A

h

Computers in Engineering
COMP 208

Searching and Sorting
Michael A. Hawker

Where’s Waldo?

* A common use for computers is to
search for the whereabouts of a specific
item in a list

#* The most straightforward approach is
just to start looking at the beginning and
go on from there

Nov. 1st, 2007 Searching and Sorting 2

7=

Linear Search

int linear_search(int val, int arr([], int size) {
int i;

for(i = 0; i < size; ++1i) {
if(arr[i] == val)
return i;
}
return -1;

}

Nov. 1st, 2007 Searching and Sorting 3

h

Searching Sorted Lists

» |s that the way we would look up a
name in the Montreal telephone
directory?

#* | hope not!

Nov. 1st, 2007 Searching and Sorting

h

Binary Search

#» To search a sorted array, we could
check the middle element

#* The value we are looking for might be
there

* |f not we can determine whether it is in
the first or second half of the array and
search that smaller array

Nov. 1st, 2007 Searching and Sorting

h

lterative Binary Search

int binary search(int val, int arr([], int size) {
int left = 0, right = size-1, middle;
do {
middle = (left + right) / 2;
if (arr[middle] < wval)
left = middle + 1;
else if (arr[middle] > val)
right = middle - 1;
else
return middle;
} while(left < right);
return -1;

}

Nov. 1st, 2007 Searching and Sorting

h

Sorting Data

#» Sorting is one of the most common
tasks given to computers

#* Much work has been done on
developing efficient sorting techniques

#\We have seen one method and now we
consider some others

Nov. 1st, 2007 Searching and Sorting

h

Remember Bubble Sort?

void bubble sort (int arr[], int size){
int 1, 3j;
for (i=0; i<size-1; i++){
for (j=size-1; j>i; --3)
if (arr[j] < arr([j-1]
swap (&arr[j], &arr[j-11);

Nov. 1st, 2007 Searching and Sorting

h

An Optimization

If no swaps are made, the array is
already sorted

#»We can keep track of whether any
swaps were made in a pass

If no swaps were made, the array must
be sorted and we can stop

Nov. 1st, 2007 Searching and Sorting

h

Optimized Bubble Sort

void bubble_ sort (int arr[], int size) {
int 1, j, swapped;
for (i=0; i<size-1; i++){
swapped = 0;
for (j=size-1; j>i; --3)
if (arr([j] < arr[j-11){
swap (&arr[j], &arr[j-11);
swapped = 1;
}
if (!swapped) break;
}
}

Nov. 1st, 2007 Searching and Sorting 10

h

Selection Sort

#* Another sorting technique is known as
selection sort

At each step, select the smallest value
not yet in place and put it where it
belongs

Where’s that?

#» After the smaller elements at the front of
the array

Nov. 1st, 2007 Searching and Sorting 11

h

Selection Sort

* In the following program, note the use of
pointer arithmetic to access the array
elements

#»We use arr + i instead of arr[i]

As an argument arr + i represents an
array with starting address arr(i]

Nov. 1st, 2007 Searching and Sorting 12

Selection Sort

void select_sort(int arr[], int size){
int i, index_of min;

for(i = 0; 1 < size; ++1i) {
index_of min =
find min(arr + i, size - 1i);
swap (arr + i, arr + i + index of min);

}

return;
o |
_l Nov. 1st, 2007 Searching and Sorting 13
Insertion Sort

#» With insertion sort, we keep elements
that have already been sorted at the
front of the array

#* At each step we look at the first of the
unsorted values

#\We add that value to the sorted part by
“bubbling” it to the position where it

I

y belongs
_l Nov. 1st, 2007 Searching and Sorting 14
Insertion Sort

void insertion sort(int arr[], int size)({
int 1, J;
for(i = 1; i < size; ++1i)
for(j = 1i; J; --3)
if(arr(j] < arr[j-1]
swap (&arr([j], &arr[j-11);
else
break;

Nov. 1st, 2007 Searching and Sorting 15

The Cost of Algorithms

#» \We've seen multiple sorting algorithms
#»Why is one better than the other?
#How can we measure this?

#* In a uniform way?

Finding the Maximum

#*We have already seen how to find the
largest value in an array

Here is the C code for that algorithm

#* This code returns the location of the
largest value (rather than the value
itself)

Nov. 1st, 2007 Searching and Sorting 17

K ¥

Finding Max

int find_max(int arr[], int size) {
int i, index of max = 0;
for(i = 1; 1 < size; ++1)

if(arr[i] > arr[index of max])
index of max = 1i;

return index of max;

}

Nov. 1st, 2007 Searching and Sorting 18

h

Evaluating Algorithms

» How much “work” does the computer do
to find the maximum?

