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+ Root Finding
#* Many applications involve finding the
roots of a function f(x).
# That is, we want to find a value or
values for x such that f(x)=0
A
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+ Roots of a Quadratic

#We have already seen an algorithm for
finding the roots of a quadratic

#»We had a closed form for the solution,
given by an explicit formula

# There are a limited number of problems

for which we have such explicit
solutions

=
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Root Finding

#*What if we don’t have a closed form for
the roots?

#* We try to generate a sequence of
approximations x;, x,, ..,x, untilwe
(hopefully) obtain a value very close to
the root
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Example: Firing a Projectile

Find the angle at which to fire a projectile
at a target
Given:
= the velocity, vel
» the distance to the base of the target, x
» the height of the target, hgt
Find: the angle at which to aim, ang

Nov. 8th, 2007 Root Finding 5

Example: Firing a Projectile

The physics of the problem tells us that

hgt = vel*sin(ang)*t - k*g*t?
t = x / (vel*cos(ang))
where g is the gravitational constant.
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+ Example: Firing a Projectile
Taking the equations:
hgt = vel*sin(ang)*t - ¥ g*t?
t = x / (vel*cos(ang))
By substituting, we have
j hgt = x*tan(ang)

K<

- 0.5*g* (x?/ (vel? cos?(ang))
The angle ang is a root of
f(a) = x*tan(ang)
- 0.5*g* (x?/ (vel?*cos? (ang)) - hgt
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+ The Bisection Method
#» We start with an interval that contains
exactly one root of the function
#* The function must change signs on that
interval.
. (If the function changes signs, in fact
there must be an odd number of roots in
* the interval)
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+ The Bisection Method
#» To get started, we must bracket a root
#How do we bracket the root?
» From our knowledge of the function
» By searching along axis at fixed
I_] increments until we find that the sign of f(x)
changes
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+ The Bisection Method

#» Once we have an interval containing the
root(s), we narrow down the search

# Similar to binary search: divide the interval in
half and look for a sign change in one of the
two subintervals half of the interval.

# From the Intermediate Value Theorem, if
there is a sign change in an interval, there
must be a root must be in that interval

e
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The Bisection Method

#» We check the first subinterval for a change in
sign.
# [f there is one, that interval must have a root.

» |[f there is no change in sign, a root must be
in the other half

# When do we stop?
= If the length of the interval is very small, we
must be close to the root.
= Just take the midpoint as the
approximation

L’
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x1 X3=(x1+x2)/2 X2
X4=(x3+x1)/2
X5=(x4+x1)/2
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+ Bisection example

f(x2)
(x3)
f(x4

,l f(x5)=0 ﬂ/
|-
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Convergence Condition

# Root finding algorithms compute a
sequence of approximations to the root, r, of
fi %, X, o, X, .

i

# When does the bisection method stop?

#* We know the root must be between x; and
Xi.
]
* When these values are very close, we must
be close to the root.
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A Function Argument?

» \We want to write a bisection function
that takes a function as an argument
and returns a root of the function

#* How can a function be an argument?
#* We have to go back to first principals
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Functions as Arguments

#* How can a function be an argument?

» The code defining a function is stored in
memory, just like data

» It has an address just like any block of
memory cells

» We can pass the address of that code

» We just have to be careful about the type
of the pointer
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Function Pointer Syntax

#» Want to point to an existing function
#»void (*foo)(int);
= A pointer called "foo" to a function which:

» Returns void
« Takes an integer parameter

#*In General:
return_type (*pointer_name) (parameter_list)
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Function Pointer Examples

#* void *(*foo)(int *)

» Returns a void* (anything)

= Takes an Integer Pointer
#*int (*bar) (int, int)

» Returns an Integer

» Takes two Integer parameters
#* double (*baz) (double)

Nov. 8th, 2007 Root Finding 17

h

Function Pointer Example

#include <stdio.h>
double johnny_five (double x)
{

return x+5.0;

)
int main()
{
double (*func_ptr) (double);
func_ptr = &johnny_five;

printf ("$1£\n", func_ptr( 0.0 ));

return 0;
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Bisection Header

#» To define the bisection function we can
use the header:

double bisection_rf (double (*f) (double),
double x0, double x1, double tol)
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Bisection Header

C provides a typedef declaration that can
simplify this code:

typedef double (*DfD) (double);

double bisection rf (DfD f, double x0,
double x1, double tol)
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The Bisection Method

typedef double (*DfD) (double);

double bisectionirf(DfD f, double x0, double x1,
double tol) {
double middle = (x0 + x1) / 2.0;

if ((middle - x0) < tol)

return middle;
else if (f(middle) * £(x0) < 0.0)

return bisection_rf(f, x0, middle, tol);
else

return bisection_rf(f, middle, x1, tol);

}
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Other Convergence
Conditions

There are typically three ways of
determining when to stop

1. f(x;) is close to zero
2. f(x;)is closetor

3. X is close to x;,4 so it doesn’t pay to
continue
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The Secant Method

#* We also begin with two initial approximations

#* However they do not have to bracket the root

» We essentially approximate the function
using straight lines forming the secant at the
two points

#* This is probably the most popular method

# |t is not guaranteed to converge to the root
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The Secant Method

# Start with two values, x, and x, that
don’t necessarily bracket the root
# Compute a new approximation, the

point at which the line drawn between
f(xo) and f(x,) intersects the x-axis
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Computing the Approximation

The approximation is given by:

x2 = £(x0)* (x1-x0) / (£ (x0) -£ (x1) ) +x0

Iterate this process using x, and x, as the
new pair of points
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Secant method

k f(x3)

x3
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Convergence Criteria

#When do we stop this process?

