
Computers in Engineering

COMP 208COMP 208

Moving From Fortran to C – Part 2

Michael A. Hawker

Roots of a Quadratic in C
#include <stdio.h>

#include <math.h>

void main() {

float a, b, c;

float d;

float root1, root2;

scanf ("%f%f%f", &a, &b, &c);scanf ("%f%f%f", &a, &b, &c);

/* continued on next slide */

Oct. 25th, 2007 From Fortran to C 2

if (a == 0.0) {

if (b == 0.0) {

if (c == 0.0) {

printf ("All numbers are roots \n");

} else {

printf ("Unsolvable equation"); }

} else { printf ("This is a linear form, root = %f\n", -c/b);}

} else {

d = b*b - 4.0*a*c ;

if (d > 0.0) {

d = sqrt (d);

root1 = (-b + d)/(2.0 * a) ;

root2 = (-b - d)/(2.0 * a) ;

printf ("Roots are %f and %f \n", root1, root2);

}

else if (d == 0.0) {

printf ("The repeated root is %f \n", -b/(2.0 * a));

} else {

printf ("There are no real roots \n");

printf ("The discriminant is %f \n", d);

}

}

}

Oct. 25th, 2007 From Fortran to C 3

Quadratic Roots Revisited

�Let’s make one slight change to the

program:

Oct. 25th, 2007 From Fortran to C 4

if (a = 0.0) {

if (b == 0.0) {

if (c == 0.0) {

printf ("All numbers are roots \n");

} else {

printf ("Unsolvable equation"); }

} else { printf ("This is a linear form, root = %f\n", -c/b);}

} else {

d = b*b - 4.0*a*c ;

if (d > 0.0) {

d = sqrt (d);

root1 = (-b + d)/(2.0 * a) ;

root2 = (-b - d)/(2.0 * a) ;

printf ("Roots are %f and %f \n", root1, root2);

}

else if (d == 0.0) {

printf ("The repeated root is %f \n", -b/(2.0 * a));

} else {

printf ("There are no real roots \n");

printf ("The discriminant is %f \n", d);

}

}

}

Oct. 25th, 2007 From Fortran to C 5

Quadratic Roots Revisited

�Can you spot the change?

�What do you think the effect is?

Oct. 25th, 2007 From Fortran to C 6

if (a = 0.0) {

if (b == 0.0) {

if (c == 0.0) {

printf ("All numbers are roots \n");

} else {

printf ("Unsolvable equation"); }

} else { printf ("This is a linear form, root = %f\n", -c/b);}

} else {

d = b*b - 4.0*a*c ;

if (d > 0.0) {

d = sqrt (d);

root1 = (-b + d)/(2.0 * a) ;

root2 = (-b - d)/(2.0 * a) ;

printf ("Roots are %f and %f \n", root1, root2);

}

else if (d == 0.0) {

printf ("The repeated root is %f \n", -b/(2.0 * a));

} else {

printf ("There are no real roots \n");

printf ("The discriminant is %f \n", d);

}

}

}

Oct. 25th, 2007 From Fortran to C 7

What Happens Here?

�The equivalent statement in Fortran

would cause a syntax error

�The expression (a = 0.0) is not of type

logicallogical

�But C does not have a type “logical”

�What happens in C?

Oct. 25th, 2007 From Fortran to C 8

The C Assignment Operator

� In Fortran, assignment is a statement.

� In C, assignment is an operator

� It can appear as part of an expression

When evaluated it causes a value to be �When evaluated it causes a value to be

assigned (as in Fortran)

� It also returns a value that can be used in

evaluating the expression

� If it appears independently,with a ';' after it

this value is discarded

Oct. 25th, 2007 From Fortran to C 9

The C Assignment Operator

Syntax:
variable = expression

Semantics
1. Evaluate the expression1. Evaluate the expression
2. Store the value in the expression in the

variable
3. Return the value to the expression

Oct. 25th, 2007 From Fortran to C 10

Back to our example

� In C, (a=0.0) would assign 0 to a and
then return 0 as the value of the
expression

�The if condition, with value 0, would be �The if condition, with value 0, would be
taken as equivalent to “false”

�The else clause would be evaluated and
when the root was calculated, there
would be an attempt to divide by 0

