
11/22/2007

1

Computers in Engineering

COMP 208

Numerical Integration

Michael A. Hawker

Integration

�Many applications require evaluating 

the integral of a function

�The integrals of many elementary 

functions cannot be derived analytically

�As we have seen, we may not even 

have an analytic form for the function. 

We may just be able to sample it at 

various points

2007 Numerical Integration 2

Integration

�This lead to the development of 

techniques for evaluating such integrals 

numerically 

�Numerical integration techniques 

predate the use of electronic computers

2007 Numerical Integration 3



11/22/2007

2

Definite Integral

�The definite integral of a function of a 

single variable, f(x), between two limits 

a and b can be viewed as the area 

under the curve defined by the function

�Numerical integration algorithms try to 

estimate this area

2007 Numerical Integration 4

Integral

Nov. 8th, 2007 Root Finding 5

a b

Numerical Integration

�Our approach will be to divide the 

region between a and b into n segments

�We then estimate the area under the 

curve in each segment

�Finally, we sum these areas

2007 Numerical Integration 6



11/22/2007

3

Numerical Integration

�We consider three algorithms for 

estimating this area

�The Midpoint method

�The Trapezoidal method

�Simpson’s method

2007 Numerical Integration 7

Midpoint Method

We estimate the area under the curve in 
each segment using the value of f at the 
midpoint of this segment

area = dx * f(x+dx/2)

To compute an approximation to the 
interval, we just have to sum these 
areas

2007 Numerical Integration 8

The Midpoint Method

�We begin by dividing the region from a 

to b into n equal segments

�The width of each segment is

dx = (b-a)/n

�The endpoint of the segments are

a, a+dx, a+2dx, … ,a+ndx

2007 Numerical Integration 9



11/22/2007

4

Midpoint Method

Nov. 8th, 2007 Root Finding 10

Midpoint Method

�Multiplication (especially by small 

values) may cause roundoff errors

�To reduce the effect of these errors, we 

try to simplify expressions to reduce the 

number of multiplications

�We can factor out the dx and add all of 

the function values before multiplying by 

dx

2007 Numerical Integration 11

Midpoint Method
double midpoint_int (DfD f,

double x0, double x1, int n){

int i;

double x, dx, sum = 0.0;

dx = (x1-x0)/ n;

for (i = 0, x = x0 + dx/2; i < n;

i++, x += dx)

sum += f(x);

return sum * dx;

}

2007 Numerical Integration 12



11/22/2007

5

Trapezoidal Method

To improve the accuracy of our estimate 

for the area of each segment we use 

the area of the trapezoid rather than the 

rectangle

The area of the trapezoid formed by x, 

x+dx, f(x) and f(x+dx) is

area = dx * (f(x) + f(x+dx))/2

2007 Numerical Integration 13

Trapezoidal Method

The area of each segment is given by
area = dx * (f(x) + f(x+dx))/2

We sum these areas for each panel to 
approximate the integral

To reduce the number of operations and 
the roundoff, we can factor out the dx

2007 Numerical Integration 14

Trapezoid Method

Nov. 8th, 2007 Root Finding 15



11/22/2007

6

Trapezoidal Method 

Simplifications

Moreover the sum telescopes:
(f(x0)+f(x1))/2 + (f(x1)+f(x2))/2

= f(x0)/2 + f(x1) + f(x2)/2

= (f(x0)+f(x2))/2 + f(x1)

This collapsing of terms effects all the 
terms except for the first and last

2007 Numerical Integration 16

Trapezoidal Method

double trapezoidal_int (DfD f,

double x0, double x1, int n){

double x, dx, sum;

int i;

dx = (x1-x0)/ n;

sum = (f(x0) + f(x1))/2;

for (i=1,x = x0 + dx; i < n; x += dx)

sum += f(x);

return sum * dx;

}

2007 Numerical Integration 17

Simpson’s Method

�Simpson’s method fits a parabola 

through the curve at three points, the 

value of the function at the two 

endpoints and at the midpoint of the 

interval

�Simpson’s method generally finds a 

better approximation to the area under 

the curve in each segment

2007 Numerical Integration 18



11/22/2007

7

Simpson’s Method

Given three points

(a,f(a)), (b,f(b)) and (c,f(c))

there is a unique polynomial, called the 
interpolating polynomial , that passes 
through these points.

