
1

Computers in Engineering

COMP 208

Functions

Michael A. Hawker

Functions in FORTRAN

� There are many useful operations which are

not part of the basic instruction set of the

computer

� FORTRAN provides many such functions for

our use. We have seen some of these

“intrinsic” or “predefined” functions such as
sqrt(x), exp(x), mod(x,y)

� FORTRAN also allows us to define our own

new functions

Oct. 4th, 2007 Functions 2

A Factorial Function

INTEGER FUNCTION Factorial(n)

IMPLICIT NONE

INTEGER :: n

INTEGER :: i, Fact

Fact = 1

DO i = 1, n

Fact = Fact * i

END DO

Factorial = Fact

END FUNCTION Factorial

Oct. 4th, 2007 Functions 3

2

Function Definition Syntax

Syntax of a function definition

type FUNCTION function-name

(arg1, arg2, ..., argn)

IMPLICIT NONE

[declarations]

[statements]

END FUNCTION function-name

Oct. 4th, 2007 Functions 4

A Function Definition

INTEGER FUNCTION Factorial(n)

IMPLICIT NONE

INTEGER :: n

INTEGER :: i, Fact

! **** body suppressed to save space ****

END FUNCTION Factorial

The keyword FUNCTION tells the compiler that
we are defining a function

Oct. 4th, 2007 Functions 5

A Function Definition

INTEGER FUNCTION Factorial(n)

IMPLICIT NONE

INTEGER :: n

INTEGER :: i, Fact

! **** body suppressed to save space ****

END FUNCTION Factorial

The function computes a value to be used. We
must specify the type of that value

This type specification precedes the word
FUNCTION

Oct. 4th, 2007 Functions 6

3

Naming the Function

INTEGER FUNCTION Factorial(n)

IMPLICIT NONE

INTEGER :: n

INTEGER :: i, Fact

! **** body suppressed to save space ****

END FUNCTION Factorial

We must name any function we define so that
we can refer to in when we use it

The name we give the function follows the
keyword FUNCTION

Oct. 4th, 2007 Functions 7

Function Parameters

INTEGER FUNCTION Factorial(n)

IMPLICIT NONE

INTEGER :: n

INTEGER :: i, Fact

! **** body suppressed to save space ****

END FUNCTION Factorial

The variables inside parenthesis that follow the
function name are called parameters or
formal arguments

Some functions have no parameters. We still
need parentheses but there are no variables

Oct. 4th, 2007 Functions 8

Function Parameters

INTEGER FUNCTION Factorial(n)

IMPLICIT NONE

INTEGER :: n

INTEGER :: i, Fact

! **** body suppressed to save space ****

END FUNCTION Factorial

The parameter types must be declared inside
the function definition

Oct. 4th, 2007 Functions 9

4

Local Variables

INTEGER FUNCTION Factorial(n)

IMPLICIT NONE

INTEGER :: n

INTEGER :: i, Fact

! **** body suppressed to save space ****

END FUNCTION Factorial

Other variables used in the computation must
also be declared.

These are called local variables

Oct. 4th, 2007 Functions 10

Ending a Function Definition

INTEGER FUNCTION Factorial(n)

IMPLICIT NONE

INTEGER :: n

INTEGER :: i, Fact

! **** body suppressed to save space ****

END FUNCTION Factorial

The definition terminates with END FUNCTION

followed by the name of the function.

Oct. 4th, 2007 Functions 11

Semantics – Function Body

INTEGER FUNCTION Factorial(n)

! *** declarations suppressed to save space

Fact = 1

DO i = 1, n

Fact = Fact * i

END DO

Factorial = Fact

END FUNCTION Factorial

The body of a function is basically a FORTRAN
program that tells the computer how to
process the data values.

Oct. 4th, 2007 Functions 12

5

Semantics – Function Body

INTEGER FUNCTION Factorial(n)

! *** declarations suppressed to save space

Fact = 1

DO i = 1, n

Fact = Fact * i

END DO

Factorial = Fact

END FUNCTION Factorial

When using a function, we must provide a value for any
parameters (in this example, n)

The statements of the function body are executed using
these values for the parameters

Oct. 4th, 2007 Functions 13

Semantics – Return Value

INTEGER FUNCTION Factorial(n)

! *** code suppressed to save space ***

Factorial = Fact

END FUNCTION Factorial

A function computes a value.
It must provide this value to the expression that
used the function

