
11/19/2007

1

Computers in Engineering

COMP 208

Initial Value Problems – Part 2

Michael A. Hawker

Spring-Mass Problem

�Provides us with an example of a 

system of differential equations in two 

variables to be solved numerically

2007 IVP (II) , Root Finding 2

Mass

The Problem

�Spring-mass systems are basic to 

courses on the dynamics of vibration

�They are ideal systems composed of a 

spring and a mass which can oscillate. 

�We will simulate such a system with 

coulomb friction, that is friction which is 

proportional to the normal force applied 

and with no damping

2007 IVP (II) , Root Finding 3



11/19/2007

2

The Problem

�The system is characterized by:

�mu the coefficient of kinetic friction 

between the mass and the surface

�m the mass of the system

� k the stiffness of the spring

2007 IVP (II) , Root Finding 4

The Equations

We describe the motion of the system in the x 

direction with respect to time by two 

equations in two variables.

The displacement can be defined as x(t)

And the velocity as  y(t) = dx/dt

The equations become

dx/dt = y

dy/dt = -mu*g*sign(y) – k*x/m

2007 IVP (II) , Root Finding 5

Initial Value Problems

In Two Variables

�This is an example of an initial value 

problem in two variables.

� In the example, the initial values are the 

initial displacement of x, say 4.5 and the 

initial velocity, y=0

�We can use an Euler method or a 

Runge-Kutta method in two variables to 

approximate a solution

2007 IVP (II) , Root Finding 6



11/19/2007

3

Euler Method

typedef double (*DfDDD)

(double, double, double);

void Euler2-Step(double t, double h,

double *x, double *y,

DfDDD xp, DfDDD yp){

double x_tmp = *x;

*x  += h * xp(t, *x, *y) ;

*y  += h * yp(t, x_tmp,*y);

}

2007 IVP (II) , Root Finding 7

A Note on Typedef

Without typedef we could still specify type of 
function that must be passed.

The function heading could have been:

void Euler2-Step(double t, double h,

double *x, double *y,

double *xp (double, double, double),

double *yp (double, double, double))

2007 IVP (II) , Root Finding 8

Solving the Spring-Mass Problem
int main(void)

{

FILE * outFile = fopen("Stest.csv","w+");

double x, xp, y, t = 0.0;

mu = 0.3; m = 1000.0; k = 5000.0;

x = 4.5; y = 0.0;

if (outFile)

{

do {

fprintf(outFile, "%g, %g\n", t, x);

xp = x;

RK2_Step(t, H, &x, &y, xPrime, yPrime);

t += H;

} while (t < 6.0);

fclose(outFile);

}

else printf("Could not open the file");

return 0;

}

2007 IVP (II) , Root Finding 9



11/19/2007

4

Runge-Kutta Review

void RK_step(double h, double x, double 
*y,

DfDD f){

double k1, k2, k3, k4, half = h/2.0;

k1 = f(x, *y);

k2 = f(x + half, *y + half * k1);

k3 = f(x + half, *y + half * k2);

k4 = f(x + h, *y + h*k3);

*y += (h/6.0) * (k1 + 2.0*k2 + 2.0*k3 + 
k4);

}

2007 Initial Value Problems 10

Runge-Kutta in Two Variables
void RK2-Step(double t, double h, double *x, 

double *y, DfDDD xp, DfDDD yp){

double h_half = h/2.0,k1,j1,k2,j2,k3,j3,k4j4;

k1 = xp(t, *x, *y);

j1 = yp(t, *x, *y);

k2 = xp(t+h_half,*x+h_half*k1,*y+h_half*j1);

j2 = yp(t+h_half,*x+h_half*k1,*y+h_half*j1);

k3 = xp(t+h_half,*x+h_half*k2,*y+h_half*j2);

j3 = yp(t+h_half,*x+h_half*k2,*y+h_half*j2);

k4 = xp(t+h,*x+h*k3,*y+h*j3);

j4 = yp(t+h,*x+h*k3,*y+h*j3);

*x += (h/6.0)*(k1+2*k2+2*k3+k4);

*y += (h/6.0)*(j1+2*j2+2*j3+j4);

}

2007 IVP (II) , Root Finding 11

fopen

� "r" Open a file for reading. The file must exist.

� "w" Create an empty file for writing. If a file with the 

same name already exists its content is erased and 

the file is treated as a new empty file. 

� "a" Append to a file. Writing operations always 

append data at the end of the file. The file is created 

if it does not exist.

� "+" opens for reading and writing following above

� "b" opens file as raw byte-for-byte binary data

2007 IVP (II) , Root Finding 12



11/19/2007

5

Global Variables (again)

Some variables are used in different functions.

If they were declared in main, they would not be 
accessible to other functions

We can declare them globally, that is outside of 
main and every function in the file can use 
them 
double H = 0.01, G = 9.81;

double mu, m, k;

2007 IVP (II) , Root Finding 13

Using Global Variables
double H = 0.01, G = 9.81;

double mu, m, k;

int main(void){

mu = 0.3; m = 1000.0; k = 5000.0;      

. . .

