11/7/2007

h

J_"ll
*
A
Computers in Engineering
COMP 208
A Root Finding
1 Michael A. Hawker
| -
J_"ll
* o
+ Root Finding
#* Many applications involve finding the
roots of a function f(x).
That is, we want to find a value or
values for x such that f(x)=0
A
_! Nov. 8th, 2007 Root Finding
J-"!
*

+ Roots of a Quadratic

#We have already seen an algorithm for
finding the roots of a quadratic

#»We had a closed form for the solution,
given by an explicit formula

There are a limited number of problems

for which we have such explicit
solutions

=

Nov. 8th, 2007 Root Finding

11/7/2007

Root Finding

#*What if we don’t have a closed form for
the roots?

#* We try to generate a sequence of
approximations x;, x,, ..,x, untilwe
(hopefully) obtain a value very close to
the root

Nov. 8th, 2007 Root Finding 4

Example: Firing a Projectile

Find the angle at which to fire a projectile
at a target
Given:
= the velocity, vel
» the distance to the base of the target, x
» the height of the target, hgt
Find: the angle at which to aim, ang

Nov. 8th, 2007 Root Finding 5

Example: Firing a Projectile

The physics of the problem tells us that

hgt = vel*sin(ang)*t - k*g*t?
t = x / (vel*cos(ang))
where g is the gravitational constant.

_! Nov. 8th, 2007 Root Finding 6

J_"ll
* g -
+ Example: Firing a Projectile
Taking the equations:
hgt = vel*sin(ang)*t - ¥ g*t?
t = x / (vel*cos(ang))
By substituting, we have
j hgt = x*tan(ang)

K<

- 0.5*g* (x?/ (vel? cos?(ang))
The angle ang is a root of
f(a) = x*tan(ang)
- 0.5*g* (x?/ (vel?*cos? (ang)) - hgt

Nov. 8th, 2007 Root Finding 7

11/7/2007

J_"ll
* o
+ The Bisection Method
#» We start with an interval that contains
exactly one root of the function
#* The function must change signs on that
interval.
. (If the function changes signs, in fact
there must be an odd number of roots in
* the interval)
_! Nov. 8th, 2007 Root Finding 8
J-"!
* _—
+ The Bisection Method
#» To get started, we must bracket a root
#How do we bracket the root?
» From our knowledge of the function
» By searching along axis at fixed
I_] increments until we find that the sign of f(x)
changes
_! Nov. 8th, 2007 Root Finding 9

+ The Bisection Method

#» Once we have an interval containing the
root(s), we narrow down the search

Similar to binary search: divide the interval in
half and look for a sign change in one of the
two subintervals half of the interval.

From the Intermediate Value Theorem, if
there is a sign change in an interval, there
must be a root must be in that interval

e

Nov. 8th, 2007 Root Finding 10

h

11/7/2007

v

The Bisection Method

#» We check the first subinterval for a change in
sign.
[f there is one, that interval must have a root.

» |[f there is no change in sign, a root must be
in the other half

When do we stop?
= If the length of the interval is very small, we
must be close to the root.
= Just take the midpoint as the
approximation

L’

Nov. 8th, 2007 Root Finding 11

h

x1 X3=(x1+x2)/2 X2
X4=(x3+x1)/2
X5=(x4+x1)/2

J-"!

.

+ Bisection example

f(x2)
(x3)
f(x4

,l f(x5)=0 ﬂ/
|-

Nov. 8th, 2007 Root Finding 12

L

h

Convergence Condition

Root finding algorithms compute a
sequence of approximations to the root, r, of
fi %, X, o, X, .

i

When does the bisection method stop?

#* We know the root must be between x; and
Xi.
]
* When these values are very close, we must
be close to the root.

Nov. 8th, 2007 Root Finding 13

11/7/2007

L

h

A Function Argument?

» \We want to write a bisection function
that takes a function as an argument
and returns a root of the function

#* How can a function be an argument?
#* We have to go back to first principals

Nov. 8th, 2007 Root Finding 14

| .

Functions as Arguments

#* How can a function be an argument?

