Computers in Engineering
COMP 208

Recursion
Michael A. Hawker

ﬁﬁﬂ? :
6
ri ¢ What is Recursion?

Recursion is a programming technique

that allows us to approach programming
In a different style

To solve a problem, we make an
assumption that the computer is able to
solve smaller instances of the same
problem

;:HE%}; Nov. 6th, 2007 Recursion "
PRI A

Eﬁﬂ}'«
ri ¢ What is Recursion?

#* [f we assume the computer can solve
the smaller problems, our task is to tell it

how to use these solutions to solve the

% larger problem

% # \We also have to describe how to solve

the “smallest” problem (the one that

doesn’t decompose) directly

“ﬁ;:ii Nov. 6th, 2007 Recursion 3

5::9'_1';:':!?'

Sum of Squares — lterative

Add up the squares of all the numbers between
two positive values m and n, m<=n

int SumSquares (int m, 1nt n) {
int 1, sum;

sum = 0;
for (i=m; 1i<=n; 1++)
sum = sum + 1*1;

return sum;

Nov. 6th, 2007 Recursion

ﬂg

’E
'"'?”;,3' Recursive Solution

b b=
5 " 'H_ T

\We have to think of the problem in a
new way

Assume that we can solve smaller
iInstances of the problem

How do we use that information to solve
the larger problem?

:i:”;ﬁ!}}ﬂ Nov. 6th, 2007 Recursion 5

Recursive Solution

\Vhat are the smaller instances?

#* How do we use their solution to solve
our problem?

\Vhat is the smallest instance”? We have
to solve it directly.

[his instance iIs called the base case.

Nov. 6th, 2007 Recursion 6

Recursive Sum of Squares (a)

int SumSquares (int m, 1nt n) {
1f (m<n)
return m*m + SumSquares (m+1l, n);
else
return m*m;

Nov. 6th, 2007 Recursion

Recursive Sum of Squares (b)

int SumSquares (int m, 1nt n) {
1f (m<n)
return SumSquares(m, n-1) + n*n;
else
return m*m;

Nov. 6th, 2007 Recursion

int SumSquares (int m, 1nt n) {
int mid;
1if (m<n) {
mid = (m+n)/2;

return
SumSquares (m,mid) +SumSquares (mid+1,n) ;

}

else
return m*m;

Nov. 6th, 2007 Recursion

Forgetting Base Case

Forgetting the base case can lead to an
infinite sequence of calls:

int SumSquares (int m, 1nt n) {
printf ("Entering SumSquares/n");

return m*m + SumSquares (m+1l, n);

Nov. 6th, 2007 Recursion

10

Visualizing Recursion

We can use call trees to visualize the
computations carried out during
recursive calls

Nov. 6th, 2007 Recursion

11

Factorial

The factorial function is a classic example
of the use of recursion

int fact(int n) {
1f (n >=1)
return n * fact(n-1);
else
return 1;

Nov. 6th, 2007 Recursion 12

Divide and Conquer

Many problems can be solved efficiently by
1. Splitting them in half
2. Recursively solving the two subproblems
3. Combining the solutions to solve the original
problem

This often involves adding extra parameters
to keep track of the subproblems

Too keep to the original problem
specification we often create a “shell”
program

;:ﬁ,;:g'*_é Nov. 6th, 2007 Recursion 13
PRI A

Factorial Again
Divide and Conquer

int power (int m, int n) {

int mid;
if (m<n) {
mid = (m+n)/2;

return power (m,mid) * power (mid+1,n);

}

else
return m;

int factorial (int n) {
return power (1l,n);

Nov. 6th, 2007 Recursion

14

Choosing k objects from n

The number of ways in which k objects
can be chosen from n is given by:

n!

an — .
T (= k) k!

\We can write a function that computes
this using the factorial function

AR
e Nov. 6th, 2007 Recursion 15

Comb (n, k)

int comb (int n, int k) {
if (k > n) return 0O;
return fact(n)/ (fact (n-k)*fact (k))

int fact(int n) {
1f (n <= 1) return 1;
return n*fact (n-1);

Nov. 6th, 2007 Recursion

4

16

An Alternative Approach

Computing factorials of even fairly small
numbers can cause overflow

An alternative algorithm uses a
recurrence relation:

C..=L k=lork=n
Ci=C, 1, +C, 4, 1<k<n

n,

i‘;_:;grr:":':" Nov. 6th, 2007 Recursion 17

A Recursive Comb(n,k)

int comb (int n, int k) {
if (k > n) return 0O;
1f ((k == n) || (k == 0)) return 1;

return comb (n-1, k) +comb (n-1,k-1) ;

Nov. 6th, 2007 Recursion

18

McNugget Numbers

Chicken McNuggets originally came in
boxes of 6, 9 or 20.

