
11/7/2007

1

Computers in Engineering

COMP 208

Root Finding

Michael A. Hawker

Root Finding

�Many applications involve finding the

roots of a function f(x).

�That is, we want to find a value or

values for x such that f(x)=0

Nov. 8th, 2007 Root Finding 2

Roots of a Quadratic

�We have already seen an algorithm for

finding the roots of a quadratic

�We had a closed form for the solution,

given by an explicit formula

�There are a limited number of problems

for which we have such explicit

solutions

Nov. 8th, 2007 Root Finding 3

11/7/2007

2

Root Finding

�What if we don’t have a closed form for

the roots?

�We try to generate a sequence of
approximations x1, x2, …,xn until we

(hopefully) obtain a value very close to

the root

Nov. 8th, 2007 Root Finding 4

Example: Firing a Projectile

Find the angle at which to fire a projectile
at a target

Given:
� the velocity, vel

� the distance to the base of the target, x

� the height of the target, hgt

Find: the angle at which to aim, ang

Nov. 8th, 2007 Root Finding 5

Example: Firing a Projectile

The physics of the problem tells us that

hgt = vel*sin(ang)*t - ½*g*t2

t = x / (vel*cos(ang))

where g is the gravitational constant.

Nov. 8th, 2007 Root Finding 6

11/7/2007

3

Example: Firing a Projectile

Taking the equations:

hgt = vel*sin(ang)*t - ½ g*t2

t = x / (vel*cos(ang))

By substituting, we have
hgt = x*tan(ang)

- 0.5*g*(x2/(vel2 cos2(ang))

The angle ang is a root of
f(a) = x*tan(ang)

- 0.5*g*(x2/(vel2*cos2(ang)) - hgt

Nov. 8th, 2007 Root Finding 7

The Bisection Method

�We start with an interval that contains

exactly one root of the function

�The function must change signs on that

interval.

� (If the function changes signs, in fact

there must be an odd number of roots in

the interval)

Nov. 8th, 2007 Root Finding 8

The Bisection Method

�To get started, we must bracket a root

�How do we bracket the root?

�From our knowledge of the function

�By searching along axis at fixed

increments until we find that the sign of f(x)

changes

Nov. 8th, 2007 Root Finding 9

11/7/2007

4

The Bisection Method

� Once we have an interval containing the
root(s), we narrow down the search

� Similar to binary search: divide the interval in
half and look for a sign change in one of the
two subintervals half of the interval.

� From the Intermediate Value Theorem, if
there is a sign change in an interval, there
must be a root must be in that interval

Nov. 8th, 2007 Root Finding 10

The Bisection Method

� We check the first subinterval for a change in
sign.

� If there is one, that interval must have a root.

� If there is no change in sign, a root must be
in the other half

� When do we stop?

� If the length of the interval is very small, we
must be close to the root.

� Just take the midpoint as the
approximation

Nov. 8th, 2007 Root Finding 11

Bisection example

Nov. 8th, 2007 Root Finding 12

X1

f(x1)

X2

f(x2)

X3=(x1+x2)/2

f(x3)

X4=(x3+x1)/2

f(x4)

X5=(x4+x1)/2

f(x5)≈0

11/7/2007

5

Convergence Condition

� Root finding algorithms compute a

sequence of approximations to the root, r, of
f: X1, X2, … , Xi, …

� When does the bisection method stop?

� We know the root must be between xi and

xj.

� When these values are very close, we must

be close to the root.

Nov. 8th, 2007 Root Finding 13

A Function Argument?

�We want to write a bisection function

that takes a function as an argument

and returns a root of the function

�How can a function be an argument?

�We have to go back to first principals

Nov. 8th, 2007 Root Finding 14

Functions as Arguments

�How can a function be an argument?

�The code defining a function is stored in

memory, just like data

� It has an address just like any block of

memory cells

�We can pass the address of that code

�We just have to be careful about the type

of the pointer

Nov. 8th, 2007 Root Finding 15

11/7/2007

6

Function Pointer Syntax

�Want to point to an existing function

�void (*foo)(int);

�A pointer called "foo" to a function which:

� Returns void

� Takes an integer parameter

� In General:

return_type (*pointer_name) (parameter_list)

Nov. 8th, 2007 Root Finding 16

Function Pointer Examples

�void *(*foo)(int *)

�Returns a void* (anything)

�Takes an Integer Pointer

� int (*bar) (int, int)

�Returns an Integer

�Takes two Integer parameters

�double (*baz) (double)

