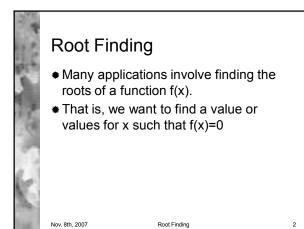


Root Finding Michael A. Hawker



Roots of a Quadratic

Nov. 8th, 2007

- We have already seen an algorithm for finding the roots of a quadratic
- We had a closed form for the solution, given by an explicit formula
- There are a limited number of problems for which we have such explicit solutions

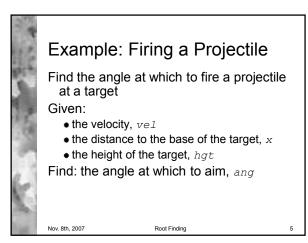
Root Finding

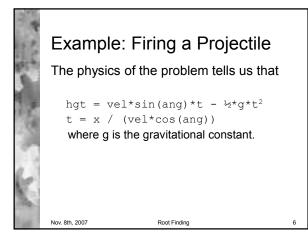
Root Finding

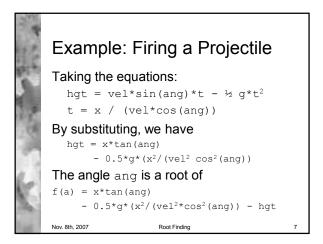
Nov. 8th, 2007

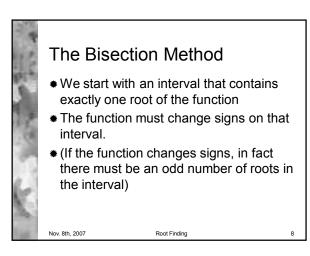
- What if we don't have a closed form for the roots?
- We try to generate a sequence of approximations x₁, x₂, ..., x_n until we (hopefully) obtain a value very close to the root

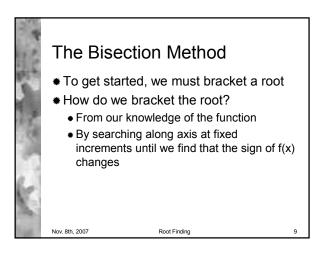
Root Finding

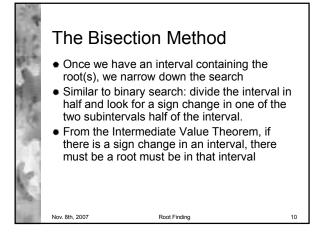


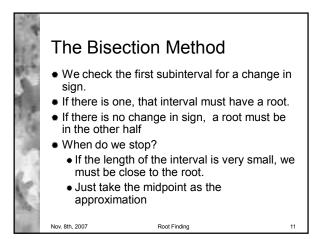


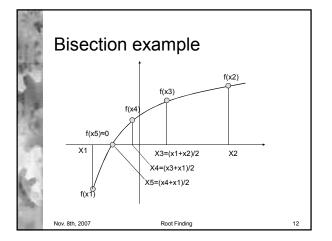




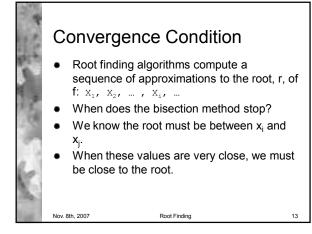


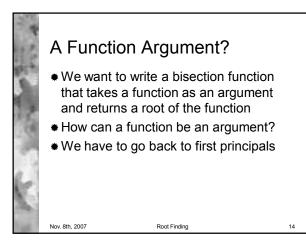


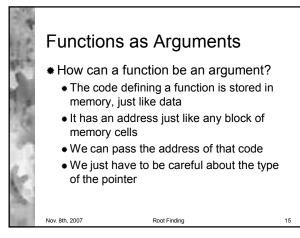


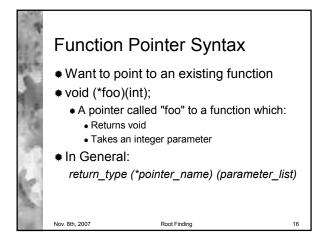


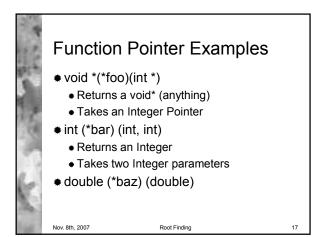


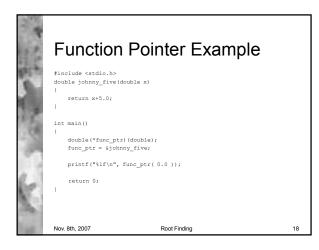


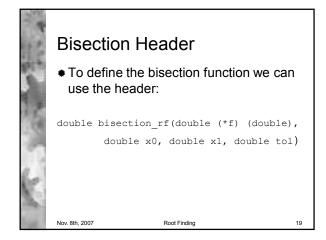


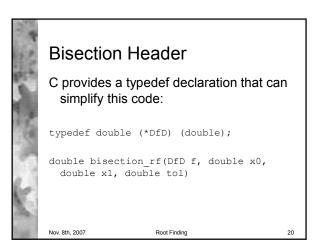


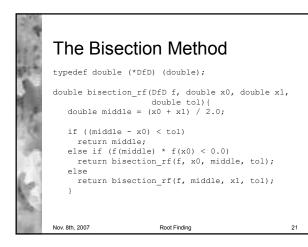


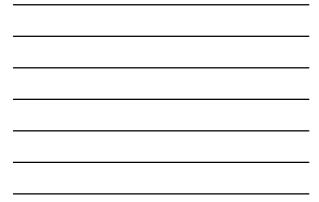












Other Convergence Conditions There are typically three ways of determining when to stop 1. f(x_i) is close to zero

