
1

Computers in Engineering

COMP 208

Multi-Dimensional Arrays

Michael A. Hawker

A Two Dimensional Array

�A small hotel with four floors and six

rooms on each floor could use a table

with four columns and six rows to

represent the number of occupants in

each room:

Oct. 2nd, 2007 Mulit-Dimensional Arrays 2



















010020

200011

013200

101102

Multidimensional Arrays

�Think of a table with rows and columns.

�That forms a two dimensional array.

�A pile of these tables one on top of the

other is a three dimensional array

�Fortran allows up to seven dimensions

Oct. 2nd, 2007 Mulit-Dimensional Arrays 3

2

Using Tables

�We must give the

table a name to be

able to reference it

� The rows and

columns are

referenced by a row

index and a column

index

Oct. 2nd, 2007 Mulit-Dimensional Arrays 4

1

2
3

4

row indices

rooms

column indices

1 2 3 4 5 6



















010020

200011

013200

101102

Accessing Values

�To find the number of people occupying

a room, we specify

� the floor (the row index) and

� the room (the column index)

�For example the number of occupants

in the 5th room on the 2nd floor could be

accessed by indexing as rooms(2,5)

Oct. 2nd, 2007 Mulit-Dimensional Arrays 5

Occupancy and Capacity

� A Hotel could be represented by two tables

� One table might contain room occupancies

� A second table might represent maximum room

capacities





















010020

200011

013200

101102

Oct. 2nd, 2007 Mulit-Dimensional Arrays 6





















333322

233222

333222

233222

occupancy capacity

3

Three Dimensional Arrays

We can combine the two tables into a single

structure that represents the Hotel

This would form a three dimensional object





















010020

200011

013200

101102

Oct. 2nd, 2007 Mulit-Dimensional Arrays 7





















333322

233222

333222

233222

Accessing Values

�To access an individual cell, we need

three indices

�We select which table we want

� the first – representing room occupancy or

� the second – representing room capacity

�We specify the floor (the row index) and

�We specify the room (the column index)

Oct. 2nd, 2007 Mulit-Dimensional Arrays 8

Accessing Values

For example the number of occupants in the 5th

room on the 2nd floor could be accessed by

indexing as

Hotel(1,2,5)

The capacity of the same room would be

Hotel(2,2,5)

Oct. 2nd, 2007 Mulit-Dimensional Arrays 9

4

Declaring Multidimensional Arrays

�The declaration is similar to that of one

dimensional arrays

�We specify a size for each dimension
INTEGER :: Hotel(2,4,6)

INTEGER :: Motel(2,2,18)

REAL :: Matrix(25,25)

Oct. 2nd, 2007 Mulit-Dimensional Arrays 10

Accessing Multidimensional Arrays

�We access the individual cells by specifying

an index for each dimension.

� The index can be any integer expression.

Hotel(2,1,5)

Matrix(j,k)

Matrix(3,j+2*k)

� The values of the indices should be between

one and the size of that dimension

Oct. 2nd, 2007 Mulit-Dimensional Arrays 11

Examples

� In the following examples, we see how

to access two dimensional arrays

Oct. 2nd, 2007 Mulit-Dimensional Arrays 12

5

Processing Tables

� In going through all cells in a table,

there are two methods

�Cells can be accessed row by row

�This is called row-major order

�Cells can be accessed column by column

�This is called column-major order

�Fortran stores tables internally in

column major order

Oct. 2nd, 2007 Mulit-Dimensional Arrays 13

Array Input and Output

Read the array values row-by-row

INTEGER :: X(2,4)

. . .

DO I = 1, 2

DO J = 1, 4

READ(*,*) X(I,J)

END DO

END DO

Oct. 2nd, 2007 Mulit-Dimensional Arrays 14

The Input Values

Assume the input is
4

8

3

9

7

5

2

6

Oct. 2nd, 2007 Mulit-Dimensional Arrays 15

6

Row Major Result

For the following input, one value per line
4 8 3 9 7 5 2 6

The resulting matrix, X, is

Oct. 2nd, 2007 Mulit-Dimensional Arrays 16










6257

9384

Array Input and Output

Read the array values column-by-column

INTEGER :: X(2,4)

. . .

DO J = 1, 4

DO I = 1, 2

READ(*,*) X(I,J)

END DO

END DO

Oct. 2nd, 2007 Mulit-Dimensional Arrays 17

Column Major Result

For the following input (the same as

before) , one value per line
4 8 3 9 7 5 2 6

The resulting matrix, X, is

Oct. 2nd, 2007 Mulit-Dimensional Arrays 18










6598

2734

7

Let’s Compare

Input values:

4 8 3 9 7 5 2 6

Oct. 2nd, 2007 Mulit-Dimensional Arrays 19

row major column major










6257

9384










6598

2734

Using Implied Loops

Read the array values row-by-row with an

implied DO loop

INTEGER :: X(2,4)

. . .