» The code defining a function is stored in
memory, just like data

» It has an address just like any block of
memory cells

» We can pass the address of that code

» We just have to be careful about the type
of the pointer

Nov. 8th, 2007 Root Finding 15

h

Function Pointer Syntax

#» Want to point to an existing function
#»void (*foo)(int);
= A pointer called "foo" to a function which:

» Returns void
« Takes an integer parameter

#*In General:
return_type (*pointer_name) (parameter_list)

Nov. 8th, 2007 Root Finding 16

11/7/2007

h

Function Pointer Examples

#* void *(*foo)(int *)

» Returns a void* (anything)

= Takes an Integer Pointer
#*int (*bar) (int, int)

» Returns an Integer

» Takes two Integer parameters
#* double (*baz) (double)

Nov. 8th, 2007 Root Finding 17

h

Function Pointer Example

#include <stdio.h>
double johnny_five (double x)
{

return x+5.0;

)
int main()
{
double (*func_ptr) (double);
func_ptr = &johnny_five;

printf ("$1£\n", func_ptr(0.0));

return 0;

Nov. 8th, 2007 Root Finding 18

Bisection Header

#» To define the bisection function we can
use the header:

double bisection_rf (double (*f) (double),
double x0, double x1, double tol)

Nov. 8th, 2007 Root Finding 19

11/7/2007

=

Bisection Header

C provides a typedef declaration that can
simplify this code:

typedef double (*DfD) (double);

double bisection rf (DfD f, double x0,
double x1, double tol)

Nov. 8th, 2007 Root Finding 20

X

- |

The Bisection Method

typedef double (*DfD) (double);

double bisectionirf(DfD f, double x0, double x1,
double tol) {
double middle = (x0 + x1) / 2.0;

if ((middle - x0) < tol)

return middle;
else if (f(middle) * £(x0) < 0.0)

return bisection_rf(f, x0, middle, tol);
else

return bisection_rf(f, middle, x1, tol);

}

Nov. 8th, 2007 Root Finding 21

LR
*
»

e

h

Other Convergence
Conditions

There are typically three ways of
determining when to stop

1. f(x;) is close to zero
2. f(x;)is closetor

3. X is close to x;,4 so it doesn’t pay to
continue

Nov. 8th, 2007 Root Finding 22

11/7/2007

h

The Secant Method

#* We also begin with two initial approximations

#* However they do not have to bracket the root

» We essentially approximate the function
using straight lines forming the secant at the
two points

#* This is probably the most popular method

|t is not guaranteed to converge to the root

Nov. 8th, 2007 Root Finding 23

h

The Secant Method

Start with two values, x, and x, that
don’t necessarily bracket the root
Compute a new approximation, the

point at which the line drawn between
f(xo) and f(x,) intersects the x-axis

Nov. 8th, 2007 Root Finding 24

Computing the Approximation

The approximation is given by:

x2 = £(x0)* (x1-x0) / (£ (x0) -£ (x1)) +x0

Iterate this process using x, and x, as the
new pair of points

Nov. 8th, 2007 Root Finding 25

11/7/2007

h

Secant method

k f(x3)

x3

Nov. 8th, 2007 Root Finding 26

K ¥

Convergence Criteria

#When do we stop this process?

#\We use the first of the criteria we
described

#* That is, we stop when the value of f(x;)
is close to zero

#» \We then say that x; is an approximate
root

Nov. 8th, 2007 Root Finding 27

e

h

The Secant Method

This method is one of the most popular ones
in use

* |t may not converge because successive
intervals become larger or because it
oscillates

Therefore we terminate the algorithm after a
specified number of steps if it has not
converged

Nov. 8th, 2007 Root Finding 28

11/7/2007

L’

The Secant Method

double secant_rf (DfD f, double x1, double x2,
double tol, int count) {
double f1 f(x1), f2 = f£(x2),
slope = (f2 - f1) / (x2 - x1),
distance = -f2 / slope,

point = x2 + distance;
if (!count)
return point;
if (fabs (f (point)) < tol)

return point;

. return secant_rf (f, x2, point, tol, count - 1);

| }
_! Nov. 8th, 2007 Root Finding 29
S

by "

+ The False Position Method

=

L |

h

The secant method uses the most
recent approximation and the previous
one

#* Even if the root was bracketed, it may
not remain bracketed

The False Position Method combines
the secant method with bisection to
guarantee that the root remains
bracketed

Nov. 8th, 2007 Root Finding 30

10

e

h

Regula Falsi Method

Regula falsi is another common name
for “false position”

* [t can be thought of as a refinement of
bisection

#» Instead of using the midpoint of the
interval we use the secant to interpolate
the value of the root

Nov. 8th, 2007 Root Finding 31

11/7/2007

L’

The False Position Method

double fixedpoint_ rf(DfD f, double x1, double x2,
double tol) {
double f1 = f(x1), f2 = f(x2),
slope = (f2 - f1) / (x2 - x1),
distance = -f1 / slope,
point = x1 + distance;

if (fabs (f (point)) < tol)

return point;
if ((£1 * f£(point)) < 0)

return fixedpoint_ rf(f, x1, point, tol);
else

return fixedpoint_ rf(f, point, x2, tol);

_! Nov. 8th, 2007 Root Finding 32
J-"!

