norm
 - Length of the Vector, Square-root of the sum of squares of Components

Nov. 29th, 2007

Linear Algebra

Dot Product

Nov. 29th, 2007

Linear Algebra

Read a Vector

```
void fscan_vector(FILE * in, double v[], int size){
  int i;

for(i = 0; i < size; i++) {
    fscanf(in, "%lf", &v[i]);
  }
}

void scan_vector(double v[], int size){
  fscan_vector(stdin, v, size);
}</pre>
```

Nov. 29th, 2007

Linear Algebra

Possible Confusion for(i = 0; i < size - 1; i++) fprintf(out, "%g, ", v[i]); fprintf(out, "%g]\n", v[i]); * Does Indentation Always Dictates Meaning? for(i = 0; i < size - 1; i++) fprintf(out, "%g, ", v[i]); fprintf(out, "%g, ", v[i]); for(i = 0; i < size - 1; i++) fprintf(out, "%g, ", v[i]); fprintf(out, "%g, ", v[i]); fprintf(out, "%g, ", v[i]);</pre>

Linear Algebra

· Same Results

Nov. 29th, 2007

```
Output a Vector

void fprint_vector(FILE * out, double v[], int size){
  int i;

fprintf(out, "{");
  for(i = 0; i < size - 1; i++) {
    fprintf(out, "%g, ", v[i]);
  }
  fprintf(out, "%g}\n", v[i]);

  return;
}

void print_vector(double v[], int size) {
  fprint_vector(stdout, v, size);
  return;
}

Nov. 29th, 2007 Linear Algebra 9</pre>
```

Representing Matrices A matrix with m rows and n columns can be represented as a two dimensional array in C (or Fortran).

In C the declaration could be double voltage[m][n];

The first dimension is the number of rows and the second the number of columns

A specific value in row i, column j is referenced as voltage[i][j]

Nov. 29th, 2007

Linear Algebra

Initialization

We can initialize a matrix (or any array) when it is declared:

int val[3][4] = $\{\{8,16,9,24\},$ $\{3,7,19,25\},$ $\{42,2,4,12\}\};$

Nov. 29th, 2007

Linear Algebra

Row Major Ordering

What happens if we write

int val[3][4] = {{8,16,9,24,3,7,19,25,42,2,4,12}};

We begin filling in values starting with v[0][0] and continue.

If the array is stored in row major order, this has the same effect as the previous example

Nov. 29th, 2007

near Algebra

Implementing Row Major Order

- We can simulate a matrix using a one dimensional array by taking the two indices and finding the position in row major order.
- We have to know how many columns there are, that is the number of elements in each row.

```
int in2d(int row, int col, int n) {
  return col + row * n;
}
```

Nov. 29th, 2007

Linear Algebra

Simulating Matrices in One Dimension

- In the previous example we showed how to simulate a matrix by a one dimensional vector.
- This may be done in some applications to make highly computational intensive programs more efficient
- We could also simulate a matrix with a one dimensional array that stores the values in column major order
- Imagine adding one to every element?
- * Used with other Data Structures as well

Nov. 29th, 2007

Linear Algebra

Input of Matrix

**, What about [][]?

Why can't we use [][] in our function arguments:

- * C needs to know the length of the second dimension!
- Need to use a double pointer if we want to allow for completely dynamic matrices

Nov. 29th, 2007

Linear Algebra

How do we allocate a dynamic matrix?

```
double ** make_matrix(int h, int w) {
  int i;
  double **array2 = (double **)malloc(h * sizeof(double *));
  if (array2) {
    array2[0] = (double *)malloc(h * w * sizeof(double));
    if(array2[0]) {
       for(i = 1; i < h; i++)
            array2[i] = array2[0] + i * w;
       return array2;
    } else {
       free(array2);
    }
}
return NULL;
}</pre>
Now 29th, 2007 Linear Algebra
```

Matrix Output

```
void fprint matrix(FILE * out, double **m, int h, int w) {
   int i, j;
   fprintf(out, "(\n");
   for (i = 0, i < h - 1; ++i) {
      fprintf(out, " (");
      for (j = 0, j < w - 1; ++j)
            fprintf(out, "%g, ", m[i][j]);
      fprintf(out, "%g, \n", m[i][j]);
   }
   fprintf(out, "%g, \n", m[i][j]);
   for (j = 0, j < w - 1; ++j)
      fprintf(out, "%g, ", m[i][j]);
   return;
}

void print_matrix(double **m, int h, int w) {
   fprint_matrix(stdout, m, h, w);
   return;
}</pre>
```

Matrix Transposition

- * A common operation is to compute the transpose of a matrix
- We could do this in place and overwrite the contents of the matrix
- In the following algorithm, we compute a new matrix containing the transposed matrix

Nov. 29th, 2007

Linear Algebra

Matrix Transposition

Example

Matrix Multiplication

- Matrix multiplication is a fundamental operation that occurs in many applications
- Given two matrices A, a matrix with h1 rows and w1 columns and B a matrix with w1 rows and h2 columns, we can compute their product matrix C
- Note that the number of columns of A must equal the number of rows of B