Oct. 25th, 2007 From Fortran to C 11

if (a = 0.0) {

if (b == 0.0) {

if (c == 0.0) {

printf ("All numbers are roots \n");

} else {

printf ("Unsolvable equation"); }

} else { printf ("This is a linear form, root = %f\n", -c/b);}

} else {

d = b*b - 4.0*a*c ;

if (d > 0.0) {

d = sqrt (d);

root1 = (-b + d)/(2.0 * a) ;

root2 = (-b - d)/(2.0 * a) ;

printf ("Roots are %f and %f \n", root1, root2);

}

else if (d == 0.0) {

printf ("The repeated root is %f \n", -b/(2.0 * a));

} else {

printf ("There are no real roots \n");

printf ("The discriminant is %f \n", d);

}

}

}

Oct. 25th, 2007 From Fortran to C 12

Inputting Values in C

� In the program for computing the roots

of a quadratic, we began by reading the

values for the coefficients a, b and c

Oct. 25th, 2007 From Fortran to C 13

Roots of a Quadratic in C
#include <stdio.h>

#include <math.h>

void main() {

float a, b, c;

float d;

float root1, root2;

scanf ("%f%f%f", &a, &b, &c);scanf ("%f%f%f", &a, &b, &c);

/* continued on next slide */

Oct. 25th, 2007 From Fortran to C 14

The Input Statement

Syntax:
scanf(“format string”,

list of variable references) ;

Semantics:Semantics:

Each variable reference is has the form
&name

For now, ignore the & that appears in front of
variable names

It has to be there but we’ll explain why later

Oct. 25th, 2007 From Fortran to C 15

? – What’s that?

�C has many operators and functions

that are not part of Fortran

�They come in useful in many

applicationsapplications

�One of these is the “?” operator

Oct. 25th, 2007 From Fortran to C 16

The ? Operator

� The ? (ternary condition) operator is a more
efficient form for expressing simple if
selection

� It has the following syntax:
e1 ? e2 : e3e1 ? e2 : e3

� It is equivalent to:
if e1 then

e2

else

e3

Oct. 25th, 2007 From Fortran to C 17

The ? Operator

To assign the maximum of a and b to z:

z = (a>b) ? a : b;

which is equivalent to: which is equivalent to:

if (a>b)

z = a;

else

z=b;

Oct. 25th, 2007 From Fortran to C 18

Loops in C

�The basic looping construct in Fortran is

the DO loop

� In C, there is a more complex looping
command called the for loopcommand called the for loop

Oct. 25th, 2007 From Fortran to C 19

The C for Loop

The C for statement has the following

form:

for (e1; e2; e3)

statementstatement

The statement can be a block of

statements inside braces { … }

Oct. 25th, 2007 From Fortran to C 20

Semantics of the for loop

for (e1; e2; e3) statement

1. e1 is evaluated just once before the loop
begins. It initializes the loop.

2. e2 is tested at the end of each iteration. It is
the termination condition. If it evaluates to 0 the termination condition. If it evaluates to 0
(false) the loop terminates. Otherwise the
loop continues.

3. e3 is evaluated at the end of each iteration.
It is used to modify the loop control. It is
often a simple increment, but can be more
complex.

Oct. 25th, 2007 From Fortran to C 21

A C for Loop Example

main(){

int x;

for (x=3; x>0; x--)

printf("x=%d\n",x);

}}

...outputs:

x=3

x=2

x=1

Oct. 25th, 2007 From Fortran to C 22

What do these do?

for (x=3;((x>3) && (x<9)); x++)

for (x=3,y=4;((x>=3) && (y<9)); x++,y+=2)

for (x=0,y=4,z=4000;z; z/=10)for (x=0,y=4,z=4000;z; z/=10)

Oct. 25th, 2007 From Fortran to C 23

Other Looping Constructs

�The for loop is very powerful and

general

�Sometimes we just want to use a

simpler, more specific looping command simpler, more specific looping command

to make the program cleaner and

clearer

Oct. 25th, 2007 From Fortran to C 24

The While Statement

The while has the syntax:
while (expression)
statement

Semantics:

� The expression is evaluated.

� If it evaluates to 0 (false) the loop

terminates, otherwise the statement is

executed and we repeat the evaluation.