In Fortran, it returns the result by assigning the
value to be returned to a variable that has the
same name as the function name

Oct. 4th, 2007 Functions 14

Semantics – Return Value

INTEGER FUNCTION Factorial(n)

! *** code suppressed to save space ***

Factorial = Fact

END FUNCTION Factorial

To return the value, the function definition must
have one or more assignments of the form:

function-name = expression

The type of the expression must be the same

as the type of the function

Oct. 4th, 2007 Functions 15

6

Semantics – Return Value

INTEGER FUNCTION Factorial(n)

! *** code suppressed to save space ***

Factorial = Fact

END FUNCTION Factorial

The function name is called a dummy or pseudo
variable

It is not a true variable because it does not have
a memory cell allocated to it

Therefore the name of the function should not
appear as a variable in any other expression

Oct. 4th, 2007 Functions 16

Example – Function Definition

INTEGER FUNCTION Minimum (x, y, z)

IMPLICIT NONE

INTEGER :: x, y, z

IF (x <= y .AND. x <= z) THEN

Minimum = x

ELSE IF (y <= x .AND. y <= z) THEN

Minimum = y

ELSE

Minimum = z

END IF

END FUNCTION Mimimum

Oct. 4th, 2007 Functions 17

Defining vs. Using Functions

�As mentioned some functions (e.g. sqrt)

have been predefined for us

�We have seen how to define new

functions that are not intrinsic

�We only have to define a function once

and then we can use it as often as we

wish

�How do we use the function we

defined?
Oct. 4th, 2007 Functions 18

7

Using Functions

�User-defined function are used in the

same way as Fortran intrinsic functions.

�They can appear as part of any

expression

�When we use them, we must provide

values for the arguments

�The function returns a value and that

value is used in evaluating the rest of

the expression
Oct. 4th, 2007 Functions 19

The Semantics of Using

Functions
� If func is the name of a function with

parameters p
1,
p
2
and p

3
, we can write

func(e1, e2, e3) in an expression

� This uses the function to compute a value

� The value is then used in the expression

� Think of how we have used intrinsic functions

like mod, sqrt and others

Oct. 4th, 2007 Functions 20

The Semantics of Using

Functions
What happens when the program evaluates
func(e1, e2, e3)?

• The arguments e1, e2 and e3 are evaluated

• It uses the values of these arguments to

initialize the parameters

• The computer evaluates the function, using

the function definition provided

• When it reaches the end of the function

evaluation, it returns the value obtained

Oct. 4th, 2007 Functions 21

8

Examples of Using Functions

! compute the square root of discriminant d

d = SQRT(b*b - 4.0*a*c)

if ((mod(year,4) == 0 .and. mod(year,100) /= 0) .or.

mod(year,400) == 0) then

lastday = 29

Oct. 4th, 2007 Functions 22

Prime Numbers

� Applications that use cryptography, random

number generators, simulation, hashing and

others require prime numbers

�What is a prime number?

� A positive integer is prime if it has no proper

divisors (i.e. the only divisors are 1 and the

number itself)

� For example 2, 3, 5, 29, 67, 83, 97, 21257787-1

Oct. 4th, 2007 Functions 23

Problem

� Find all prime numbers less than a given

value, n

� Some facts:

� 2 is a prime number

� All primes greater than 2 are odd

� If we could determine whether a given number is

prime or not, we could write a program that tests

each odd number between 2 and n

� Of course, n must be positive and 2 or greater

Oct. 4th, 2007 Functions 24

9

High Level Solution

1. We begin by assuming we are able to

determine whether a given number is prime

or not

2. We input n and test to see whether it is

within a valid range (input validation). We

assume we are able to validate the input.

3. We then test each odd number between 2

and n using for primality. We use a loop

structure to process each of these numbers.

