Computers in Engineering

1 COMP 208

.

Pointers
Michael A. Hawker

10/30/2007

4
+ Function Prototypes

Before using a function C must know the
type it returns and the parameter types.

Function protoypes allow us to specify

r" this information before actually defining

y the function

This allows more structured and therefore
easier to read code.

= Italso allows the C compiler to check the
syntax of function calls.

| i Oct. 30th, 2007 Pointers 2

4
+ Function Prototypes

[f a function has been defined before it
is used then you can just use the
function.

1| #If NOT then you must declare the

| function prototype. The prototye
declaration simply states the type the
function returns and the type of

K parameters used by the function.

_‘ Oct. 30th, 2007 Pointers 3

Function Prototypes

A function prototype has
1. the type the function returns
2. the function name and
3. alist of parameter types in brackets
e.g.
int strlen(char []);
This declares that a function called
strlen returns an integer value and
accepts a string as a parameter.

Oct. 30th, 2007 Pointers

10/30/2007

Function Prototypes

* |t is good practice to prototype all
functions at the start of the program,
although this is not strictly necessary.

void swap (int, int);
int main () {

int %, y;.. swap(x, V);
}

void swap (int x, int y) {..};

Oct. 30th, 2007 Pointers

W

Swap Two Values

void swap (int x, int y)
{ int temp;
temp = x;
X = y;
y = temp;

Oct. 30th, 2007 Pointers

What Happens?

void main () {
int a, b;
a = 27;
b = 103;
swap (a,b) ;
printf ("%d %d \n", a, b);

Oct. 30th, 2007 Pointers 7

10/30/2007

Surprise!

>swap

27 103

We wanted to see:
103 27

What happened here?
This worked in Fortran!
Why not in C?

Oct. 30th, 2007 Pointers 8

K ¥

Parameter Passing

[t turns out that Fortran and C handle
parameters very differently

#In C all parameters are passed by value

#* The parameters are treated as new
local variables that are initialized to the
argument values

Any changes made are local and do not
effect the arguments

Oct. 30th, 2007 Pointers 9

L

h

Fortran ?

#» Remember how arguments were
passed in Fortran?
» Expressions or constants had their values
put in new local variables representing the
parameters (call by value)

» If the argument was a variable the
parameter was treated as an alias for that
variable (call by reference)

Oct. 30th, 2007 Pointers 10

10/30/2007

L

h

c?

#* C is more uniform
» |t treats all arguments the same way,
the way Fortran treats expressions
= But ...
That means that we have problems
with functions like swap where we
want the argument values to change

Oct. 30th, 2007 Pointers 1

1

h

What's the solution?

#* C allows us to manipulate addresses,
called pointers

If we pass a pointer as an argument, the
value of the argument doesn’t change

»DBut...

The value in the cell pointed to could
change

Oct. 30th, 2007 Pointers 12

10/30/2007

void swap (int *px, int *py)
{ int temp;

temp = *px;

*px = *py;
*py = temp;
}
E
_l | Oct. 30th, 2007 Pointers 13

Let's Compare

void swap(int x, int y)

{ int temp;

temp = x;
X = y; void swap (int *px, int *py)
y = temp; { int temp;

}

temp = *px;

*px = *py;
*py = temp;
}
Oct. 30th, 2007 Pointers 14

What is a Pointer?

#* A pointer is a variable which contains
the memory address of another
variable.

Oct. 30th, 2007 Pointers. 15

h

Declaring a Pointer

To declare a pointer to an integer
variable:

int *ip;
The variable ip will be able to store the
address of an integer cell

In general:
type *name;

Oct. 30th, 2007 Pointers 16

10/30/2007

h

Type

#\We can have a pointer to any variable
type (cell “shape”)

Once we declare it, the pointer can only

be associated with a variable of the
specific type we declared

Oct. 30th, 2007 Pointers 17

h

How do we find the value
pointed to?

* [f the variable ip contains an address,
how do we find out what is stored in the
cell pointed to?

We use a dereferencing operator.

#» The dereference operator * returns the
“contents of the object pointed to”

Oct. 30th, 2007 Pointers 18

10/30/2007

~ 4 How do we get the address of
.+ avariable?

Suppose we have an integer variable x
that contains some value, say 37.

If we want the address of x, we can use
the & operator.

A For example we could write
ip = &x

That s, ip contains the address of x and

K *ip has the value 37
L

Oct. 30th, 2007 Pointers 19

A Simple Example

int x =1, y = 2;

int *ip;

ip = &x; /* ip gets the address of x */
y = *ip; /* y gets assigned 1 */

x = ip; /* x gets the its address */
ip = 3; / x gets assigned 3 */

Oct. 30th, 2007 Pointers 20

Swapping Values in C

void main () {
int a, b;
a = 27;
b = 103;
swap (&a, &b) ;
printf ("%d %d \n", a, b);

Oct. 30th, 2007 Pointers 21

K ¥

"The more you know..."

#*In the scanf function, we used sa to
read into the variable a

#» Without the sa, the value of a would not
have changed

#* scanf needs the reference to the

variable in order to change it, therefore
we need to have the &.