A number is McNuggetable if it can be
obtained by adding together orders of
boxes of varying sizes

\We want to determine whether a given
number is McNuggetable or not

Nov. 6th, 2007 Recursion 19

McNugget Numbers

int 1s mc nuggetable (int n) {

if (n == 0) return 1;

if (n < 6) return 0;

if ((n >= 20) && 1s mc nuggetable (n-20))

return 1;

else 1f ((n >= 9) && 1s mc nuggetable (n-9))
return 1;

else 1f ((n >= 6) && 1s mc nuggetable (n-6))
return 1;

else return 0;

Nov. 6th, 2007 Recursion

20

McNugget Numbers

A clever solution:

int 1s mc nugget (1nt n) {

return
((n > 20) && 1s mc nugget (n-
((n > 9) && 1s mc nugget (n-
((n > ©0) && 1s mc nugget (n-
(n == 20) [] (n == 9) || (n
(n == 0);

Nov. 6th, 2007 Recursion

>
.+ Binary Search

[n binary search, we check the middle
element and then search the first or

second half of the array, a smaller

0 instance of the same problem

| =Thatlooks pretty recursive!

The base case occurs when the array is
empty

';:‘:HW'*;. Nov. 6th, 2007 Recursion 22

Recursive Binary Search

int recursive binary search
(int val, 1int arr[], int left, int right) {
int mid = (left + right) / 2;

if (left>right)

return -1;

if (arr[mid] > wval)

return recursive binary search(val,arr,left,mid-1);
else i1f(arr[mid] < wval)

return recursive binary search(val,arr,mid+1, right);
else

return mid;

Nov. 6th, 2007 Recursion 23

g
b

'+ ¢ Recursive Sorting

Many sorting algorithms can be
developed recursively

#* |[f we assume we can sort small arrays,
we can use that information to sort
larger arrays

Let's reexamine bubble sort from a
recursive point of view

Nov. 6th, 2007 Recursion 24

Recursive Bubble Sort

\We begin by comparing pairs of values,
rearranging those that are out of order

The result is that the smallest value is in
the first position of the array

\We can then recursively sort the rest of
the array

The base case occurs when the array
only has one value left

Nov. 6th, 2007 Recursion 25

Recursive Bubble Sort

volid recursive bubble sort (int arr[], int size) {
int 1;

if(size <= 1) return;

for(i = size - 1; 1; --1)
if(arr[i] < arr[i - 11])
| swap (&arr[1i], &arr[i - 1]);
ﬂg recursive bubble sort(arr + 1, size - 1);

il

.
A

i, et ARG

AT
Loy

5 3 - ol L
e e e ol =

Nov. 6th, 2007 Recursion 26

jﬁﬁ
+ Recursive Selection Sort

il 5 ;
T ?F
g, A

b s
7 Lo

W

\Ve select the smallest value and put it
at the front of the array (by swapping)

That leaves us with a smaller array to
sort recursively

The base case occurs when the array
has one value

E“,ﬁfé Nov. 6th, 2007 Recursion 27

Recursive Selection Sort

volid recursive select sort(int arr[], int size) {
int i1ndex of small;
if(size <= 1) return;
index of small = find smallest(arr, size);

swap (arr, arr + index of small);

recursive select sort(arr + 1, size - 1);

Nov. 6th, 2007 Recursion

ﬂg

’E
'"'?”;,3' Recursive Insertion Sort

T
- " 'H_ T

#* \We first sort the small array that
iIncludes all but the last value

Then insert this value in the proper
position

The base case occurs when the array
has one value

-=<:“+ " Nov. 6th, 2007 Recursion 29

Recursive Insertion Sort

volid recursive 1insertion sort(int arrl[],
int size) {
int 1i;

if(size <= 1) return;

recursive insertion sort(arr, size - 1);
for(i = size - 1; 1; --1)
if(arr[i] < arr[i - 11])
swap (&arr[i], &arr[i - 11);
else
break;

Nov. 6th, 2007 Recursion

30

Towers of Hanoi

#include <stdio.h>
void toh (int, int, int, int)
int main() {
int n;
scanft ("sd", &n);
toh(n, 1, 2, 3);
return O;