Nov. 8th, 2007 Root Finding 17

Function Pointer Example
#include <stdio.h>

double johnny_five(double x)

{

return x+5.0;

}

int main()

{

double(*func_ptr)(double);

func_ptr = &johnny_five;

printf("%lf\n", func_ptr(0.0));

return 0;

}

Nov. 8th, 2007 Root Finding 18

11/7/2007

7

Bisection Header

�To define the bisection function we can

use the header:

double bisection_rf(double (*f) (double),

double x0, double x1, double tol)

Nov. 8th, 2007 Root Finding 19

Bisection Header

C provides a typedef declaration that can

simplify this code:

typedef double (*DfD) (double);

double bisection_rf(DfD f, double x0,

double x1, double tol)

Nov. 8th, 2007 Root Finding 20

The Bisection Method
typedef double (*DfD) (double);

double bisection_rf(DfD f, double x0, double x1,

double tol){

double middle = (x0 + x1) / 2.0;

if ((middle - x0) < tol)

return middle;

else if (f(middle) * f(x0) < 0.0)

return bisection_rf(f, x0, middle, tol);

else

return bisection_rf(f, middle, x1, tol);

}

Nov. 8th, 2007 Root Finding 21

11/7/2007

8

Other Convergence

Conditions

There are typically three ways of

determining when to stop

1. f(xi) is close to zero

2. f(xi) is close to r

3. xi is close to xi+1 so it doesn’t pay to

continue

Nov. 8th, 2007 Root Finding 22

The Secant Method

� We also begin with two initial approximations

� However they do not have to bracket the root

� We essentially approximate the function

using straight lines forming the secant at the

two points

� This is probably the most popular method

� It is not guaranteed to converge to the root

Nov. 8th, 2007 Root Finding 23

The Secant Method

�Start with two values, x0 and x1 that

don’t necessarily bracket the root

�Compute a new approximation, the

point at which the line drawn between
f(x0) and f(x1) intersects the x-axis

Nov. 8th, 2007 Root Finding 24

11/7/2007

9

Computing the Approximation

The approximation is given by:

x2 = f(x0)*(x1-x0)/(f(x0)-f(x1))+x0

Iterate this process using x1 and x2 as the
new pair of points

Nov. 8th, 2007 Root Finding 25

Secant method

Nov. 8th, 2007 Root Finding 26

X1

f(x1)

x2

f(x2)

f(x4)

f(x5)≈0

f(x3)

x3

Convergence Criteria

�When do we stop this process?

�We use the first of the criteria we

described

�That is, we stop when the value of f(xi)

is close to zero

�We then say that xi is an approximate

root

Nov. 8th, 2007 Root Finding 27

11/7/2007

10

The Secant Method

� This method is one of the most popular ones
in use

� It may not converge because successive
intervals become larger or because it
oscillates

� Therefore we terminate the algorithm after a
specified number of steps if it has not
converged

Nov. 8th, 2007 Root Finding 28

The Secant Method
double secant_rf(DfD f, double x1, double x2,

double tol, int count){

double f1 = f(x1), f2 = f(x2),

slope = (f2 - f1) / (x2 - x1),

distance = -f2 / slope,

point = x2 + distance;

if(!count)

return point;

if(fabs(f(point)) < tol)

return point;

return secant_rf(f, x2, point, tol, count - 1);

}

Nov. 8th, 2007 Root Finding 29

The False Position Method

�The secant method uses the most

recent approximation and the previous

one

�Even if the root was bracketed, it may

not remain bracketed

�The False Position Method combines

the secant method with bisection to

guarantee that the root remains

bracketed
Nov. 8th, 2007 Root Finding 30

11/7/2007

11

Regula Falsi Method

�Regula falsi is another common name

for “false position”

� It can be thought of as a refinement of

bisection

� Instead of using the midpoint of the

interval we use the secant to interpolate

the value of the root

Nov. 8th, 2007 Root Finding 31

The False Position Method
double fixedpoint_rf(DfD f, double x1, double x2,

double tol){

double f1 = f(x1), f2 = f(x2),

slope = (f2 - f1) / (x2 - x1),

distance = -f1 / slope,

point = x1 + distance;

if(fabs(f(point)) < tol)

return point;

if((f1 * f(point)) < 0)

return fixedpoint_rf(f, x1, point, tol);

else

return fixedpoint_rf(f, point, x2, tol);

