
1

Computers in Engineering

COMP 208

Subroutines

Michael A. Hawker

Subprograms

�Functions are one type of subprogram

in FORTRAN

�Another type of subprogram FORTRAN

allows is called a subroutine

�There are many similarities between

them and we must be careful not to

confuse the two types of subprograms

•Oct. 11th, 2007 •Subroutines •2

Subroutines

� Subroutines are used to define new actions

� Unlike functions, they do not return values

� They can modify the values of arguments or
return values indirectly through the arguments

� For example a Sort subroutine may take an
array as an argument and return the array
with the values in sorted order

•Oct. 11th, 2007 •Subroutines •3

2

A Factorial Subroutine

�Previously we defined a function to
compute factorials

� It acted as a new operator (like sqrt) to
return a value directly

�We could also define a subroutine to
compute factorials

�The result must be returned using an
extra parameter

•Oct. 11th, 2007 •Subroutines •4

A Factorial Subroutine

SUBROUTINE Factorial(n,Fact)

IMPLICIT NONE

INTEGER :: n, Fact

INTEGER :: i

Fact = 1

DO i = 1, n

Fact = Fact * i

END DO

END SUBROUTINE Factorial

•Oct. 11th, 2007 •Subroutines •5

A Factorial Subroutine

SUBROUTINE Factorial(n,Fact)

IMPLICIT NONE

INTEGER :: n, Fact

INTEGER :: i

Fact = 1

DO i = 1, n

Fact = Fact * i

END DO

END SUBROUTINE Factorial

•Oct. 11th, 2007 •Subroutines •6

� The subroutine does not

return a value directly

� The parameter Fact is

used to hold the value

that is being computed

3

Computing Statistics

! --

! Read an indeterminate number of real values and compute their mean,

! variance and standard deviation.

! --

PROGRAM MeanVariance

IMPLICIT NONE

INTEGER :: Number, IOstatus

REAL :: Data, Sum, Sum2

REAL :: Mean, Var, Std

Number = 0

Sum = 0.0

Sum2 = 0.0

DO

READ(*,*,IOSTAT=IOstatus) Data

IF (IOstatus < 0) EXIT

Number = Number + 1

CALL Sums(Data, Sum, Sum2)

END DO

CALL Results(Sum, Sum2, Number, Mean, Var, Std)

CALL PrintResult(Number, Mean, Var, Std)

END PROGRAM MeanVariance

•Oct. 11th, 2007 •Subroutines •7

IOSTAT

We can write:
INTEGER :: IOstatus

READ(*,*,IOSTAT=IOstatus) v1, v2, . . ., vn

The variable following “ IOSTAT = “ can be any variable
of type INTEGER

This variable is assigned a value after the READ is
executed

1. If the value is zero, the read was successful

2. If the value is negative, the end of file was reached

3. If the value is positive, there was an error in the input

An end of file signal is sent from the keyboard when you
press Ctrl-Z (in windows)

•Oct. 11th, 2007 •Subroutines •8

Computing Statistics

! --

! Read an indeterminate number of real values and compute their mean,

! variance and standard deviation.

! --

PROGRAM MeanVariance

IMPLICIT NONE

INTEGER :: Number, IOstatus

REAL :: Data, Sum, Sum2

REAL :: Mean, Var, Std

Number = 0

Sum = 0.0

Sum2 = 0.0

DO

READ(*,*,IOSTAT=IOstatus) Data

IF (IOstatus < 0) EXIT

Number = Number + 1

CALL Sums(Data, Sum, Sum2)

END DO

CALL Results(Sum, Sum2, Number, Mean, Var, Std)

CALL PrintResult(Number, Mean, Var, Std)

END PROGRAM MeanVariance

•Oct. 11th, 2007 •Subroutines •9

4

Compute Sum and

Sum of Squares
! --

! This subroutine takes three REAL values:

! (1) x - the input value

! (2) Sum - x will be added to this sum-of-input

! (3) SumSQR - x*x is added to this sum-of-squares

! --

SUBROUTINE Sums(x, Sum, SumSQR)

IMPLICIT NONE

REAL :: x ! Input Parameter

REAL :: Sum, SumSQR ! Input and Output Parameters

Sum = Sum + x

SumSQR = SumSQR + x*x

END SUBROUTINE Sums

•Oct. 11th, 2007 •Subroutines •10

Computing the Statistics

! --

! Compute the mean, variance and standard deviation

!

! (1) Sum - sum of input values

! (2) SumSQR - sun-of-squares

! (3) n - number of input data items

! (4) Mean - computed mean value

! (5) Variance - computed variance

! (6) StdDev - computed standard deviation

! --

SUBROUTINE Results(Sum, SumSQR, n, Mean, Variance, StdDev)

IMPLICIT NONE

INTEGER :: n

REAL :: Sum, SumSQR ! Input Parameters

REAL :: Mean, Variance, StdDev ! Output Parameters

Mean = Sum / n

Variance = (SumSQR - Sum*Sum/n)/(n-1)

StdDev = SQRT(Variance)

END SUBROUTINE

•Oct. 11th, 2007 •Subroutines •11

Output the Results

! ---

! Display the computed results.