#» Different computers run at different
speeds but we can try and count
operations

That is easier said than done

Nov. 1st, 2007 Searching and Sorting 19

h

Asymptotic Analysis

#* To get an approximate idea of the
running time of an algorithm we count
the number of operations but ignore the
actual cost of each one

The time is clearly dependent on the
problem size

Nov. 1st, 2007 Searching and Sorting 20

h

The Cost of Find_Max

There is a loop that is executed n-1
times

#» Each time a constant number of
operations is done

#* \We say the algorithm for finding the
maximum value runs in O(n) time if the
problem is of size n

Nov. 1st, 2007 Searching and Sorting 21

e

K<

Linear Search

The code for linear search is similar to
the code for finding the maximum value

* |t differs in that the algorithm does not
always have to examine all values in the
array

|t can stop as soon as it finds the value

* [f the value isn’t there, it must go all the
way to the end to find out

Nov. 1st, 2007 Searching and Sorting 22

J_"ll
.
+ Linear Search
int linear_search(int val, int arr([],
int size){
int 1i;
for(i = 0; 1 < size; ++1i)
if (arr[i] == val) return 1i;
j return -1;
}
_! Nov. 1st, 2007 Searching and Sorting 23
J-"!
* o
+ Analysis of Linear Search
[f the value we are searching for is near
the front of the array, the time taken is
very small
* [f the value is at the end of the array, or
| notin the array at all the time taken is

h

proportional to n, i.e. O(n)

Nov. 1st, 2007 Searching and Sorting 24

h

Worst Case Analysis

#»When evaluating an algorithm we
generally look at the worst case

#* This gives us a “guaranteed” running
time even if the time may be faster in
many cases

* In this example we say the worst case
running time is O(n)

Nov. 1st, 2007 Searching and Sorting 25

h

Average Case Analysis

* In general it is difficult to determine the
average time an algorithm will take

#* Average case time is dependent on the
distribution of the data values

[f the data is uniformly distributed and
we search for a random value, the
average case time for linear search is
also O(n)

Nov. 1st, 2007 Searching and Sorting 26

h

Binary Search

#\We have also seen another algorithm
for searching sorted lists, binary search

Intuitively it seems to be much faster
How can we show this analytically?
How much faster is it?

Nov. 1st, 2007 Searching and Sorting 27

L
"4
¥

e

K<

Binary Search in Sorted
Arrays

int binary_search(int val, int arr[], int size){
int left = 0, right = size, middle;
do {
middle = (left + right) / 2;

if (arr[middle] < val)
left = middle + 1;

else if (arr[middle] > wval)
right = middle - 1;

else
return middle;

} while(left <= right);

return -1;

}

Nov. 1st, 2007 Searching and Sorting 28

v

L’

L

The Cost of Binary Search

#* The original list being searched had n
values

#* After checking the middle element we
either find the value we are looking for
or we reduce the problem size to n/2

In the worst case, if we don’t happen to

find the value, the problem size
becomes n/4, n/8, n/16, ...

_! Nov. 1st, 2007 Searching and Sorting 29
J-"!

* |

+ The Cost of Binary Search

=

h

#* The process cannot continue forever

#» Eventually n/2' becomes smaller than 1
and the value was either found or is not
in the list

#* This must stop after log, n steps

#* The cost of binary search is then O(log
n)

Nov. 1st, 2007 Searching and Sorting 30

10

e

K<

The Cost of Bubble Sort

#» There are n passes through the array in
the worst case

#* Pass j takes n-j steps
The total number of steps is 1+2+...+n
» We say this is O(n2)

Nov. 1st, 2007 Searching and Sorting 31

L’

L

h

Analysis

|s the optimized version faster?
#*Yes and No.

* In practice, yes

#* Asymptotically, no.

It is still O(n?) in the worst case

Nov. 1st, 2007 Searching and Sorting 32

=

h

Other Sorting Algorithms

#* How about selection or insertion sort?
#* They also contain nested loops

Note that for selection sort, the inner
loop is “hidden” inside the function

» |n either event, the cost is O(n?)

Nov. 1st, 2007 Searching and Sorting 33

11

7

Can we do better?

#» Sorting is an important application
#» Are there faster ways to sort?
* Wait and see!

Nov. 1st, 2007 Searching and Sorting

34

12

