
Computers in Engineering

COMP 208COMP 208

Searching and Sorting

Michael A. Hawker



Where’s Waldo?

�A common use for computers is to 

search for the whereabouts of a specific 

item in a list

�The most straightforward approach is �The most straightforward approach is 

just to start looking at the beginning and 

go on from there

Nov. 1st, 2007 Searching and Sorting 2



Linear Search
int linear_search(int val, int arr[], int size) {

int i;

for(i = 0; i < size; ++i) {

if(arr[i] == val)

return i;return i;

}

return -1;

}

Nov. 1st, 2007 Searching and Sorting 3



Searching Sorted Lists

� Is that the way we would look up a 

name in the Montreal telephone 

directory?

� I hope not!� I hope not!

Nov. 1st, 2007 Searching and Sorting 4



Binary Search

�To search a sorted array, we could 

check the middle element

�The value we are looking for might be 

therethere

� If not we can determine whether it is in 

the first or second half of the array and 

search that smaller array

Nov. 1st, 2007 Searching and Sorting 5



Iterative Binary Search
int binary_search(int val, int arr[], int size) {

int left = 0, right = size-1, middle;

do {

middle = (left + right) / 2;

if(arr[middle] < val)

left = middle + 1;left = middle + 1;

else if(arr[middle] > val)

right = middle - 1;

else

return middle;

} while(left < right);

return -1;

}

Nov. 1st, 2007 Searching and Sorting 6



Sorting Data

�Sorting is one of the most common 

tasks given to computers

�Much work has been done on 

developing efficient sorting techniquesdeveloping efficient sorting techniques

�We have seen one method and now we 

consider some others

Nov. 1st, 2007 Searching and Sorting 7



Remember Bubble Sort?

void bubble_sort(int arr[], int size){

int i, j;

for (i=0; i<size-1; i++){

for (j=size-1; j>i; --j)

if (arr[j] < arr[j-1])if (arr[j] < arr[j-1])

swap (&arr[j], &arr[j-1]);

}

}

Nov. 1st, 2007 Searching and Sorting 8



An Optimization

� If no swaps are made, the array is 

already sorted

�We can keep track of whether any 

swaps were made in a passswaps were made in a pass

� If no swaps were made, the array must 

be sorted and we can stop

Nov. 1st, 2007 Searching and Sorting 9



Optimized Bubble Sort

void bubble_sort(int arr[], int size) {

int i, j, swapped;

for (i=0; i<size-1; i++){

swapped = 0;

for (j=size-1; j>i; --j)for (j=size-1; j>i; --j)

if (arr[j] < arr[j-1]){

swap (&arr[j], &arr[j-1]);

swapped = 1;

}

if (!swapped) break;

}

}

Nov. 1st, 2007 Searching and Sorting 10



Selection Sort

�Another sorting technique is known as 

selection sort

�At each step, select the smallest value 

not yet in place and put it where it not yet in place and put it where it 

belongs

�Where’s that?

�After the smaller elements at the front of 

the array

Nov. 1st, 2007 Searching and Sorting 11



Selection Sort

� In the following program, note the use of 

pointer arithmetic to access the array 

elements

�We use arr + i instead of arr[i]�We use arr + i instead of arr[i]

�As an argument arr + i represents an 

array with starting address arr[i]

Nov. 1st, 2007 Searching and Sorting 12



Selection Sort

void select_sort(int arr[], int size){

int i, index_of_min;

for(i = 0; i < size; ++i) {

index_of_min = index_of_min = 

find_min(arr + i, size - i);

swap(arr + i, arr + i + index_of_min);

}

return;

}

Nov. 1st, 2007 Searching and Sorting 13



Insertion Sort

�With insertion sort, we keep elements 

that have already been sorted at the 

front of the array

�At each step we look at the first of the �At each step we look at the first of the 

unsorted values

�We add that value to the sorted part by 

“bubbling” it to the position where it 

belongs

Nov. 1st, 2007 Searching and Sorting 14



Insertion Sort

void insertion_sort(int arr[], int size){

int i, j;

for(i = 1; i < size; ++i)

for(j = i; j; --j)

if(arr[j] < arr[j-1])if(arr[j] < arr[j-1])

swap(&arr[j], &arr[j-1]);

else

break;

}

Nov. 1st, 2007 Searching and Sorting 15



The Cost of Algorithms

�We've seen multiple sorting algorithms

�Why is one better than the other?

�How can we measure this?

� In a uniform way?