*

+ Newton-Raphson

=

L |

h

Newton’s method starts with a single
initial guess at the root, x,

* [t is like the secant method with the
value of the derivative replacing the
slope

#* At each step, the next value is given by

Xi = %x; — £(x;) /£ (x;)
where f is the derivative of f

Nov. 8th, 2007 Root Finding 33

11

11/7/2007

“u
+ Convergence Criteria
#* This method could use the third
convergence condition to terminate
#* That is, it could terminates when xi and
Xj are very close to each other
| sinour implementation we use the first,
that f(xi) is close to zero
_! Nov. 8th, 2007 Root Finding 34
v
+ Newton-Raphson
For example, to compute the square root of a
number, a, we can find the root of the function
x%-a
Newton’s method guarantees that we keep
getting closer to the root
-'] However, in general we may not converge to a
root
= Therefore we stop after a certain number of
steps (count) if we have not yet found a root
_! Nov. 8th, 2007 Root Finding 35
“u
+ Newton-Raphson
f(x1)
/‘_,—'f(k;t’);f;
,l x2) 1/ x4 x1
f(x3)
W f(x2)
_! Nov. 8th, 2007 Root Finding 36

12

h

Newton Raphson

double newton_rf (DfD f, DfD df,
double x,
double tol, int count) {

double distance = -f(x) / df(x);
x += distance;
if ((fabs(f(x)) < tol) || !count)
return x;
return newton_rf(f, df, x, tol, count - 1);

Nov. 8th, 2007 Root Finding 37

11/7/2007

h

The Derivative

#* This algorithm assumes that we know
the derivative of the function

|f the function is complex or we
generate values of the function
empirically without having an explicit
analytic form for the function, we may
have to estimate the derivative

Using a “centered three point” method,
we can rewrite the algorithm as follows

Nov. 8th, 2007 Root Finding 38

W

Newton-Raphson with Numerical
Differentiation

double newton_rf (DfD f, double x,
double tol, int count) {

double distance =
-f(x) / centered3 diff (f,x,le-6);
x += distance;
if ((fabs(f(x)) < tol) || !count)
return x;
return newton rf (f, x, tol, count - 1);

Nov. 8th, 2007 Root Finding 39

13

h

Numerical Differentiation

#» Engineers often deal with functions
represented as a collection of data
points

» We might not have an analytic closed
form for the function

#* For example, we might measure the
position of a vehicle at different points in
time

Nov. 8th, 2007 Root Finding 40

11/7/2007

h

Numerical Differentiation

#* Given the position of a vehicle at
different points in time:
= To compute the velocity, i.e. the derivative,

we must compute an estimate based on
the observed position

» Knowing the value of the function at two
different points in time allows us to
approximate the derivative

Nov. 8th, 2007 Root Finding 41

h

Two Point Approximations

Central Difference Formula:

£/ (t) = (f(t+h)-f(t-h))/2h
Forward Difference Formula:

£/ (t) = (f(t+h)-f(t))/h

Backward Difference Formula:
£/ (t) = (£(t)-f(t+h))/h

Nov. 8th, 2007 Root Finding 42

14

J_"ll
L
+ Two Point Differentiation

The error is O(h)

» If h is big, the approximation will not be
very accurate

* If h is small, there may be large roundoff
errors.

#* |t might not be possible to sample the
- data at intervals for which h is very
k small

_! Nov. 8th, 2007 Root Finding 43

11/7/2007

J_"ll
v
+ Three Point Differentiation

Three point methods are more precise
We look at the formulae for three methods
but in this course we will not derive
them
» Forward 3 point differentiation
» Backward 3 point differentiation

E » Centered 3 point differentiatio
_! Nov. 8th, 2007 Root Finding 44
R

+ Forward three point

dy _ =3* f(x)+4* f(x+Ax) - f(x +2*Ax)
dx 2% Ax

j double forward3 diff (DfD f, double x,

double h) {
H * 2NN

return (-3*f(x) + 4*f(x+h) - f(x+2*h)) /
(2 * h);
| -l Nov. 8th, 2007 Root Finding 45

15

*

+ Backward three point

dy _ f(x=2%A¥)-4* f(x—AY)+3* f(x)
dx 2% Ax

.,i double backward3_diff (DfD f, double x,

double h) {
return (f(x - 2*h) - 4*f(x - h) + 3*f(x))
/ (2 * h);
o }
Nov. 8th, 2007 Root Finding

h

46

11/7/2007

Centered three point

same as the centered two point

as accurate as the 3 point methods

double h) {

i }

Nov. 8th, 2007 Root Finding

h

In deriving the centered three point formula,
terms cancel out and the final result is the

double centered3_diff (DfD f, double x,

This has the fewest function evaluations and is

return (-f(x - h) + £(x + h)) / (2 * h);

47

16

