Computers in Engineering COMP 208

Matrices Michael A. Hawker

Matrices

- #2 dimensional array of numbers
 - Spreadsheet in Excel
 - Used in Linear Algebra
 - Systems of Equations

Adding Matrices

- With two matrices A and B
- Add all components of A to components of B:

$$\begin{pmatrix} 2 & 0 & 1 & 1 & 0 & 1 \\ 0 & 0 & 2 & 3 & 1 & 0 \\ 1 & 1 & 0 & 0 & 2 \\ 0 & 2 & 0 & 0 & 1 & 0 \end{pmatrix} \stackrel{\frown}{\leftarrow} \begin{pmatrix} 2 & 2 & 2 & 3 & 3 & 2 \\ 2 & 2 & 2 & 3 & 3 & 3 \\ 2 & 2 & 2 & 3 & 3 & 2 \\ 2 & 2 & 3 & 3 & 3 & 3 \end{pmatrix} \stackrel{\blacksquare}{=} \begin{pmatrix} 4 & 2 & 3 & 4 & 3 & 3 \\ 2 & 2 & 4 & 6 & 4 & 3 \\ 3 & 3 & 2 & 3 & 3 & 4 \\ 2 & 4 & 3 & 3 & 4 & 3 \end{pmatrix}$$

Matrices

Sum Two Matrices

INTEGER :: SIZE = 20
REAL :: A(20,20), B(20,20), C(20,20)
INTEGER :: i, j

DO i = 1, SIZE DO j = 1, SIZE C(i,j) = A(i,j) + B(i,j) END DO END DO

More Matrix Processing

- So far we have just focused on reading values into a matrix
- Here are some more examples of applications where we process the cells of a two dimensional array

Initialize a Matrix to be the Identity Matrix

INTEGER :: SIZE = 20INTEGER :: Ident (20, 20) INTEGER :: i, j DO i = 1, SIZE DO j = 1, SIZE IF (i == j) THEN Ident(i, i) = 1ELSE Ident(i,j) = 0END TF END DO END DO

Transpose a Square Matrix

```
INTEGER :: SIZE = 20
REAL :: A(20,20), B(20,20), C(20,20)
INTEGER :: i, j
REAL :: Temp
```

```
DO i = 1, SIZE
DO j = i+1, SIZE
Temp = A(i,j)
A(i,j) = A(j,i)
A(j,i) = Temp
END DO
END DO
```

What if j's initial value was 1 instead of i+1?

Oct. 4th, 2007

Multiplying Matrices

Multiply each row component with each column component of the second matrix and sum each value to obtain the result for their intersection point in the resultant matrix

Multiply Square Matrices

INTEGER :: SIZE = 20
REAL :: A(20,20), B(20,20), C(20,20)
INTEGER :: i, j, k

DO i = 1, SIZE DO j = 1, SIZE C(i,j) = 0 DO k = 1, SIZE C(i,j) = C(i,j) + A(i,k)*B(k,j) END DO END DO END DO

An Application

- A power generating station has four generators
- To determine productivity of each of the generators we sample the power supplied at six different time periods
- How do we represent the data?

Data Representation

- Use a two dimensional array with each column representing the power supplied by a generator
- * Each row represents a time of measurement

```
INTEGER :: gens = 4
INTEGER :: samples = 6
REAL :: power(6, 4)
```

Power Output

We can calculate the power output by the entire plant at each sample time

```
REAL :: power_output(samples)
. . .
DO time = 1, samples
   power_output(time) = 0
   DO gen = 1, gens
        power_output(time) = &
            power_output(time) + power(time,gen)
   END DO
END DO
```

Generator Output

We can calculate the average output of each generator

```
REAL :: gen_sum(gens), gen_avg(gens)
. . .
DO gen = 1, gens
gen_sum(gen) = 0
DO time = 1, samples
gen_sum(gen) = &
        gen_sum(gen) + power(time,gen)
END DO
gen_avg(gen) = gen_sum(gen)/samples
END DO
```