
Computers in Engineering

COMP 208COMP 208

Pointers

Michael A. Hawker

Function Prototypes

Before using a function C must know the
type it returns and the parameter types.

Function protoypes allow us to specify
this information before actually defining this information before actually defining
the function

This allows more structured and therefore
easier to read code.

It also allows the C compiler to check the
syntax of function calls.

Oct. 30th, 2007 Pointers 2

Function Prototypes

� If a function has been defined before it

is used then you can just use the

function.

� If NOT then you must declare the � If NOT then you must declare the

function prototype. The prototye

declaration simply states the type the

function returns and the type of

parameters used by the function.

Oct. 30th, 2007 Pointers 3

Function Prototypes

A function prototype has

1. the type the function returns,

2. the function name and

3. a list of parameter types in brackets3. a list of parameter types in brackets

e.g.
int strlen(char []);

This declares that a function called
strlen returns an integer value and
accepts a string as a parameter.

Oct. 30th, 2007 Pointers 4

Function Prototypes

� It is good practice to prototype all

functions at the start of the program,

although this is not strictly necessary.

void swap(int, int);void swap(int, int);

int main() {

int x, y;… swap(x, y); …

}

void swap(int x, int y) {…};

Oct. 30th, 2007 Pointers 5

Swap Two Values

void swap(int x, int y)

{ int temp;

temp = x;

x = y;x = y;

y = temp;

}

Oct. 30th, 2007 Pointers 6

What Happens?

void main () {

int a, b;

a = 27;

b = 103;b = 103;

swap(a,b);

printf ("%d %d \n", a, b);

}

Oct. 30th, 2007 Pointers 7

Surprise!

>swap

27 103

We wanted to see:

103 27

What happened here?

This worked in Fortran!

Why not in C?

Oct. 30th, 2007 Pointers 8

Parameter Passing

� It turns out that Fortran and C handle
parameters very differently

� In C all parameters are passed by value

�The parameters are treated as new �The parameters are treated as new
local variables that are initialized to the
argument values

�Any changes made are local and do not
effect the arguments

Oct. 30th, 2007 Pointers 9

Fortran ?

�Remember how arguments were

passed in Fortran?

� Expressions or constants had their values

put in new local variables representing the put in new local variables representing the

parameters (call by value)

� If the argument was a variable the

parameter was treated as an alias for that

variable (call by reference)

Oct. 30th, 2007 Pointers 10

C ?

�C is more uniform

� It treats all arguments the same way,

the way Fortran treats expressions

But …�But …

That means that we have problems

with functions like swap where we

want the argument values to change

Oct. 30th, 2007 Pointers 11

What’s the solution?

� C allows us to manipulate addresses,

called pointers

� If we pass a pointer as an argument, the

value of the argument doesn’t changevalue of the argument doesn’t change

� But . . .

The value in the cell pointed to could

change

Oct. 30th, 2007 Pointers 12

Swapping Values in C

void swap(int *px, int *py)

{ int temp;

temp = *px;

*px = *py;*px = *py;

*py = temp;

}

Oct. 30th, 2007 Pointers 13

Let’s Compare

void swap(int x, int y)

{ int temp;

temp = x;

x = y; void swap(int *px, int *py)x = y;

y = temp;

}

Oct. 30th, 2007 Pointers 14

void swap(int *px, int *py)

{ int temp;

temp = *px;

*px = *py;

*py = temp;

}

What is a Pointer?

�A pointer is a variable which contains

the memory address of another

variable.

Oct. 30th, 2007 Pointers 15

Declaring a Pointer

To declare a pointer to an integer

variable:

int *ip;

The variable ip will be able to store the The variable ip will be able to store the

address of an integer cell

In general:

type *name;

Oct. 30th, 2007 Pointers 16

Type

�We can have a pointer to any variable

type (cell “shape”)

�Once we declare it, the pointer can only

be associated with a variable of the be associated with a variable of the

specific type we declared

Oct. 30th, 2007 Pointers 17

How do we find the value

pointed to?

� If the variable ip contains an address,

how do we find out what is stored in the

cell pointed to?

�We use a dereferencing operator.�We use a dereferencing operator.

�The dereference operator * returns the

“contents of the object pointed to”

Oct. 30th, 2007 Pointers 18

How do we get the address of

a variable?

Suppose we have an integer variable x
that contains some value, say 37.

If we want the address of x, we can use
the & operator.the & operator.

For example we could write
ip = &x

That is, ip contains the address of x and
*ip has the value 37

Oct. 30th, 2007 Pointers 19

A Simple Example

int x = 1, y = 2;

int *ip;

ip = &x; /* ip gets the address of x */

y = *ip; /* y gets assigned 1 */

x = ip; /* x gets the its address */

ip = 3; / x gets assigned 3 */

Oct. 30th, 2007 Pointers 20

Swapping Values in C

void main () {

int a, b;

a = 27;

b = 103;b = 103;

swap(&a,&b);

printf ("%d %d \n", a, b);

}

Oct. 30th, 2007 Pointers 21

"The more you know…"

� In the scanf function, we used &a to

read into the variable a

�Without the &a, the value of a would not

have changedhave changed

�scanf needs the reference to the

variable in order to change it, therefore

we need to have the &.