2. $f(x_i)$ is close to r

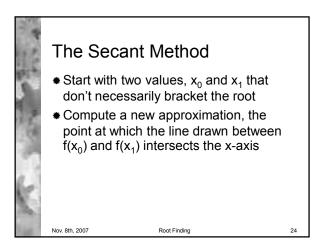
Nov. 8th, 2007

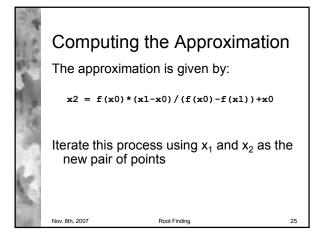
x_i is close to x_{i+1} so it doesn't pay to continue

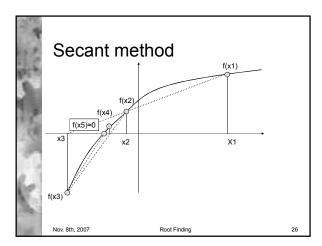
Root Finding

22

<section-header><section-header><list-item><list-item><list-item><list-item>







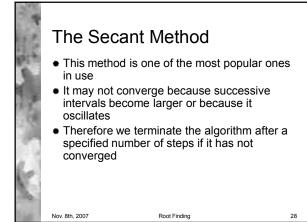
Convergence Criteria

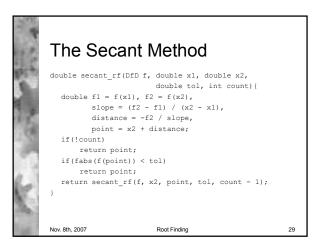
- * When do we stop this process?
- We use the first of the criteria we described

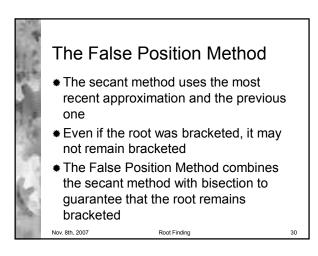
Nov. 8th, 2007

- That is, we stop when the value of f(x_i) is close to zero
- We then say that x_i is an approximate root

Root Finding





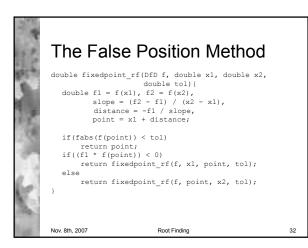


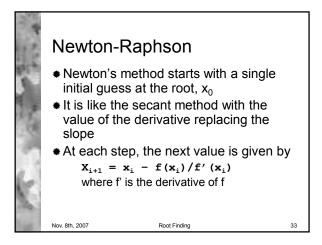
Regula Falsi Method

Nov. 8th, 2007

- Regula falsi is another common name for "false position"
- It can be thought of as a refinement of bisection
- Instead of using the midpoint of the interval we use the secant to interpolate the value of the root

Root Finding





Convergence Criteria This method could use the third convergence condition to terminate

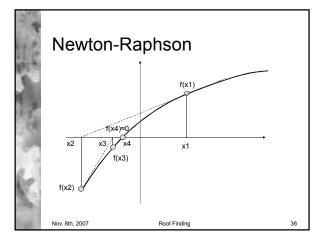
Nov. 8th, 2007

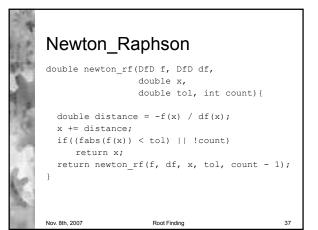
- That is, it could terminates when xi and xj are very close to each other
- In our implementation we use the first, that f(xi) is close to zero

Root Finding

34

<section-header><text><text><text><text><text>





The Derivative

- This algorithm assumes that we know the derivative of the function
- If the function is complex or we generate values of the function empirically without having an explicit analytic form for the function, we may have to estimate the derivative
- Using a "centered three point" method, we can rewrite the algorithm as follows
 Nov. 8th, 2007 Root Finding

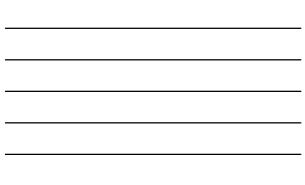
38

39

Newton-Raphson with Numerical Differentiation

Root Finding

Nov. 8th, 2007



Numerical Differentiation

- Engineers often deal with functions represented as a collection of data points
- We might not have an analytic closed form for the function
- For example, we might measure the position of a vehicle at different points in time

Root Finding

40

41

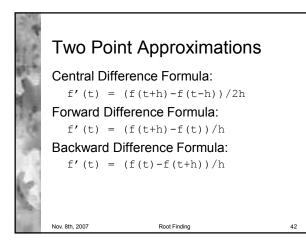
Numerical Differentiation

Nov. 8th, 2007

Nov. 8th, 2007

- Given the position of a vehicle at different points in time:
 - To compute the velocity, i.e. the derivative, we must compute an estimate based on the observed position
 - Knowing the value of the function at two different points in time allows us to approximate the derivative

Root Finding



Two Point Differentiation

The error is O(h)

Nov. 8th, 2007

- If h is big, the approximation will not be very accurate
- If h is small, there may be large roundoff errors.

Root Finding

43

 It might not be possible to sample the data at intervals for which h is very small