}

.
14

void toh (int n, int a, int b,

if (n>0) {

toh (n-1, a, c, b);
printf ("Move a disk from %d to %d\n",
toh (n-1, ¢, b, a);

Nov. 6th, 2007

14

’

Recursion

int ¢)

{

ay

b);

31

Sorting by Merging

Array a: 9819 21020 14287 15229 781 8641 24044
14153 15751 32765 21626 28948 17411 11311 32560
6223 144066

Sort first half (recursively): 9819 21020 14287
15229 781 8641 24044 14153

Sorted: 781 8641 9819 14153 14287 15229 21020
24044

Sort second half (recursively): 15751 32765 21626
28948 17411 11311 32560 6223 14466

Sorted: 6223 11311 14466 15751 17411 21626 28948
32560 32765

Now merge the two sorted halves:

Sorted Array a: 781 6223 8641 9819 11311 14153
14287 14466 15229 15751 17411 21020 21626 24044
28948 32560 32765

Nov. 6th, 2007 Recursion 32

gy
ﬁ | -:_.:,:"2_‘ -

I-\J.II
At o s)
=
] Tl
- 5
g
B
] s
=M
r - e, .-
| R HE o
i T AR TFy

3
-
Z-

Algorithm

This Is a recursive algorithm.

[he base case occurs when there are
zero or one values to sort. Then the
array is already sorted.

The general case involves splitting the
array, sorting the two halves and
merging.

Nov. 6th, 2007 Recursion 33

ﬂg

":'}?

T
- " 'H_ T

Temporary Storage

To merge the two halves that have
already been sorted we use a
temporary array

\We create this array when needed

#* \We free the storage used when we are
done

Nov. 6th, 2007 Recursion

34

The Quter “Shell”

volid merge sort(int arr[], int size) {

// Allocate the temporary array.
int *temporary = (int *) malloc(size * sizeof

// Start the recursive sort.
_merge sort (arr, size, temporary);

// Free the allocated array.
free (temporary) ;

return;

Nov. 6th, 2007 Recursion

(int)) ;

35

Dynamic Memory Allocation

When a variable declaration is executed the C compiler
allocates memory for an object of the specified type

A C program also has access to a large chunk of
memory called the free store

Dynamic memory allocation enables us to allocate
blocks of memory of any size within the program, not
just when declaring variables

This memory can be released when no longer needed

These are useful for creating dynamic arrays and
dynamic data structures such as linked lists (which
we do not cover in this course)

Nov. 6th, 2007 Recursion 36

malloc

#* The malloc function removes a specified
number of contiguous memory bytes from the
free store and returns a pointer to this block

|t is defined by:
vold *malloc (number of bytes)
This function is defined in stdlib.h

#* The argument type must be an unsigned
integer.

f;irr*'*_ij Nov. 6th, 2007 Recursion 37

malloc

#malloc (n) returns a pointer of type
void * thatis the start in memory of a
block of n bytes

[f memory cannot be allocated a NULL
pointer is returned.

This pointer can be converted to any
type.

g S |
e Nov. 6th, 2007 Recursion 38

#* How do we know how many bytes of
storage we need to hold a data object?

Sizeof () can be used to find the size
of any data type, variable or structure

Even if you know the actual size you
want, programs are more portable if you
use sizeof ()

Nov. 6th, 2007 Recursion 39

[0 reserve a block of memory

capable of holding 100 integers, we
can write:

R int *1p;

: %ﬁﬁ 1p = (int *) malloc (100*sizeof (int));
. #The duality between pointers and
arrays allows us to treat the
reserved memory like an array.

';:“:HW'*;. Nov. 6th, 2007 Recursion 40

Deallocating Memory

Suppose a large program calls mergesort
many times in the course of a computation
iInvolving large arrays

Each time a new block of memory is allocated
but after the call, it is no longer accessible.
That memory is called garbage

Programs that generate garbage are said to
have a memory leak

Nov. 6th, 2007 Recursion 41

Deallocating Memory

Memory leaks can lead to severe
deterioration in performance and eventually
to program failure

Some languages (such as Java)
automatically check for blocks of memory that
cannot be accessed and return them to the
free store

This is called automatic garbage collection

In C the programmer is responsible to make
sure that garbage is not left behind

Nov. 6th, 2007 Recursion 42

free ()

The function £ree () takes a pointer to
an object as its value and frees the
memory that pointer refers to

DANGER: Make sure the pointer is not
NULL or you can cause a spectacular
crash

S
e Nov. 6th, 2007 Recursion 43

The Merge Sort Shell Again

Now that we have seen the use of dynamic memory
allocation, let’'s have another look at the mergesort
shell.