#\We use the first of the criteria we
described

#* That is, we stop when the value of f(x;)
is close to zero

#» \We then say that x; is an approximate
root

Nov. 8th, 2007 Root Finding 27




e

h

The Secant Method

# This method is one of the most popular ones
in use

* |t may not converge because successive
intervals become larger or because it
oscillates

# Therefore we terminate the algorithm after a
specified number of steps if it has not
converged
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The Secant Method

double secant_rf (DfD f, double x1, double x2,
double tol, int count) {
double f1 f(x1), f2 = f£(x2),
slope = (f2 - f1) / (x2 - x1),
distance = -f2 / slope,

point = x2 + distance;
if (!count)
return point;
if (fabs (f (point)) < tol)

return point;

. return secant_rf (f, x2, point, tol, count - 1);

| }
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# The secant method uses the most
recent approximation and the previous
one

#* Even if the root was bracketed, it may
not remain bracketed

# The False Position Method combines
the secant method with bisection to
guarantee that the root remains
bracketed
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Regula Falsi Method

# Regula falsi is another common name
for “false position”

* [t can be thought of as a refinement of
bisection

#» Instead of using the midpoint of the
interval we use the secant to interpolate
the value of the root
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The False Position Method

double fixedpoint_ rf(DfD f, double x1, double x2,
double tol) {
double f1 = f(x1), f2 = f(x2),
slope = (f2 - f1) / (x2 - x1),
distance = -f1 / slope,
point = x1 + distance;

if (fabs (f (point)) < tol)

return point;
if ((£1 * f£(point)) < 0)

return fixedpoint_ rf(f, x1, point, tol);
else

return fixedpoint_ rf(f, point, x2, tol);
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# Newton’s method starts with a single
initial guess at the root, x,

* [t is like the secant method with the
value of the derivative replacing the
slope

#* At each step, the next value is given by

Xi = %x; — £(x;) /£ (x;)
where f is the derivative of f
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+ Convergence Criteria
#* This method could use the third
convergence condition to terminate
#* That is, it could terminates when xi and
Xj are very close to each other
| sinour implementation we use the first,
that f(xi) is close to zero
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+ Newton-Raphson
For example, to compute the square root of a
number, a, we can find the root of the function
x%-a
Newton’s method guarantees that we keep
getting closer to the root
-'] However, in general we may not converge to a
root
= Therefore we stop after a certain number of
steps (count) if we have not yet found a root
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+ Newton-Raphson
f(x1)
/‘_,—'f(k;t’);f;
,l x2 ) 1/ x4 x1
f(x3)
W f(x2)
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Newton Raphson

double newton_rf (DfD f, DfD df,
double x,
double tol, int count) {

double distance = -f(x) / df(x);
x += distance;
if ((fabs(f(x)) < tol) || !count)
return x;
return newton_rf(f, df, x, tol, count - 1);
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The Derivative

#* This algorithm assumes that we know
the derivative of the function

# |f the function is complex or we
generate values of the function
empirically without having an explicit
analytic form for the function, we may
have to estimate the derivative

# Using a “centered three point” method,
we can rewrite the algorithm as follows
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Newton-Raphson with Numerical
Differentiation

double newton_rf (DfD f, double x,
double tol, int count) {

double distance =
-f(x) / centered3 diff (f,x,le-6);
x += distance;
if ((fabs(f(x)) < tol) || !count)
return x;
return newton rf (f, x, tol, count - 1);
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Numerical Differentiation

#» Engineers often deal with functions
represented as a collection of data
points

» We might not have an analytic closed
form for the function

#* For example, we might measure the
position of a vehicle at different points in
time
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Numerical Differentiation

#* Given the position of a vehicle at
different points in time:
= To compute the velocity, i.e. the derivative,

we must compute an estimate based on
the observed position

» Knowing the value of the function at two
different points in time allows us to
approximate the derivative
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Two Point Approximations

Central Difference Formula:

£/ (t) = (f(t+h)-f(t-h))/2h
Forward Difference Formula:

£/ (t) = (f(t+h)-f(t))/h

Backward Difference Formula:
£/ (t) = (£(t)-f(t+h))/h
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+ Two Point Differentiation

# The error is O(h)

» If h is big, the approximation will not be
very accurate

* If h is small, there may be large roundoff
errors.

#* |t might not be possible to sample the
- data at intervals for which h is very
k small
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+ Three Point Differentiation

Three point methods are more precise
We look at the formulae for three methods
but in this course we will not derive
them
» Forward 3 point differentiation
» Backward 3 point differentiation

E » Centered 3 point differentiatio
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+ Forward three point

dy _ =3* f(x)+4* f(x+Ax) - f(x +2*Ax)
dx 2% Ax

j double forward3 diff (DfD f, double x,

double h) {
H * 2NN

return (-3*f(x) + 4*f(x+h) - f(x+2*h)) /
(2 * h);
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+ Backward three point

dy _ f(x=2%A¥)-4* f(x—AY)+3* f(x)
dx 2% Ax

.,i double backward3_diff (DfD f, double x,

double h) {
return (f(x - 2*h) - 4*f(x - h) + 3*f(x))
/ (2 * h);
o }
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Centered three point

same as the centered two point

as accurate as the 3 point methods

double h) {

i }
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In deriving the centered three point formula,
terms cancel out and the final result is the

double centered3_diff (DfD f, double x,

This has the fewest function evaluations and is

return (-f(x - h) + £(x + h)) / (2 * h);

47

16



