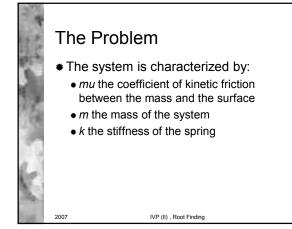
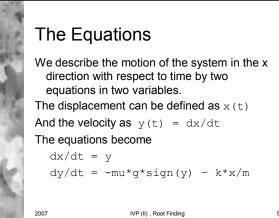
Computers in Engineering COMP 208

Initial Value Problems – Part 2 Michael A. Hawker

Spring-Mass Problem

 Provides us with an example of a system of differential equations in two variables to be solved numerically

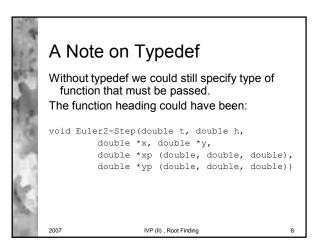

IVP (II) , Root Finding

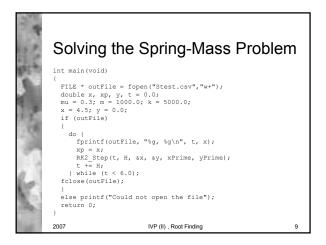

The Problem

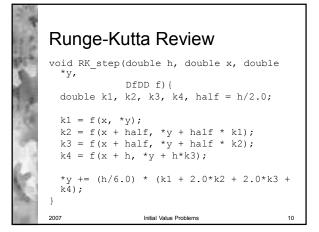
2007

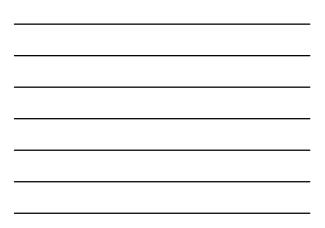
2007

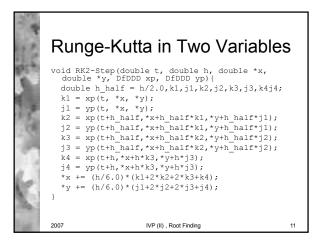
- * Spring-mass systems are basic to courses on the dynamics of vibration
- They are ideal systems composed of a spring and a mass which can oscillate.
- We will simulate such a system with coulomb friction, that is friction which is proportional to the normal force applied and with no damping

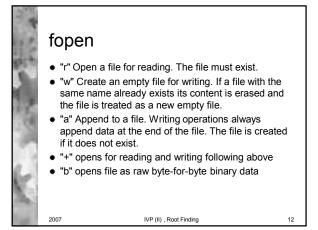

Initial Value Problems In Two Variables

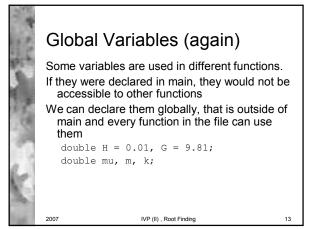

- This is an example of an initial value problem in two variables.
- In the example, the initial values are the initial displacement of x, say 4.5 and the initial velocity, y=0
- We can use an Euler method or a Runge-Kutta method in two variables to approximate a solution

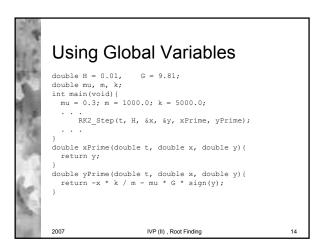

```
IVP (II) , Root Finding
```

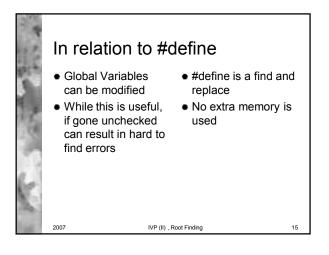

3.4	
100	Euler Method
Sec.	typedef double (*DfDDD) (double, double, double);
and of	<pre>void Euler2-Step(double t, double h,</pre>
K	*y += h * yp(t, x_tmp,*y); }
Sine 7	2007 IVP (II) , Root Finding 7