! ---

SUBROUTINE PrintResult(n, Mean, Variance, StdDev)

IMPLICIT NONE

INTEGER :: n

REAL :: Mean, Variance, StdDev

WRITE(*,*)

WRITE(*,*) "No. of data items = ", n

WRITE(*,*) "Mean = ", Mean

WRITE(*,*) "Variance = ", Variance

WRITE(*,*) "Standard Deviation = ", StdDev

END SUBROUTINE PrintResult

•Oct. 11th, 2007 •Subroutines •12

5

Advantages of Subprograms

Why use subprograms?

�Supports top down program design to

simplify developing complex programs

�Allows for independent testing of subtasks

�Allows us to develop reusable code

� Isolates the program from side effects that

may be caused by the subprogram

•Oct. 11th, 2007 •Subroutines •13

Subroutine Definitions

Syntax
SUBROUTINE subroutine-name

(arg1,arg2,...,argn)

IMPLICIT NONE

[declarations]

[code]

END SUBROUTINE subroutine-name

The definition starts with SUBROUTINE,
followed by the subroutine's name.

Following the name, the list of parameters is
specified

•Oct. 11th, 2007 •Subroutines •14

Function or Subroutine?

�Factorial takes a single argument and

returns a single value

�Defining it as a function seems more

natural

�Defining it as a subroutine is more

forced

�Sometimes we don’t have a choice

•Oct. 11th, 2007 •Subroutines •15

6

Factorial

Function vs. Subroutine
INTEGER FUNCTION Factorial(n)

IMPLICIT NONE

INTEGER :: n

INTEGER :: i, Fact

Fact = 1

DO i = 1, n

Fact = Fact * i

END DO

Factorial = Fact

END FUNCTION Factorial

SUBROUTINE Factorial(n, Fact)

IMPLICIT NONE

INTEGER :: n, Fact

INTEGER :: i

Fact = 1

DO i = 1, n

Fact = Fact * i

END DO

END SUBROUTINE Factorial

•Oct. 11th, 2007 •Subroutines •16

Functions, Subroutines

What’s the Difference?

� A function defines a

new operation

� It takes some “input”

values (arguments)

and returns a result

� For example, sqrt,

mod, factorial

� A subroutine defines

a new action

analogous to a

statement.

� It might modify its

arguments but

doesn’t return a

result directly

� For example, sort

•Oct. 11th, 2007 •Subroutines •17

Functions, Subroutines

What’s the Difference?

� A function must

assign a value to the

dummy variable

which is the name of

the function

� The name of the

subroutine is not a

dummy variable and

is not assigned a

value

•Oct. 11th, 2007 •Subroutines •18

7

Functions, Subroutines

What’s the Difference?

� A function is invoked

implicitly by using it in

an expression.

� After executing, it

returns a value to be

used in evaluating the

expression

� A subroutine is called

explicitly. It appears in

the program where a

statement can appear

� After executing it just

returns

� The argument values

may have changed

•Oct. 11th, 2007 •Subroutines •19

Definition vs. Usage

� We have discussed how to define

subprograms and the difference between

function and subroutine definition

� Definitions are a one time thing

� Once defined, the subprograms can be used

throughout the program

� The way functions and subroutines are used

differs

•Oct. 11th, 2007 •Subroutines •20

Using Subroutines

Subroutines are invoked with a CALL

statement.

Syntax of CALL

CALL subroutine-name (e1, e2, ..., en)

CALL subroutine-name ()

CALL subroutine-name

In the first form, the subroutine has n

parameters.

If a subroutine does not have any arguments, it

can be called with or without parentheses

•Oct. 11th, 2007 •Subroutines •21

8

Example

To use the Factorial subroutine, use the

statement

CALL Factorial(7,result)

WRITE (*,*) result+9

To use the Factorial function, reference it

directly in an expression

WRITE (*,*) Factorial(7)+9

•Oct. 11th, 2007 •Subroutines •22

The Semantics of Call

1. When a CALL statement is executed,

• The values of the arguments are passed to the
parameters

• The number of actual arguments in the CALL
statement must match the number of formal
parameters

• The type of each argument must match the type
of the corresponding formal parameter

2. The body of the called subroutine is
executed.

•Oct. 11th, 2007 •Subroutines •23

The Semantics of Call

3. When END SUBROUTINE is reached,
• Execution of the subprogram ends

• The next statement following the CALL statement is
executed.