Oct. 4th, 2007 Functions 25

Top Down Approach

� This is an example of “Top-Down

Programming”

�We design a solution that assumes we are

able to obtain the solution to various

subproblems

� This high level solution makes two

assumptions

� We know how to obtain and validate the input

� We know how to determine that a number is prime

Oct. 4th, 2007 Functions 26

PROGRAM Primes

IMPLICIT NONE

INTEGER :: Range, Number, Count

integer :: GetNumber

LOGICAL :: Prime

Range = GetNumber()

Count = 1

WRITE(*,*) "Prime number #", Count, ": ", 2

DO Number = 3, Range, 2

IF (Prime(Number)) THEN

Count = Count + 1

WRITE(*,*) "Prime number #", Count, ": ", NUMBER

END IF

END DO

WRITE(*,*) "There are ", Count, " primes between 2 and

", Range

END PROGRAM Primes

Oct. 4th, 2007 Functions 27

10

The Missing Pieces

�This solution made two assumptions

�We know how to obtain and validate the

input

�We know how to determine that a number

is prime

�We used functions to write the program

based on these assumptions

�We have to define the functions we

used

Oct. 4th, 2007 Functions 28

Obtain and Validate the Input

INTEGER FUNCTION GetNumber()

IMPLICIT NONE

INTEGER :: N

WRITE(*,*) "What is the range ? "

DO

READ(*,*) N

IF (N >= 2) EXIT

WRITE(*,*) "The range value must be >= 2. "&

"Your input is ", N

WRITE(*,*) "Please try again:"

END DO

GetNumber = N

END FUNCTION GetNumber

Oct. 4th, 2007 Functions 29

Is a number, M, Prime?

� Look for divisors less than M, where M>2

�We need a loop that checks goes the

potential divisors

� Potential divisors are odd numbers, 3, 5, 9, 11, …

� For each one check whether it divides M evenly

� A clever observation: We only have to check

for divisors up to

� That is divisor*divisor must be less than M

Oct. 4th, 2007 Functions 30

M

11

Testing for Primality

LOGICAL FUNCTION Prime(Number)

IMPLICIT NONE

INTEGER :: Number

INTEGER :: Div

IF (Number == 2) THEN

Prime = .TRUE.

ELSE IF (MOD(Number,2) == 0) THEN

Prime = .FALSE.

ELSE

Div = 3

DO

IF (Div*Div>Number .OR. MOD(Number,Div)==0) EXIT

Div = Div + 2

END DO

Prime = Div*Div > Number

END IF

END FUNCTION Prime

Oct. 4th, 2007 Functions 31

Complete Program (1)

PROGRAM Primes

IMPLICIT NONE

INTEGER :: Range, Number, Count

INTEGER :: GetNumber

LOGICAL :: Prime

Range = GetNumber()

Count = 1

WRITE(*,*) "Prime number #", Count, ": ", 2

DO Number = 3, Range, 2

IF (Prime(Number)) THEN

Count = Count + 1

WRITE(*,*) "Prime number #", Count, ": ", Number

END IF

END DO

WRITE(*,*) "There are ", Count, " primes between 2 and ", &

Range

END PROGRAM Primes

Oct. 4th, 2007 Functions 32

Complete Program (2)

!--

! This function does not require any formal argument.

!--

INTEGER FUNCTION GetNumber()

IMPLICIT NONE

INTEGER :: N

WRITE(*,*) "What is the range ? "

DO

READ(*,*) N

IF (N >= 2) EXIT

WRITE(*,*) "The range value must be >= 2. "&

"Your input is ", N

WRITE(*,*) "Please try again:"

END DO

GetNumber = N

END FUNCTION GetNumber

Oct. 4th, 2007 Functions 33

12

Complete Program (3)

LOGICAL FUNCTION Prime(Number)

IMPLICIT NONE

INTEGER, INTENT(IN) :: Number

INTEGER :: Div

IF (Number == 2) THEN

Prime = .TRUE.

ELSE IF (MOD(Number,2) == 0) THEN

Prime = .FALSE.

ELSE

Div = 3

DO

IF (Div*Div>Number .OR. MOD(Number,Div)==0) EXIT

Div = Div + 2

END DO

Prime = Div*Div > Number

END IF

END FUNCTION Prime

Oct. 4th, 2007 Functions 34

Some Caveats

There are a couple of requirements for the
evaluation of func(e1, e2, e3)to make

sense

• The number of parameters and arguments

must be equal.

• The type of the corresponding arguments

and parameters must be the same

• The arguments can be constants, variables

or more general expressions.

Oct. 4th, 2007 Functions 35

Argument-Parameter

Association

�When a function is used, the argument

values are used to initialize the

parameters

�The way this is done is not as simple as

it might seem

� It varies from language to language and

is very different in Fortran than in C

�We present the three formal rules that

Fortran uses
Oct. 4th, 2007 Functions 36

13

Warning!