}

Nov. 8th, 2007 Root Finding 32

Newton-Raphson

�Newton’s method starts with a single
initial guess at the root, x0

� It is like the secant method with the
value of the derivative replacing the
slope

�At each step, the next value is given by
Xi+1 = xi – f(xi)/f’(xi)

where f’ is the derivative of f

Nov. 8th, 2007 Root Finding 33

11/7/2007

12

Convergence Criteria

�This method could use the third

convergence condition to terminate

�That is, it could terminates when xi and

xj are very close to each other

� In our implementation we use the first,

that f(xi) is close to zero

Nov. 8th, 2007 Root Finding 34

Newton-Raphson

For example, to compute the square root of a

number, a, we can find the root of the function
x2–a

Newton’s method guarantees that we keep

getting closer to the root

However, in general we may not converge to a

root

Therefore we stop after a certain number of

steps (count) if we have not yet found a root

Nov. 8th, 2007 Root Finding 35

Newton-Raphson

Nov. 8th, 2007 Root Finding 36

x1

f(x1)

f(x2)

x2 x3

f(x3)

x4

f(x4)≈0

11/7/2007

13

Newton_Raphson

double newton_rf(DfD f, DfD df,

double x,

double tol, int count){

double distance = -f(x) / df(x);

x += distance;

if((fabs(f(x)) < tol) || !count)

return x;

return newton_rf(f, df, x, tol, count - 1);

}

Nov. 8th, 2007 Root Finding 37

The Derivative

�This algorithm assumes that we know

the derivative of the function

� If the function is complex or we

generate values of the function

empirically without having an explicit

analytic form for the function, we may

have to estimate the derivative

�Using a “centered three point” method,

we can rewrite the algorithm as follows
Nov. 8th, 2007 Root Finding 38

Newton-Raphson with Numerical

Differentiation

double newton_rf(DfD f, double x,

double tol, int count){

double distance =

-f(x) / centered3_diff(f,x,1e-6);

x += distance;

if((fabs(f(x)) < tol) || !count)

return x;

return newton_rf(f, x, tol, count - 1);

}

Nov. 8th, 2007 Root Finding 39

11/7/2007

14

Numerical Differentiation

�Engineers often deal with functions

represented as a collection of data

points

�We might not have an analytic closed

form for the function

�For example, we might measure the

position of a vehicle at different points in

time

Nov. 8th, 2007 Root Finding 40

Numerical Differentiation

�Given the position of a vehicle at

different points in time:

�To compute the velocity, i.e. the derivative,

we must compute an estimate based on

the observed position

�Knowing the value of the function at two

different points in time allows us to

approximate the derivative

Nov. 8th, 2007 Root Finding 41

Two Point Approximations

Central Difference Formula:

f’(t) = (f(t+h)-f(t-h))/2h

Forward Difference Formula:

f’(t) = (f(t+h)-f(t))/h

Backward Difference Formula:

f’(t) = (f(t)-f(t+h))/h

Nov. 8th, 2007 Root Finding 42

11/7/2007

15

Two Point Differentiation

�The error is O(h)

� If h is big, the approximation will not be

very accurate

� If h is small, there may be large roundoff

errors.

� It might not be possible to sample the

data at intervals for which h is very

small

Nov. 8th, 2007 Root Finding 43

Three Point Differentiation

Three point methods are more precise

We look at the formulae for three methods

but in this course we will not derive

them

�Forward 3 point differentiation

�Backward 3 point differentiation

�Centered 3 point differentiatio

Nov. 8th, 2007 Root Finding 44

Forward three point

x

xxfxxfxf

dx

dy

∆

∆+−∆++−
=

*2

)*2()(*4)(*3

Nov. 8th, 2007 Root Finding 45

double forward3_diff(DfD f, double x,

double h){

return (-3*f(x) + 4*f(x+h) - f(x+2*h)) /

(2 * h);

}

11/7/2007

16

Backward three point

x

xfxxfxxf

dx

dy

∆

+∆−−∆−
=

*2

)(*3)(*4)*2(

Nov. 8th, 2007 Root Finding 46

double backward3_diff(DfD f, double x,

double h){

return (f(x - 2*h) - 4*f(x - h) + 3*f(x))

/ (2 * h);

}

Centered three point

In deriving the centered three point formula,

terms cancel out and the final result is the

same as the centered two point

This has the fewest function evaluations and is

as accurate as the 3 point methods
double centered3_diff(DfD f, double x,

double h){

return (-f(x - h) + f(x + h)) / (2 * h);

}

Nov. 8th, 2007 Root Finding 47