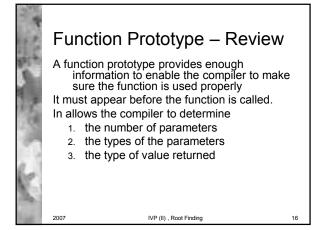


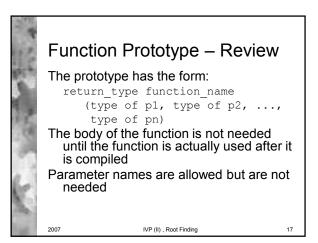


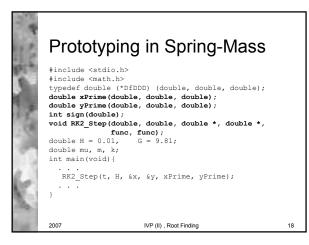


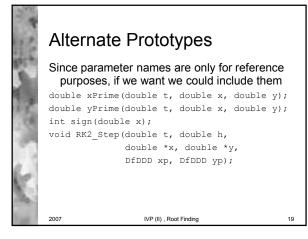


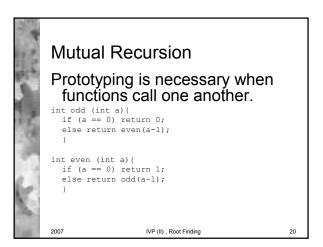




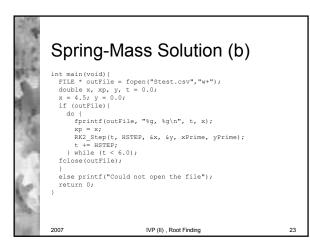

4



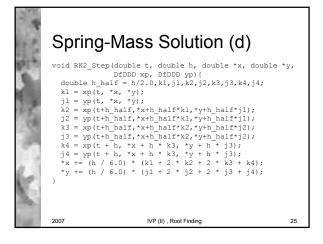


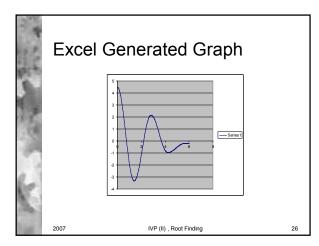


6



3 4 50	Even-Odd Prototyping	
1000	<pre>int odd(int);</pre>	
	<pre>int even(int);</pre>	
	int main () {	
3.00	int x=22;	
0.04	if (even(x))	
7.16	printf (" %d is even\n", x);	
100	else	
	<pre>printf(" %d is odd\n", x);</pre>	
Real	return 0;	
N	}	
10		
No. of Concession, Name	2007 IVP (II) , Root Finding	21
100	2007 IVP (II), ROOL FINDING	21


-	Spring-Mass Solution (a)	
「「「	<pre>#include <stdio.h> #include <math.h> #define HSTEP 0.01 #define GRAV 9.81 #define MU 0.3 #define MASS 1000.0 #define KVAR 5000.0 typedef double (*func) (double, double, double);</math.h></stdio.h></pre>	
N.S.	<pre>double xPrime(double, double, double); double yPrime(double, double, double); int sign(double); void RK2_Step(double, double, double *, double *, func, func);</pre>	
100	2007 IVP (II) , Root Finding 22	



the first sector			
1000	Spring-Mass Solution	(C)	
ant.	<pre>double xPrime(double t, double x, d return y; }</pre>	ouble y){	
100	<pre>double yPrime(double t, double x, d return -MU * GRAV * sign(y) -x * }</pre>	-	
6	<pre>int sign(double x) { return (x == 0) ? 0 : ((x < 0.0) }</pre>	? -1 : 1);	
10	2007 IVP (II) , Root Finding		24