2007 Numerical Integration 19

Simpson’s Method

The area under this parabola between 
two points x and x+dx is given by
[f(x) + 

4*f(x+dx/2) + 

f(x+dx)]*dx/6

The integral is again approximated by 
summing these areas

2007 Numerical Integration 20

Implementing Simpson’s Method

Again, in order to minimize roundoff errors 

and improve efficiency, we simplify the 

sum

We factor out the dx/6

We can also telescope some terms of the 

sum

This results in the following algorithm

2007 Numerical Integration 21



11/22/2007

8

Simpson’s Method
double simpsons_int(DfD f,

double x0, double x1, int n){

double x, sum, dx = (x1 - x0) / n;

sum = f(x1) - f(x0);

for(x = x0; x+dx/2 < x1; x += dx)

sum += 2.0 * f(x) +

4.0 * f(x + dx/2);

return sum * dx / 6.0;

}

2007 Numerical Integration 22

Accuracy of Integration

�Midpoint Method

Exact for constant and piecewise linear 
functions

�Trapezoidal Method

Exact for constant and piecewise linear 
functions

�Simpson’s Rule

Exact for polynomials of degree three or less

2007 Numerical Integration 23

Accuracy of Integration

If we divide our original interval into subintervals 
of width h, it is possible to derive estimates on 
the accuracy of these methods for more 
general functions

� Midpoint Method
The error is of order h2

� Trapezoidal Method
The error is the same

� Simpson’s Rule
The error is of order h5

2007 Numerical Integration 24



11/22/2007

9

Monte Carlo Methods

�Monte Carlo methods use pseudo-

random numbers to approximate 

definite integrals

�These methods are sometimes used for 

multidimensional functions integrated 

over a region that has a complicated 

shape

2007 Numerical Integration 25

Monte Carlo Methods

� Consider the computing the volume of the 

intersection of two cylinders

� We can consider a cube that contains this 

shape. 

� We then generate a large number of points 

and count how many fall within the region we 

are interested in

� Since we can compute the volume of the 

simple shape, we obtain an estimate of the 

volume of the complex shape

2007 Numerical Integration 26

Simple Monte Carlo 

Integration

� For simple one dimensional functions, 
we have at least two different ways to 
apply this concept

� Method 1:

� Bound a region containing the definite 
integral by a rectangle.

� Divide the number of random points that 
fall under the curve by the total number of 
points used

2007 Numerical Integration 27



11/22/2007

10

Simple Monte Carlo 

Integration

Method 2:

� Sum the value of f at a large number of 
random points. 

� Then divide by the total number of points 
used.

2007 Numerical Integration 28

Random Number Generation 

(Review)

We first have to seed the pseudo-random 
number generator with an initial value 
using srand(seed)

The function time(x) in time.h gives 
us the current clock time of our 
computer and can be coerced to an 
unsigned integer type.

srand((unsigned int) time(NULL));

2007 Numerical Integration 29

Random Number Generation 

(Review)

The function rand() returns a random 

unsigned integer less than the system 
defined value RAND_MAX

By coercing it to be a double precision real and 
dividing by RAND_MAX, we get a real number 

between 0 (inclusive) and 1 (exclusive)

We can then scale this value to fall between x0 
and x1

((double) rand() / RAND_MAX) * (x1-x0)+x0);

2007 Numerical Integration 30



11/22/2007

11

Monte Carlo Integration
double monte_carlo_int(DfD f,

double x0, double x1, int n){

double sum = 0;

int i; 

srand((unsigned int) time(NULL));

// Sum n random values of f(x) with x in [x0, x1].

for(i = 0; i < n; ++i)

sum += f(((double) rand() / RAND_MAX)*(x1-x0)+x0);

// Divide the sum by n to get average value of f(x)

// Multiply by (x1 - x0) to get the area.

return (sum / n) * (x1 - x0);

}

2007 Numerical Integration 31

Pi using Monte Carlo
#include <stdio.h>

#include <stdlib.h>

#include <time.h>

int main(){

int i, numin = 0, num = 1000000;

double x_coord, y_coord, pi;

srand((unsigned int)time(NULL));

for (i=0; i<num; i++){

x_coord = ((double)rand())/RAND_MAX;

y_coord = ((double)rand())/RAND_MAX;

if (x_coord*x_coord + y_coord*y_coord < 1.0) numin++;

pi = 4.0*(double)numin/(double)num;

}

printf("Pi after %i steps is %g \n", num, pi);

return 0;

}

2007 Numerical Integration 32