4. If a variable was passed as an argument,
any changes made to it remain

•Oct. 11th, 2007 •Subroutines •24

9

Minimum Function

INTEGER FUNCTION MinimumF (x, y, z)

IMPLICIT NONE

INTEGER :: x, y, z

IF (x <= y .AND. x <= z) THEN

MinimumF = x

ELSE IF (y <= x .AND. y <= z) THEN

MinimumF = y

ELSE

MinimumF = z

END IF

END FUNCTION MimimumF

•Oct. 11th, 2007 •Subroutines •25

Minimum Subroutine

SUBROUTINE MinimumS (x, y, z, m)

IMPLICIT NONE

INTEGER :: x, y, z, m

IF (x <= y .AND. x <= z) THEN

m = x

ELSE IF (y <= x .AND. y <= z) THEN

m = y

ELSE

m = z

END IF

END SUBROUTINE MimimumS

•Oct. 11th, 2007 •Subroutines •26

Examples of Use

INTEGER :: a, b, c, result

READ (*,*) a, b, c

CALL MinimumS(a,b,c,result)

WRITE (*,*) “The minimum of “, a, b, c, “ is: “,&

result

WRITE (*,*) “The minimum of “, a, b, c, “ is: “,&

MinimumF(a,b,c)

•Oct. 11th, 2007 •Subroutines •27

10

Rules for Argument

Association

�The rules for associating arguments

with formal parameters are the same as

the rules we described for functions

•Oct. 11th, 2007 •Subroutines •28

Multiple Results

�Sometimes we want operators that

return multiple results

�FORTRAN functions cannot be used

because they can only return a single

value

� In such cases (as in the next example)

we must use subroutines

•Oct. 11th, 2007 •Subroutines •29

Date Conversion

! --

! Take an integer input Number in the form of

! YYYYMMDD and convert it to Year, Month and Day

! --

SUBROUTINE Conversion (Number, Year, Month, Day)

IMPLICIT NONE

INTEGER :: Number

INTEGER :: Year, Month, Day

Year = Number / 10000

Month = MOD(Number, 10000) / 100

Day = MOD(Number, 100)

END SUBROUTINE Conversion

•Oct. 11th, 2007 •Subroutines •30

11

“Means” Example

Problem:
Compute the arithemetic, geometric and harmic
means of three real values

Question:
Do we use a function or subroutine?

A function only returns a single result.
To compute three different values, we have to
use a subroutine

•Oct. 11th, 2007 •Subroutines •31

“Means” Example

! --

! Subroutine to take three REAL values and compute

! their arithmetic, geometric, and harmonic means.

! --

SUBROUTINE Means(a, b, c, Am, Gm, Hm)

IMPLICIT NONE

REAL :: a, b, c

REAL :: Am, Gm, Hm

Am = (a + b + c)/3.0

Gm = (a * b * c)**(1.0/3.0)

Hm = 3.0/(1.0/a + 1.0/b + 1.0/c)

END SUBROUTINE Means

•Oct. 11th, 2007 •Subroutines •32

Swap

Problem:
Interchange the values stored in two integer
variables

Question:
Do we use a function or subroutine?

A function returns a result.

To perform an action that modifies
variables, we have to use a subroutine

•Oct. 11th, 2007 •Subroutines •33

12

Swap

SUBROUTINE Swap(a, b)

IMPLICIT NONE

INTEGER :: a, b

INTEGER :: temp

temp = a

a = b

b = temp

END SUBROUTINE Swap

Example:

i = 4

j = 9

CALL Swap(i, j)

WRITE (*,*) i, j

•Oct. 11th, 2007 •Subroutines •34

Array Parameters

� When we declare an array in a program, we

must specify its size

� The compiler allocates storage for the

specified number of memory cells

� When we write a subprogram definition to

process an array, we want it to be generic

� That is, we want to be able to use it with

different arrays, possibly of different sizes

•Oct. 11th, 2007 •Subroutines •35

Minimum Value in an Array

REAL FUNCTION Min (A, n)

IMPLICIT NONE

INTEGER :: n

INTEGER :: I

REAL :: A(n)

Min = A(1)

DO I = 2, n

IF (A(I) < Min) Min = A(I)

END DO

RETURN Min

END FUNCTION Min

•Oct. 11th, 2007 •Subroutines •36

13

Array Parameters

�Why can we declare an array when we

don’t know its size?

�The compiler does not allocate storage

when we define a subprogram

�When we invoke a subprogram the

compiler just makes the name an alias

for an existing block of storage

•Oct. 11th, 2007 •Subroutines •37

Sorting Values in an Array
SUBROUTINE Sort (A, n)

IMPLICIT NONE

INTEGER :: n

REAL :: A(n)

INTEGER :: j, k, minptr

DO j = 1,n-1

minptr = j

DO k = j+1,n

IF (A(k)<A(minptr)) minptr = k

END DO

IF (J /= minptr) THEN

CALL SwapReals (A(j), A(minptr))

END IF

END DO

END SUBROUTINE Sort

•Oct. 11th, 2007 •Subroutines •38