Finding the Maximum

�We have already seen how to find the 

largest value in an array

�Here is the C code for that algorithm

This code returns the location of the �This code returns the location of the 

largest value (rather than the value 

itself)

Nov. 1st, 2007 Searching and Sorting 17



Finding Max

int find_max(int arr[], int size) {

int i, index_of_max = 0;

for(i = 1; i < size; ++i)for(i = 1; i < size; ++i)

if(arr[i] > arr[index_of_max])

index_of_max = i;

return index_of_max;

}

Nov. 1st, 2007 Searching and Sorting 18



Evaluating Algorithms

�How much “work” does the computer do 

to find the maximum?

�Different computers run at different 

speeds but we can try and count speeds but we can try and count 

operations

�That is easier said than done

Nov. 1st, 2007 Searching and Sorting 19



Asymptotic Analysis

�To get an approximate idea of the 

running time of an algorithm we count 

the number of operations but ignore the 

actual cost of each oneactual cost of each one

�The time is clearly dependent on the 

problem size

Nov. 1st, 2007 Searching and Sorting 20



The Cost of Find_Max

�There is a loop that is executed n-1 

times

�Each time a constant number of 

operations is doneoperations is done

�We say the algorithm for finding the 

maximum value runs in O(n) time if the 

problem is of size n

Nov. 1st, 2007 Searching and Sorting 21



Linear Search

�The code for linear search is similar to 

the code for finding the maximum value

� It differs in that the algorithm does not 

always have to examine all values in the always have to examine all values in the 

array

� It can stop as soon as it finds the value

� If the value isn’t there, it must go all the 

way to the end to find out

Nov. 1st, 2007 Searching and Sorting 22



Linear Search
int linear_search(int val, int arr[],

int size){

int i;

for(i = 0; i < size; ++i)

if(arr[i] == val) return i;if(arr[i] == val) return i;

return -1;

}

Nov. 1st, 2007 Searching and Sorting 23



Analysis of Linear Search

� If the value we are searching for is near 

the front of the array, the time taken is 

very small

� If the value is at the end of the array, or � If the value is at the end of the array, or 

not in the array at all the time taken is 

proportional to n, i.e. O(n)

Nov. 1st, 2007 Searching and Sorting 24



Worst Case Analysis

�When evaluating an algorithm we 

generally look at the worst case

�This gives us a “guaranteed” running 

time even if the time may be faster in time even if the time may be faster in 

many cases

� In this example we say the worst case 

running time is O(n)

Nov. 1st, 2007 Searching and Sorting 25



Average Case Analysis

� In general it is difficult to determine the 

average time an algorithm will take

�Average case time is dependent on the 

distribution of the data valuesdistribution of the data values

� If the data is uniformly distributed and 

we search for a random value, the 

average case time for linear search is 

also O(n)

Nov. 1st, 2007 Searching and Sorting 26



Binary Search

�We have also seen another algorithm 

for searching sorted lists, binary search

� Intuitively it seems to be much faster

How can we show this analytically?�How can we show this analytically?

�How much faster is it?

Nov. 1st, 2007 Searching and Sorting 27



Binary Search in Sorted 

Arrays
int binary_search(int val, int arr[], int size){

int left = 0, right = size, middle;

do {

middle = (left + right) / 2;

if(arr[middle] < val)

left = middle + 1;left = middle + 1;

else if(arr[middle] > val)

right = middle - 1;

else

return middle;

} while(left <= right);

return -1;

}

Nov. 1st, 2007 Searching and Sorting 28



The Cost of Binary Search

�The original list being searched had n 

values

�After checking the middle element we 

either find the value we are looking for either find the value we are looking for 

or we reduce the problem size to n/2

� In the worst case, if we don’t happen to 

find the value, the problem size 

becomes n/4, n/8, n/16, … 

Nov. 1st, 2007 Searching and Sorting 29



The Cost of Binary Search

�The process cannot continue forever

�Eventually n/2i becomes smaller than 1 

and the value was either found or is not 

in the listin the list

�This must stop after log2 n steps

�The cost of binary search is then O(log 

n)

Nov. 1st, 2007 Searching and Sorting 30



The Cost of Bubble Sort

�There are n passes through the array in 

the worst case

�Pass j takes n-j steps

The total number of steps is 1+2+…+n�The total number of steps is 1+2+…+n

�We say this is O(n2)

Nov. 1st, 2007 Searching and Sorting 31



Analysis

� Is the optimized version faster?

�Yes and No.

� In practice, yes

�Asymptotically, no.

� It is still O(n2) in the worst case

Nov. 1st, 2007 Searching and Sorting 32



Other Sorting Algorithms

�How about selection or insertion sort?

�They also contain nested loops

�Note that for selection sort, the inner 

loop is “hidden” inside the functionloop is “hidden” inside the function

� In either event, the cost is O(n2)

Nov. 1st, 2007 Searching and Sorting 33



Can we do better?

�Sorting is an important application

�Are there faster ways to sort?

�Wait and see!

Nov. 1st, 2007 Searching and Sorting 34