void merge sort(int arr[], 1nt size) {

// Allocate the temporary array.
int *temporary =
(int *) malloc(size * sizeof (int));
// Start the recursive sort.
_merge sort(arr, size, temporary):;
// Free the allocated array.
free (temporary) ;

Nov. 6th, 2007 Recursion

44

Merge Sort Its

void merge sort (int arr[]

int half = size / 2;
int 1;

if(size <= 1) return;

elf

, 1nt size, 1nt temporaryl[]) {

_merge sort (arr, half, temporary);

_merge sort (arr + half,
merge (arr, half,

for (i=0;i<size;i++)
arr[1] = temporaryl[i];

Nov. 6th, 2007

size—-half, temporary + half)

arr + half, size - half, temporary)

Recursion

~e

~e

45

Merging Two Sorted Lists

Sorted Array a:
781 8641 9819 14287 15229 21020 24044

Sorted Array b:

6223 11311 14153 15751 17411 21626
28948 32560 32765

Merged Array:
781

Nov. 6th, 2007 Recursion

46

Merging Two Sorted Lists

Sorted Array a:
781 8641 9819 14287 15229 21020 24044

sorted Array b:

6223 11311 14153 15751 17411 21626
28948 32560 32765

Merged Array:
781 6223

Nov. 6th, 2007 Recursion

47

Merging Two Sorted Lists

Sorted Array a:
781 8641 9819 14287 15229 21020 24044

sorted Array b:

6223 11311 14153 15751 17411 21626
28948 32560 32765

Merged Array:
781 6223 8641

Nov. 6th, 2007 Recursion

48

Merging Two Sorted Lists

Sorted Array a:
781 8641 9819 14287 15229 21020 24044

Ssorted Array b:

6223 11311 14153 15751 17411 21626
28948 32560 32765

Merged Array:
781 6223 8641 9819

Nov. 6th, 2007 Recursion

49

Merging Two Sorted Lists

Sorted Array a:
781 8641 9819 14287 15229 21020 24044

sorted Array Db:

6223 11311 14153 15751 17411 21626
28948 32560 32765

Merged Array:
781 6223 8641 9819 11311

Nov. 6th, 2007 Recursion

50

, i
2 i s

Merging Two Sorted Lists

We continue in this way until one of the
lists is exhausted.

Then just fill in the rest of the merged list
with the remaining values.

Nov. 6th, 2007 Recursion

51

Merging Two Sorted Lists

Sorted Array a:
781 8641 9819 14287 15229 21020 24044

sorted Array Db:

6223 11311 14153 15751 17411 21626
28948 32560 32765

Merged Array:

781 0223 8041 9819 11311 14153 14287
15229 15751 17411 21020 21626 24044

o i {i Nov. 6th, 2007 Recursion

52

Merging Two Sorted Lists

Sorted Array a:
781 8641 9819 14287 15229 21020 24044

Sorted Array b:
6223 11311 14153 15751 17411 21626
28948 32560 32765
Merged Array:

781 0223 8041 9819 11311 14153 14287
15229 15751 17411 21020 21626 24044

28948 32560 32765

Nov. 6th, 2007 Recursion

53

Merge

void merge (int left[], int left size, int right[],
int right size, int destination([]) {

int left i = 0, right 1 = 0, destination 1 = 0;

while ((left i1 < left size) && (right 1 < right size))
if (left[left 1] < right[right 1])

destination[destination i++] = left[left i++];
else
destination[destination i++] = right[right i++];
while (left 1 < left size)
destination[destination i++] = left[left i++];
while (right i1 < right size)
destination[destination i++] = right[right i++];

Nov. 6th, 2007 Recursion 54

Merge Sort (Variation)

static void merge sort(int arr[], int size, int temporaryl[])
{
int half = size / 2;
if(size <= 1) return;
_merge sort(arr, half, temporary);
_merge sort(arr + half, size - half, temporary + half);
merge (arr, half, arr + half, size - half, temporary):;

memcpy (arr, temporary, size * sizeof (int));

return;

Nov. 6th, 2007 Recursion

What's so great about
mergesort?

Insertion sort, Selection sort, Bubble sort all
take time O(n?) to sort n values.

The call tree for mergesort shows that it takes
O(n log n) time.

For large data sets that is a tremendous
Improvement

Mergesort is one of a group of very efficient
sorting algorithms that are used in most
applications.

Nov. 6th, 2007 Recursion 56