Oct. 30th, 2007 Pointers 22

10/30/2007

Pointers and Arrays

#» Pointers are very closely linked to
arrays in C

#* There is a duality between an array,
which is a block of memory cells, and a
pointer to a memory location

#* The array is a pointer to the first of
these cells

Oct. 30th, 2007 Pointers 23

W

Pointers and Arrays

int af[l0], x;
int *pa;

pa = &al[0]; /* pa gets address of a[0] */

X = *pa; /* x gets contents of pa (a[0]) */

Oct. 30th, 2007 Pointers 24

h

Pointer Arithmetic

#» C allows us to add integer values to
pointers

Adding a value, i, to a pointer gives the
address of the ith memory cell following

» If the pointer, arr, references an array
arr + 1iisequivalenttoarr([i] (but
more efficient)

Oct. 30th, 2007 Pointers 25

10/30/2007

h

More on pointer arithmetic

#* Suppose pa is a pointer to an array
»Whatdoes pa + 1 do?
»Whatdoes (pa) + 1do?
*What does * (pa+1) + 1 do?

Oct. 30th, 2007 Pointers 26

h

A Note on Parameters

#»We want to pass an array as a
parameter to the sorting algorithm

» We want the contents of the array to be
modified

#* Do we have to pass the parameter as a
pointer?
» Nope, an array is a pointer.

Oct. 30th, 2007 Pointers 27

h

Finding Max
To find the smallest, just invert the comparison
int find biggest (int arr[], int size)
(int index of big = 0, i;
for(i = 0; 1 < size; ++1i)
if(arrf[i] > arr[index of big])

index of big = 1i;

return index of big;

}

Oct. 30th, 2007 Pointers 28

10/30/2007

h

Linear Search

The algorithm to find the location of the a value in an
array has a similar structure.

int linearisearch(int val,
int arr([], int size) {

int 1i;
for(i = 0; i < size; ++1i)
if(arr[i] == val)

return i;

return -1;

Oct. 30th, 2007 Pointers 29

h

A Sorting Algorithm

Computers are frequently used to sort
data stored in arrays

#* \We will soon look at several different
ways this can be done

#* For now we will look at a sorting
algorithm that illustrates the use of a
swap

Oct. 30th, 2007 Pointers 30

10

h

Bubble Sort

#»\We can compare pairs of values
working backwards through the array.

#When two values are out of order, swap
them

#»\When we are finished one pass, the
smallest value is at the front of the array
(it “bubbles” down)

\We repeat this process until all the
values are in order

Oct. 30th, 2007 Pointers 31

10/30/2007

h

Bubble Sort

void bubble sort (int arr[], int size){
int 1, 3J;
for (i=0; i<size-1; i++)
if (arr[j] < arr[j-1]

{
for (j=size-1; j>i; --3)
)
(3

swap (&arr[j], é&arr 11)

Oct. 30th, 2007 Pointers 32

W

Binary Search for Sorted
Arrays

int binary search(int val, int arr[], int size
{
int left = 0, right = size, middle;

do {
middle = (left + right) / 2;

if (arr[middle] < val)
left = middle + 1;

else if (arr[middle] > val)
right = middle - 1;

else
return middle;

while (left <= right);

return -1;

Oct. 30th, 2007 Pointers 33

11

h

Random Numbers

#» Many applications use random numbers

» Before we go on with pointers, lets have
a quick look at how to generate a
sequence of numbers that looks random

* [t really isn’t random, hence
pseudorandom numbers

Oct. 30th, 2007 Pointers 34

10/30/2007

h

Pseudo Random Numbers

Make sure to include the needed libraries
#include <stdlib.h>
#include <time.h>

The first step is to seed the pseudo-random
number generator.

For testing, we can always reproduce the same
sequence if we start with the same seed.

For “production” we might choose an arbitrary
seed

srand ((unsigned int) time (NULL)) ;

Oct. 30th, 2007 Pointers 35

h

Pseudo-Random Sequence

Once the random number generator has
been seeded, the next number can be
generated with

rand ()

This generates a number in the range
from 0 to RAND MAX (which is often
32767 but may vary with different
implementations)

Oct. 30th, 2007 Pointers 36

12

h

Restricting the Range

To generate a random real number
between 0 and 1, you could use
(double) rand() / RAND MAX
To get a number in the range from x0 to
x1, you could generate a number
between 0 and 1 as above and then
scale it as follows

num * (x1-x0) + x0

Oct. 30th, 2007 Pointers 37

10/30/2007

h

File Input

#* To read from a file, you first declare a
file pointer of type FILE
FILE* name;

#FILE is uppercase because itis an
implementation dependent macro

Once declared, you use fopen to
associate the name with an actual file

FILE* datafile = fopen("test.data", "r");

Oct. 30th, 2007 Pointers 38

h

File Specifications

FILE* datafile = fopen("test.data", "r");

#* The “r” specifies that the file is to be
read from

To write to a file, we use “W’

#» To append to a file, we use “a

Oct. 30th, 2007 Pointers 39

13

h

Reading and Writing

In place of scanf, we use fscanf and specify
the file to read from
fscanf (datafile, "%$£f%d", &value, &count);

#* To write to a file we use fprintf instead of

printf and also specify the file

FILE* results;

results = fopen("test.result", "w");

fprintf (results, "The average of %d values "
"is %$£.\n", totalcount, ave);

Oct. 30th, 2007 Pointers

40

10/30/2007

h

Closing a File

As in Fortran, when we are finished
reading from or writing to a file, the file
should be closed:

fclose (results) ;

Oct. 30th, 2007 Pointers

4

h

Writing to a File

When we open a file, the filename is assigned a
nonzero value if the operation is successful and a
value of zero if it fails.

FILE* results = fopen("test.result",
nrmy;
if (results)

{

}
else printf ("Could not open the file");

Oct. 30th, 2007 Pointers

42

14