Oct. 25th, 2007 From Fortran to C 25

Example

int x=3;
main() {
while (x>0) {

printf("x=%d\n",x);
x--;

}}
}

...outputs:

x=3

x=2

x=1

Oct. 25th, 2007 From Fortran to C 26

While Statements

�These are usually clear and make the

program easier to follow

�The while statement

while (e) swhile (e) s

is semantically equivalent to

for (;e;) s

Oct. 25th, 2007 From Fortran to C 27

What do these do?

� As with many constructs in C, the while

statement can interact with other features to

become much less clear:
while (x--) …;
while (x=x+1)…;while (x=x+1)…;
while (x+=5)…;
while (i++ < 10)…;

while ((ch = getchar()) != ‘q’)
putchar(ch);

Oct. 25th, 2007 From Fortran to C 28

Do-while

Both while and do-while execute a

statement repeatedly and terminate

when a condition becomes false

In the do-while, the testing is done at the In the do-while, the testing is done at the

end of the loop

do
statement

while (expression)

Oct. 25th, 2007 From Fortran to C 29

Break and Continue

The break statement is similar to the

Fortran EXIT and allows us to exit from

a loop

break; --exit from loopbreak; --exit from loop

The continue statement forces control

back to the top of the loop

continue; --skip 1 iteration of loop

Oct. 25th, 2007 From Fortran to C 30

Using break and continue
while (scanf(“%d”, &value) == 1 && value != 0) {

if (value < 0) {

printf(“Illegal value\n”);

break; /* Abandon the loop */

}

if (value > 100) {if (value > 100) {

printf(“Invalid value\n”);

continue; /* Skip to start loop again */

}

/* Process the value (guaranteed between 1 and 100) */

....;

} /* end while when value read is 0 */

Oct. 25th, 2007 From Fortran to C 31

scanf and printf Format Codes

� Syntax:
� scanf(<formats>, <list of variables>);

� printf(<formats>, <list of variables>);

� Formats:� Formats:
� d: decimal int

� o: octal int

� x: hexdecimal int

� c: character

� s: string

� f: real number, floating point

� e: real number, exponential format

Oct. 25th, 2007 From Fortran to C 32

Arrays in C

One dimensional arrays are defined as:

<type> name[size];

Array subscripts start at 0 and end one

less than the array size. less than the array size.

For example the array

int list[50]

is an array of 50 integer values indexed

from 0 to 49

Oct. 25th, 2007 From Fortran to C 33

Arrays in C

Accessing individual components is done

by indexing.

This is similar to Fortran, except the

syntax uses square brackets.syntax uses square brackets.

Thirdnumber = list[2];

list[5] = 100*list[3];

Oct. 25th, 2007 From Fortran to C 34

Multi-Dimensional Arrays

Multi-dimensional arrays are defined as:

int tableofnumbers[50][50];

For more dimensions add more []:

int bigD[50][50][40][30]...[50];int bigD[50][50][40][30]...[50];

Elements are accessed as:

anumber = tableofnumbers[2][3];

tableofnumbers[25][16]=100;

Oct. 25th, 2007 From Fortran to C 35

Character Strings

C Strings are defined as arrays of characters.

char name[50];

C has no string handling facilities built in and so

the following are all illegal: the following are all illegal:

char first[50],last[50],full[100];

first="Arnold"; /* Illegal */

last="Schwarznegger"; /* Illegal */

full="Mr"+firstname+lastname;

/*illegal*/

Oct. 25th, 2007 From Fortran to C 36

Strings

There is a special library of string handling
routines in <string.h>

To print a string use printf with a %s control:

printf(“%s”,name); printf(“%s”,name);

In order to allow variable length strings the \0

character is used to indicate the end of a

string.

If we have a string, char name[50]; we can

store the string “Nathan\0” in it.