�The next few slides are very technical in

nature

�The material might be a bit tedious but it

is important to understand

� It will become even more important later

in the course when we study C

Oct. 4th, 2007 Functions 37

Argument-Parameter

Association

�The first rule tells us what happens

when a constant or expression is used

as an argument

�This is the most intuitive case

�The second rule deals with arguments

that are variables

�The association is a bit more complex here

Oct. 4th, 2007 Functions 38

Rule 1 -- Expressions

If an actual argument is an expression or a constant, it
is evaluated and the result is saved into a temporary
location. Then, the parameter becomes a reference
to this temporary cell

INTEGER :: a = 10, b = 3, c = 37

WRITE(*,*) Minimum(18,c-a,a+b)

When the function is invoked, new temporary variables
named x, y and z are created. The value of x is
initialized to 18, y to 27 and z to 13.

The function returns 13.

Oct. 4th, 2007 Functions 39

14

Rule 2 -- Variables

If an actual argument is a variable, the corresponding
formal argument is made to refer to the same
memory cell.

INTEGER :: a = 10, b = 3, c = 37

WRITE(*,*) Minimum(a,b,c)

When the function is invoked, there are no new
variables created. The parameter x refers to a, y to b
and z to c. We say x is an alias for a. There are two
names for the same memory cell.

The function returns 3.

Oct. 4th, 2007 Functions 40

What Does This Function Do?

REAL FUNCTION DoSomething (a, b)

IMPLICIT NONE

INTEGER :: a, b

a = a - b

b = a + b

a = b - a

DoSomething = a

END FUNCTION DoSomething

Oct. 4th, 2007 Functions 41

What Happens?

INTEGER :: x = 12, y = 5

WRITE (*,*) x, y

WRITE (*,*) DoSomething (12, 5)

WRITE (*,*) x, y

Output:

12 5

5

12 5

Oct. 4th, 2007 Functions 42

15

What Happens?

INTEGER :: x = 12, y = 5

WRITE (*,*) x, y

WRITE (*,*) DoSomething (x, y)

WRITE (*,*) x, y

Output:
12 5

5

5 12

Oct. 4th, 2007 Functions 43

What Happens?

More problematically

INTEGER :: x = 12, y = 7

WRITE (*,*) x, y, DoSomething (x, y)

Oct. 4th, 2007 Functions 44

Function Execution (summary)

When a function is invoked

1. arguments are evaluated

2. parameter-argument associations are made

3. function body executes until it reaches the END

FUNCTION statement

4. value assigned to the function name is returned

5. all temporary storage is released

6. this value is used where the function was invoked

Oct. 4th, 2007 Functions 45

16

Where Do Function Definitions

Go?

The structure of a program is:
PROGRAM program-name

IMPLICIT NONE

[declarations]

[statements]

END PROGRAM program-name

[function definitions]

Function definitions are placed in the same file
as the program

They can be anywhere in the file but usually
follow the program

Oct. 4th, 2007 Functions 46

Average of Three Numbers

PROGRAM Avg

IMPLICIT NONE

REAL :: a, b, c, Mean

READ(*,*) a, b, c

Mean = Average (a, b, c)

WRITE(*,*) a, b, c, Mean

END PROGRAM Avg

REAL FUNCTION Average(a, b, c)

IMPLICIT NONE

REAL :: a, b, c

Average = (a + b + c) / 3.0

END FUNCTION Average

Oct. 4th, 2007 Functions 47

Two Functions (part 1)

PROGRAM TwoFunctions

IMPLICIT NONE

INTEGER :: a, b, BiggerOne

REAL :: GeometricMean

READ(*,*) a, b

BiggerOne = Maximum(a,b)

GeometricMean = GeoMean(a,b)

WRITE(*,*) "Input = ", a, b

WRITE(*,*) "Larger one = ", BiggerOne

WRITE(*,*) "Geometric Mean = ", GeometricMean

END PROGRAM TwoFunctions

Oct. 4th, 2007 Functions 48

17

Two Functions (part 2)

INTEGER FUNCTION Maximum(a, b)

IMPLICIT NONE

INTEGER :: a, b

IF (a >= b) THEN

Maximum = a

ELSE

Maximum = b

END IF

END FUNCTION Maximum

REAL FUNCTION GeoMean(a, b)

IMPLICIT NONE

INTEGER :: a, b

GeoMean = SQRT(REAL(a*b))

END FUNCTION GeoMean

Oct. 4th, 2007 Functions 49