DO I = 1, 2

READ(*,*) (X(I,J), J = 1, 4)

END DO

Oct. 2nd, 2007 Mulit-Dimensional Arrays 20

Row Major (again)

Assume the input is
4 8 3 9 7 5 2 6

The resulting matrix, X, is

Oct. 2nd, 2007 Mulit-Dimensional Arrays 21










6257

9384

8

Implied Do Loops (again)

Read the array values column-by-column with

an implied DO loop

INTEGER :: X(2,4)

. . .

DO J = 1, 4

READ(*,*) (X(I,J), I = 1, 2)

END DO

Oct. 2nd, 2007 Mulit-Dimensional Arrays 22

Column Major (again)

Assume the input is
4 8

3 9

7 5

2 6

The resulting matrix, X, is

Oct. 2nd, 2007 Mulit-Dimensional Arrays 23










6598

2734

Nested Implied Loops

�We can use nested implied DO loops to read
the values

� The following code reads values into an array
in row major order

� The values can appear on one or more lines
with no restrictions

INTEGER :: X(2,4)

. . .

READ(*,*) ((X(I,J), J = 1, 4), I = 1, 2)

Oct. 2nd, 2007 Mulit-Dimensional Arrays 24

9

Column Major Order

We can also use nested implied loops to read in
column major order

INTEGER :: X(2,4)

. . .

READ(*,*) ((X(I,J), I = 1, 2), J = 1, 4)

Oct. 2nd, 2007 Mulit-Dimensional Arrays 25

Just plain read

�What about trying this?

INTEGER :: X(2,4)

. . .

READ(*,*) X

�This reads values one at a time into the

cells of X, but where are they placed?

�Fortran stores arrays in

Column Major Order

Oct. 2nd, 2007 Mulit-Dimensional Arrays 26

More Matrix Processing

�So far we have just focused on reading

values into a matrix

�Here are some more examples of

applications where we process the cells

of a two dimensional array

Oct. 2nd, 2007 Mulit-Dimensional Arrays 27

10

Initialize a Matrix to be the

Identity Matrix
INTEGER :: SIZE = 20

INTEGER :: Ident (20, 20)

INTEGER :: i, j

DO i = 1, SIZE

DO j = 1, SIZE

IF (i == j) THEN

Ident(i,i) = 1

ELSE

Ident(i,j) = 0

END IF

END DO

END DO

Oct. 2nd, 2007 Mulit-Dimensional Arrays 28

Sum Two Matrices

INTEGER :: SIZE = 20

REAL :: A(20,20), B(20,20), C(20,20)

INTEGER :: i, j

DO i = 1, SIZE

DO j = 1, SIZE

C(i,j) = A(i,j) + B(i,j)

END DO

END DO

Oct. 2nd, 2007 Mulit-Dimensional Arrays 29

Transpose a Square Matrix

INTEGER :: SIZE = 20

REAL :: A(20,20), B(20,20), C(20,20)

INTEGER :: i, j

REAL :: Temp

DO i = 1, SIZE

DO j = i+1, SIZE

Temp = A(i,j)

A(i,j) = A(j,i)

A(j,i) = Temp

END DO

END DO

What if j’s initial value was 1 instead of i+1?

Oct. 2nd, 2007 Mulit-Dimensional Arrays 30

11

Multiply Square Matrices

INTEGER :: SIZE = 20

REAL :: A(20,20), B(20,20), C(20,20)

INTEGER :: i, j, k

DO i = 1, SIZE

DO j = 1, SIZE

C(i,j) = 0

DO k = 1, SIZE

C(i,j) = A(i,k)*B(k,j)

END DO

END DO

END DO

Oct. 2nd, 2007 Mulit-Dimensional Arrays 31

An Application

�A power generating station has four

generators

�To determine productivity of each of the

generators we sample the power

supplied at six different time periods

�How do we represent the data?

Oct. 2nd, 2007 Mulit-Dimensional Arrays 32

Data Representation

� Use a two dimensional array with each

column representing the power supplied by a

generator

� Each row represents a time of measurement

INTEGER :: gens = 4

INTEGER :: samples = 6

REAL :: power(6, 4)

Oct. 2nd, 2007 Mulit-Dimensional Arrays 33

12

Power Output

We can calculate the power output by the entire plant at
each sample time
REAL :: power_output(samples)

. . .

DO time = 1, samples

power_output(time) = 0

DO gen = 1, gens

power_output(time) = &

power_output(time)+ power(time,gen)

END DO

END DO

Oct. 2nd, 2007 Mulit-Dimensional Arrays 34

Generator Output

We can calculate the average output of each generator
REAL :: gen_sum(gens), gen_avg(gens)

. . .

DO gen = 1, gens

gen_sum(gen) = 0

DO time = 1, samples

gen_sum(gen) = &

gen_sum(gen) + power(time,gen)

END DO

gen_avg(gen) = gen_sum(gen)/samples

END DO

Oct. 2nd, 2007 Mulit-Dimensional Arrays 35

