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Where’s Waldo?

�A common use for computers is to 

search for the whereabouts of a specific 

item in a list

�The most straightforward approach is �The most straightforward approach is 

just to start looking at the beginning and 

go on from there
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Linear Search
int linear_search(int val, int arr[], int size) {

int i;

for(i = 0; i < size; ++i) {

if(arr[i] == val)

return i;return i;

}

return -1;

}
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Searching Sorted Lists

� Is that the way we would look up a 

name in the Montreal telephone 

directory?

� I hope not!� I hope not!
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Binary Search

�To search a sorted array, we could 

check the middle element

�The value we are looking for might be 

therethere

� If not we can determine whether it is in 

the first or second half of the array and 

search that smaller array
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Iterative Binary Search
int binary_search(int val, int arr[], int size) {

int left = 0, right = size-1, middle;

do {

middle = (left + right) / 2;

if(arr[middle] < val)

left = middle + 1;left = middle + 1;

else if(arr[middle] > val)

right = middle - 1;

else

return middle;

} while(left < right);

return -1;

}
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Sorting Data

�Sorting is one of the most common 

tasks given to computers

�Much work has been done on 

developing efficient sorting techniquesdeveloping efficient sorting techniques

�We have seen one method and now we 

consider some others
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Remember Bubble Sort?

void bubble_sort(int arr[], int size){

int i, j;

for (i=0; i<size-1; i++){

for (j=size-1; j>i; --j)

if (arr[j] < arr[j-1])if (arr[j] < arr[j-1])

swap (&arr[j], &arr[j-1]);

}

}
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An Optimization

� If no swaps are made, the array is 

already sorted

�We can keep track of whether any 

swaps were made in a passswaps were made in a pass

� If no swaps were made, the array must 

be sorted and we can stop
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Optimized Bubble Sort

void bubble_sort(int arr[], int size) {

int i, j, swapped;

for (i=0; i<size-1; i++){

swapped = 0;

for (j=size-1; j>i; --j)for (j=size-1; j>i; --j)

if (arr[j] < arr[j-1]){

swap (&arr[j], &arr[j-1]);

swapped = 1;

}

if (!swapped) break;

}

}
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Selection Sort

�Another sorting technique is known as 

selection sort

�At each step, select the smallest value 

not yet in place and put it where it not yet in place and put it where it 

belongs

�Where’s that?

�After the smaller elements at the front of 

the array
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Selection Sort

� In the following program, note the use of 

pointer arithmetic to access the array 

elements

�We use arr + i instead of arr[i]�We use arr + i instead of arr[i]

�As an argument arr + i represents an 

array with starting address arr[i]
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Selection Sort

void select_sort(int arr[], int size){

int i, index_of_min;

for(i = 0; i < size; ++i) {

index_of_min = index_of_min = 

find_min(arr + i, size - i);

swap(arr + i, arr + i + index_of_min);

}

return;

}
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Insertion Sort

�With insertion sort, we keep elements 

that have already been sorted at the 

front of the array

�At each step we look at the first of the �At each step we look at the first of the 

unsorted values

�We add that value to the sorted part by 

“bubbling” it to the position where it 

belongs
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Insertion Sort

void insertion_sort(int arr[], int size){

int i, j;

for(i = 1; i < size; ++i)

for(j = i; j; --j)

if(arr[j] < arr[j-1])if(arr[j] < arr[j-1])

swap(&arr[j], &arr[j-1]);

else

break;

}
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The Cost of Algorithms

�We've seen multiple sorting algorithms

�Why is one better than the other?

�How can we measure this?

� In a uniform way?



Finding the Maximum

�We have already seen how to find the 

largest value in an array

�Here is the C code for that algorithm

This code returns the location of the �This code returns the location of the 

largest value (rather than the value 

itself)
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Finding Max

int find_max(int arr[], int size) {

int i, index_of_max = 0;

for(i = 1; i < size; ++i)for(i = 1; i < size; ++i)

if(arr[i] > arr[index_of_max])

index_of_max = i;

return index_of_max;

}
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Evaluating Algorithms

�How much “work” does the computer do 

to find the maximum?

�Different computers run at different 

speeds but we can try and count speeds but we can try and count 

operations

�That is easier said than done
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Asymptotic Analysis

�To get an approximate idea of the 

running time of an algorithm we count 

the number of operations but ignore the 

actual cost of each oneactual cost of each one

�The time is clearly dependent on the 

problem size
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The Cost of Find_Max

�There is a loop that is executed n-1 

times

�Each time a constant number of 

operations is doneoperations is done

�We say the algorithm for finding the 

maximum value runs in O(n) time if the 

problem is of size n
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Linear Search

�The code for linear search is similar to 

the code for finding the maximum value

� It differs in that the algorithm does not 

always have to examine all values in the always have to examine all values in the 

array

� It can stop as soon as it finds the value

� If the value isn’t there, it must go all the 

way to the end to find out
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Linear Search
int linear_search(int val, int arr[],

int size){

int i;

for(i = 0; i < size; ++i)

if(arr[i] == val) return i;if(arr[i] == val) return i;

return -1;

}
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Analysis of Linear Search

� If the value we are searching for is near 

the front of the array, the time taken is 

very small

� If the value is at the end of the array, or � If the value is at the end of the array, or 

not in the array at all the time taken is 

proportional to n, i.e. O(n)
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Worst Case Analysis

�When evaluating an algorithm we 

generally look at the worst case

�This gives us a “guaranteed” running 

time even if the time may be faster in time even if the time may be faster in 

many cases

� In this example we say the worst case 

running time is O(n)
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Average Case Analysis

� In general it is difficult to determine the 

average time an algorithm will take

�Average case time is dependent on the 

distribution of the data valuesdistribution of the data values

� If the data is uniformly distributed and 

we search for a random value, the 

average case time for linear search is 

also O(n)
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Binary Search

�We have also seen another algorithm 

for searching sorted lists, binary search

� Intuitively it seems to be much faster

How can we show this analytically?�How can we show this analytically?

�How much faster is it?
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Binary Search in Sorted 

Arrays
int binary_search(int val, int arr[], int size){

int left = 0, right = size, middle;

do {

middle = (left + right) / 2;

if(arr[middle] < val)

left = middle + 1;left = middle + 1;

else if(arr[middle] > val)

right = middle - 1;

else

return middle;

} while(left <= right);

return -1;

}
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The Cost of Binary Search

�The original list being searched had n 

values

�After checking the middle element we 

either find the value we are looking for either find the value we are looking for 

or we reduce the problem size to n/2

� In the worst case, if we don’t happen to 

find the value, the problem size 

becomes n/4, n/8, n/16, … 
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The Cost of Binary Search

�The process cannot continue forever

�Eventually n/2i becomes smaller than 1 

and the value was either found or is not 

in the listin the list

�This must stop after log2 n steps

�The cost of binary search is then O(log 

n)
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The Cost of Bubble Sort

�There are n passes through the array in 

the worst case

�Pass j takes n-j steps

The total number of steps is 1+2+…+n�The total number of steps is 1+2+…+n

�We say this is O(n2)
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Analysis

� Is the optimized version faster?

�Yes and No.

� In practice, yes

�Asymptotically, no.

� It is still O(n2) in the worst case
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Other Sorting Algorithms

�How about selection or insertion sort?

�They also contain nested loops

�Note that for selection sort, the inner 

loop is “hidden” inside the functionloop is “hidden” inside the function

� In either event, the cost is O(n2)
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Can we do better?

�Sorting is an important application

�Are there faster ways to sort?

�Wait and see!
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