RK2_Step(t, H, &x, &y, xPrime, yPrime);

. . .

}

double xPrime(double t, double x, double y){

return y;

}

double yPrime(double t, double x, double y){

return -x * k / m - mu * G * sign(y);

}

2007 IVP (II) , Root Finding 14

In relation to #define

� Global Variables 

can be modified

�While this is useful, 

if gone unchecked 

can result in hard to 

find errors

� #define is a find and 

replace

� No extra memory is 

used

2007 IVP (II) , Root Finding 15



11/19/2007

6

Function Prototype – Review

A function prototype provides enough 
information to enable the compiler to make 
sure the function is used properly

It must appear before the function is called.

In allows the compiler to determine

1. the number of parameters

2. the types of the parameters

3. the type of value returned

2007 IVP (II) , Root Finding 16

Function Prototype – Review

The prototype has the form:
return_type function_name

(type of p1, type of p2, ...,

type of pn)

The body of the function is not needed 
until the function is actually used after it 
is compiled

Parameter names are allowed but are not 
needed

2007 IVP (II) , Root Finding 17

Prototyping in Spring-Mass
#include <stdio.h>

#include <math.h>

typedef double (*DfDDD) (double, double, double);

double xPrime(double, double, double);

double yPrime(double, double, double);

int sign(double);

void RK2_Step(double, double, double *, double *,

func, func);

double H = 0.01, G = 9.81;

double mu, m, k;

int main(void){

. . .

RK2_Step(t, H, &x, &y, xPrime, yPrime);

. . .

}

2007 IVP (II) , Root Finding 18



11/19/2007

7

Alternate Prototypes

Since parameter names are only for reference 
purposes, if we want we could include them

double xPrime(double t, double x, double y);

double yPrime(double t, double x, double y);

int sign(double x);

void RK2_Step(double t, double h,

double *x, double *y,

DfDDD xp, DfDDD yp);

2007 IVP (II) , Root Finding 19

Mutual Recursion

Prototyping is necessary when 
functions call one another.

int odd (int a){

if (a == 0) return 0;

else return even(a-1);

}

int even (int a){

if (a == 0) return 1;

else return odd(a-1);

}

2007 IVP (II) , Root Finding 20

Even-Odd Prototyping

int odd(int);

int even(int);

int main (){

int x=22;

if (even(x))

printf (" %d is even\n", x);

else

printf(" %d is odd\n", x);

return 0;

}

2007 IVP (II) , Root Finding 21



11/19/2007

8

Spring-Mass Solution (a)
#include <stdio.h>

#include <math.h>

#define HSTEP 0.01

#define GRAV 9.81

#define MU 0.3

#define MASS 1000.0

#define KVAR 5000.0

typedef double (*func) (double, double, double);

double xPrime(double, double, double);

double yPrime(double, double, double);

int sign(double);

void RK2_Step(double, double, double *, double *,

func, func);

2007 IVP (II) , Root Finding 22

Spring-Mass Solution (b)
int main(void){

FILE * outFile = fopen("Stest.csv","w+");

double x, xp, y, t = 0.0;

x = 4.5; y = 0.0;

if (outFile){

do {

fprintf(outFile, "%g, %g\n", t, x);

xp = x;

RK2_Step(t, HSTEP, &x, &y, xPrime, yPrime);

t += HSTEP;

} while (t < 6.0);

fclose(outFile);

}

else printf("Could not open the file");

return 0;

}

2007 IVP (II) , Root Finding 23

Spring-Mass Solution (c)
double xPrime(double t, double x, double y){

return y;

}

double yPrime(double t, double x, double y){

return -MU * GRAV * sign(y) -x * KVAR / MASS;

}

int sign(double x){

return (x == 0) ? 0 : ((x < 0.0) ? -1 : 1);

}

2007 IVP (II) , Root Finding 24



11/19/2007

9

Spring-Mass Solution (d)
void RK2_Step(double t, double h, double *x, double *y,

DfDDD xp, DfDDD yp){

double h_half = h/2.0,k1,j1,k2,j2,k3,j3,k4,j4;

k1 = xp(t, *x, *y);

j1 = yp(t, *x, *y);

k2 = xp(t+h_half,*x+h_half*k1,*y+h_half*j1);

j2 = yp(t+h_half,*x+h_half*k1,*y+h_half*j1);

k3 = xp(t+h_half,*x+h_half*k2,*y+h_half*j2);

j3 = yp(t+h_half,*x+h_half*k2,*y+h_half*j2);

k4 = xp(t + h, *x + h * k3, *y + h * j3);

j4 = yp(t + h, *x + h * k3, *y + h * j3);

*x += (h / 6.0) * (k1 + 2 * k2 + 2 * k3 + k4);

*y += (h / 6.0) * (j1 + 2 * j2 + 2 * j3 + j4);

}

2007 IVP (II) , Root Finding 25

Excel Generated Graph

-4

-3

-2

-1

0

1

2

3

4

5

0 2 4 6 8

Series1

2007 IVP (II) , Root Finding 26