Oct. 25th, 2007 From Fortran to C 37

Functions

Syntax of Function Definitions:
returntype name (parameter list)

{

localvariable declarationslocalvariable declarations

functioncode

}

The parameter list is a list of names

together with the associated type

Oct. 25th, 2007 From Fortran to C 38

Function Definition

float findaverage(float a, float b) {

float average;

average=(a+b)/2;

return average;

}}

We use the function as follows:
main() {

float a=5,b=15,result;

result=findaverage(a,b);

printf(“average=%f\n”,result);

}

Oct. 25th, 2007 From Fortran to C 39

Void Functions

If you do not want to return a value use the

return type void:

void squares() {

int loop;int loop;

for (loop=1;loop<10;loop++)

printf(“%d\n”,loop*loop);

}

main() {

squares();

}

Oct. 25th, 2007 From Fortran to C 40

Array Parameters

Single dimensional arrays can be passed to
functions as follows:-

float findaverage(int size,float list[]){

int i;

float sum=0.0;float sum=0.0;

for (i=0;i<size;i++)

sum+=list[i];

return sum/size ;

}

Note we do not specify the dimension of the
array when it is a parameter of a function.

Oct. 25th, 2007 From Fortran to C 41

Multi-Dimensional Arrays
void print_table(int xsize, int ysize,

float table[][5]) {

int x,y;

for (x=0;x<xsize;x++) {

for (y=0;y<ysize;y++)

printf(“\t%f",table[x][y]);printf(“\t%f",table[x][y]);

printf(“\n");

}

}

Note we must specify the second (and
subsequent) dimensions of the array but not
the first dimension.

Oct. 25th, 2007 From Fortran to C 42

Function Prototypes

Before using a function C must know the
type it returns and the parameter types.

Function protoypes allow us to specify
this information before actually defining this information before actually defining
the function

This allows more structured and therefore
easier to read code.

It also allows the C compiler to check the
syntax of function calls.

Oct. 25th, 2007 From Fortran to C 43

Function Prototypes

If a function has been defined before it is
used then you can just use the function.

If NOT then you must declare the function
prototype. The prototye declaration prototype. The prototye declaration
simply states the type the function
returns and the type of parameters used
by the function.

Oct. 25th, 2007 From Fortran to C 44

Function Prototypes

It is good practice to prototype all
functions at the start of the program,
although this is not strictly necessary. although this is not strictly necessary.

Oct. 25th, 2007 From Fortran to C 45

Function Prototypes

A function prototype has

1. the type the function returns,

2. the function name and

3. a list of parameter types in brackets3. a list of parameter types in brackets

e.g.
int strlen(char []);

This declares that a function called
strlen returns an integer value and
accepts a string as a parameter.

Oct. 25th, 2007 From Fortran to C 46

Coercion or Type-Casting

Mixed mode operations are handled by C very
much like Fortran handles them.

Integer values are converted to reals when
assigning to a real and when performing an
arithmetic operation using integers an realsarithmetic operation using integers an reals

Floating point numbers are truncated to integers
when assigning then to an integer variable

In C however, the programmer is able to control
this using a cast operator () to force the
coercion of one type into another

Oct. 25th, 2007 From Fortran to C 47

Coercion or Type-Casting

int integernumber;

float floatnumber=9.87;

integernumber=(int)floatnumber;

assigns 9 (the result is truncated) to integernumber. assigns 9 (the result is truncated) to integernumber.

int integernumber=10;

float floatnumber;

floatnumber=(float)integernumber;

assigns 10.0 to floatnumber.

Oct. 25th, 2007 From Fortran to C 48

Type Coercion

Coercion can be used with any of the

simple data types including char, so:

int integernumber;

char letter=‘A’;char letter=‘A’;

integernumber=(int)letter;

assigns 65 (the ASCII code for ‘A’) to

integernumber.

Oct. 25th, 2007 From Fortran to C 49

Coercion

Another use is to make sure division

behaves as requested:

To divide two integers intnumber and

anotherint and get a floatanotherint and get a float
floatnumber =

(float)intnumber /(float)anotherint;

ensures floating point division.

Oct. 25th, 2007 From Fortran to C 50

Global Variables

Global variables are defined in the file
containing main()before the definition
of main

They are shared by all functions in the file They are shared by all functions in the file
without having to pass them as
parameters.

Thy can be initialized when declared, or
initialized in main()

Oct. 25th, 2007 From Fortran to C 51

Global Variable Example

float sum=0.0;

int bigsum=0;

char letter=‘A’;

func1 (int x, float y) {

/* uses sum, bigsum, letter, x, y,/* uses sum, bigsum, letter, x, y,

local vars */

}

main() {

/* uses sum, bigsum, letter, func1,

local vars */

}

Oct. 25th, 2007 From Fortran to C 52