Nov. 29th, 2007

Linear Algebra

Matrix Multiplication

- The element c[i][j] is computed as the dot product of the ith row of A and the jth column of B
- The overall algorithm computes has two nested loops that vary i and j, computing each dot product
- The computation of the dot product is done in another loop nested inside those two

Nov. 29th, 2007

Linear Algebra

Matrix Multiplication

Solving Linear Systems

- One of the most widespread applications of computers is the solving of systems of linear equations
- These systems arise in numerous application areas
- There is a large body of literature and research on how to solve these systems efficiently and accurately
- * We examine two simple approaches

Nov. 29th, 2007

Linear Algebra

25

An Easy Example

If the system of equations is triangular, we can solve it by a process called back substitution:

$$w - 1.5x + y + 2.5z = 1.5$$

 $x + 0y - z = -1$
 $y + 0z = -2$

Nov. 29th. 2007

Linear Algebra

Matrix Representation

• We can represent this system of equations using an upper triangular matrix, A and a vector b. The equations can be written Ax=b, where x is a vector of length 4 representing the values of (w,x,y,z)

Nov. 29th, 2007

ear Algebra

Matrix Representation

Nov 29th 2007

Linear Algebra

Back Substitution

First solve for z and then substitute in the previous equation to solve for y.

Continue until all of the variables have been solved.

$$z = 7$$

 $y = -2 - 0*7 = -2$
 $x = -1 - 0*-2 + 7 = 6$
 $w = 1.5 + 1.5*6 - (-2) - 2.5*7 = -5$

Nov. 29th, 2007

Linear Algebra

Gaussian Elimination

- The Gaussian elimination algorithm attempts to transform a system of linear equations into a triangular system
- *As we have seen by example, a triangular system is easy to solve by back substitution
- We transform the system by eliminating one variable at each step

Nov. 29th, 2007

Linear Algebra

30

10

A Linear System Example

Consider the system of equations:

$$2w - 3x + 2y + 5z = 3$$

 $w - x + y + 2z = 1$
 $3w + 2x + 2y + z = 0$
 $w + x - 3y - z = 0$

Nov 29th 2007

Linear Algebra

A Linear System Example

Again we can write this in the form Ax=b where A is a 4x4 matrix, x is a 1x4 vector and b is a 1x4 vector:

A:				b:
2	-3	2	5	3
1	-1	1	2	1
3	2	2	1	0
1	1	3	-1	C

Nov. 29th, 2007 Linear Algebra

Gaussian Elimination Example

We first eliminate the first entry in the second row, by multiplying the first row by 1.0/2.0 and subtracting the rows.

We do the same to the second entry in b.

Α:				b:
2	-3	2	5	3
0	.5	0	 5	5
3	2	2	1	0
1	1	3	-1	0

Nov. 29th, 2007

Linear Algebra

Gaussian Elimination Example

Repeat this process for each row

Nov. 29th, 2007 Linear Algebra 3-

Gaussian Elimination Example

Now eliminate the second non-zero entries in the second column below the diagonal in the same way

Nov. 29th, 2007 Linear Algebra 35

Gaussian Elimination Example

Do the same for the third column. Notice that it is not necessary to continue with the last column

Nov. 29th, 2007 Linear Algebra 3

Gaussian Elimination void genp(double **m, double v[], int h, int w) { int row, next_row, col; double factor; for(row = 0; row < (h - 1); ++row) { for(next_row = row + 1; next_row < h; ++next_row) { factor = m[next_row][row] / m[row][row]; for(col = 0; col < w; ++col) m[next_row][col] -= factor * m[row][col]; v[next_row] -= factor * v[row]; } } Nov. 29th, 2007 Linear Algebra 37</pre>

Problems with Gaussian Elimination

- If there is a zero on the diagonal that of the row we are processing, there will be an attempt to divide by zero, causing an error
- Even if there isn't a zero, dividing by a small number causes large roundoff errors and inaccurate results.
- * These problems can be reduced by pivoting
- We rearrange the rows at each step so that the largest possible value is the next one we chose to eliminate

Nov. 29th, 2007 Linear Algebra

Gaussian Elimination with Partial Privoting

```
void gepp(double **m, double v[], int h, int w){
  int row, next_row, col, max_row;
  double tmp, factor;

for(row = 0; row < (h - 1); ++row) {
    // Find row with largest pivot.
    // Swap rows.
    // Rest like Gaussian Elimination without Pivoting.
  }
}</pre>
```


Swapping Two Rows if(max_row != row) { for(col = 0; col < w; ++col) { tmp = m[row] [col]; m[row] [col] = m[max_row] [col]; m[max_row] [col] = tmp; } tmp = v[row]; v[row] = v[max_row]; v[max_row] = tmp; }</pre> Nov. 29th. 2007 Linear Algebra 41

Back Substitution

- Once we have an upper triangular matrix, we can solve the system of equations by back substitution
- * We first solve for the last variable and use the solution to solve for the second last and so on.

Nov. 29th, 2007 Linear Algebra

300	Back Su	bstitution	
	<pre>void back_subst int row, next</pre>	<pre>itute(double **m, double v[], int h, int w) { row;</pre>	
100	v[row] /= m m[row][row] for(next_ro { v[next_ro		1)
K	}		
140	Nov. 29th, 2007	Linear Algebra	43