Oct. 30th, 2007 Pointers 22

Pointers and Arrays

�Pointers are very closely linked to

arrays in C

�There is a duality between an array,

which is a block of memory cells, and a which is a block of memory cells, and a

pointer to a memory location

�The array is a pointer to the first of

these cells

Oct. 30th, 2007 Pointers 23

Pointers and Arrays

int a[10], x;

int *pa;

pa = &a[0]; /* pa gets address of a[0] */

x = *pa; /* x gets contents of pa (a[0]) */

Oct. 30th, 2007 Pointers 24

Pointer Arithmetic

�C allows us to add integer values to

pointers

�Adding a value, i, to a pointer gives the

address of the ith memory cell followingaddress of the ith memory cell following

� If the pointer, arr, references an array

arr + i is equivalent to arr[i] (but

more efficient)

Oct. 30th, 2007 Pointers 25

More on pointer arithmetic

�Suppose pa is a pointer to an array

�What does pa + 1 do?

�What does (pa) + 1 do?

�What does *(pa+1) + 1 do?

Oct. 30th, 2007 Pointers 26

A Note on Parameters

�We want to pass an array as a

parameter to the sorting algorithm

�We want the contents of the array to be

modifiedmodified

�Do we have to pass the parameter as a

pointer?

� Nope, an array is a pointer.

Oct. 30th, 2007 Pointers 27

Finding Max

To find the smallest, just invert the comparison

int find_biggest(int arr[], int size)

{

int index_of_big = 0, i;

for(i = 0; i < size; ++i)

if(arr[i] > arr[index_of_big])

index_of_big = i;

return index_of_big;

}

Oct. 30th, 2007 Pointers 28

Linear Search

The algorithm to find the location of the a value in an
array has a similar structure.

int linear_search(int val,

int arr[], int size) {

int i;

for(i = 0; i < size; ++i)

if(arr[i] == val)

return i;

return -1;

}

Oct. 30th, 2007 Pointers 29

A Sorting Algorithm

�Computers are frequently used to sort

data stored in arrays

�We will soon look at several different

ways this can be doneways this can be done

�For now we will look at a sorting

algorithm that illustrates the use of a

swap

Oct. 30th, 2007 Pointers 30

Bubble Sort

�We can compare pairs of values

working backwards through the array.

�When two values are out of order, swap

themthem

�When we are finished one pass, the

smallest value is at the front of the array

(it “bubbles” down)

�We repeat this process until all the

values are in order
Oct. 30th, 2007 Pointers 31

Bubble Sort

void bubble_sort(int arr[], int size){

int i, j;

for (i=0; i<size-1; i++) {

for (j=size-1; j>i; --j) {

if (arr[j] < arr[j-1]) {if (arr[j] < arr[j-1]) {

swap (&arr[j], &arr[j-1]);

}

}

}

}

Oct. 30th, 2007 Pointers 32

Binary Search for Sorted

Arrays
int binary_search(int val, int arr[], int size)

{

int left = 0, right = size, middle;

do {

middle = (left + right) / 2;

if(arr[middle] < val)if(arr[middle] < val)

left = middle + 1;

else if(arr[middle] > val)

right = middle - 1;

else

return middle;

} while(left <= right);

return -1;

}

Oct. 30th, 2007 Pointers 33

Random Numbers

�Many applications use random numbers

�Before we go on with pointers, lets have

a quick look at how to generate a

sequence of numbers that looks randomsequence of numbers that looks random

� It really isn’t random, hence

pseudorandom numbers

Oct. 30th, 2007 Pointers 34

Pseudo Random Numbers

Make sure to include the needed libraries
#include <stdlib.h>

#include <time.h>

The first step is to seed the pseudo-random
number generator.number generator.

For testing, we can always reproduce the same
sequence if we start with the same seed.

For “production” we might choose an arbitrary
seed
srand((unsigned int) time(NULL));

Oct. 30th, 2007 Pointers 35

Pseudo-Random Sequence

Once the random number generator has

been seeded, the next number can be

generated with

rand()rand()

This generates a number in the range
from 0 to RAND_MAX (which is often

32767 but may vary with different

implementations)

Oct. 30th, 2007 Pointers 36

Restricting the Range

To generate a random real number

between 0 and 1, you could use

(double) rand() / RAND_MAX

To get a number in the range from x0 to To get a number in the range from x0 to

x1, you could generate a number

between 0 and 1 as above and then

scale it as follows

num * (x1-x0) + x0

Oct. 30th, 2007 Pointers 37

File Input

�To read from a file, you first declare a

file pointer of type FILE

FILE* name;

�FILE is uppercase because it is an �FILE is uppercase because it is an

implementation dependent macro

�Once declared, you use fopen to

associate the name with an actual file
FILE* datafile = fopen("test.data", "r");

Oct. 30th, 2007 Pointers 38

File Specifications

FILE* datafile = fopen("test.data", "r");

�The “r” specifies that the file is to be

read from

�To write to a file, we use “w”�To write to a file, we use “w”

�To append to a file, we use “a”

Oct. 30th, 2007 Pointers 39

Reading and Writing

� In place of scanf, we use fscanf and specify

the file to read from
fscanf (datafile, "%f%d", &value, &count);

� To write to a file we use fprintf instead of � To write to a file we use fprintf instead of

printf and also specify the file
FILE* results;

results = fopen("test.result", "w");

fprintf (results, "The average of %d values "

"is %f.\n", totalcount, ave);

Oct. 30th, 2007 Pointers 40

Closing a File

�As in Fortran, when we are finished

reading from or writing to a file, the file

should be closed:

fclose(results);fclose(results);

Oct. 30th, 2007 Pointers 41

Writing to a File

� When we open a file, the filename is assigned a
nonzero value if the operation is successful and a
value of zero if it fails.

FILE* results = fopen("test.result", FILE* results = fopen("test.result",
"r");

if (results)

{

. . .

}

else printf("Could not open the file");

Oct. 30th, 2007 Pointers 42

