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Verifying ISBN Numbers
program isbn

implicit none

integer :: digits(10)

integer :: pos, sum

logical :: valid

read (*,"(10I1)") (digits(pos), pos = 1,10)

sum = 0

do pos = 1,10do pos = 1,10

sum = sum + (11-pos)*digits(pos)

end do

valid = mod(sum,11) == 0

if (valid) then

write(*,*) "ISBN is valid"

else

write(*,*) "ISBN is invalid"

end if

end program isbn
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The second *

�The second * in the read was replaced 

by a format string

�A format string can be used to specify 

where to look for the inputwhere to look for the input

�The format (10I1) means we expect

� 10 values

�Each value is an integer (I)

�Each value is one digit in length (1)
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FORTRAN Formats

� The READ and WRITE statements we have 

seen so far are called free-format

statements.

� They are easy to use but we have no control � They are easy to use but we have no control 

over the placement of the input or 

appearance of the output. 

� To control the appearance of the input and 

output, Fortran allows us to use format 

specifications 

Sept. 27th, 2007 Formatting Input and Output 4



How much was that?

PROGRAM cost

IMPLICIT NONE

REAL :: price, gst, pst

READ(*,*) price

gst = 0.07*pricegst = 0.07*price

pst = 0.075*(price + gst)

WRITE(*,*) "Price: ",price

WRITE(*,*) "GST: ", gst

WRITE(*,*) "PST: ", pst

WRITE(*,*) "Total Cost: ",price+gst+pst

END PROGRAM cost
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The results aren’t very pretty.

136.95

Price:    136.9500    

GST:    9.586500    GST:    9.586500    

PST:    10.99024    

Total Cost:    157.5267
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Wouldn’t this be nicer?

136.95

Price:  136.95

GST:    9.59GST:    9.59

PST:   10.99

Total Cost:  157.53
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Formats

� FORTRAN formats allow us to specify the 

placement of values both in output and input

� Using format descriptors we can control the 

appearance of output valuesappearance of output values

� Format descriptors specify

� The appearance of output values

� Repetition

� Vertical positioning

� Horizontal positioning
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Fortran Formats – Method 1

There are two possible ways to specify a 

format.

In the first, we write the format as a 

character string and use it to replace the character string and use it to replace the 
second asterisk in WRITE(*,*).

WRITE(*,"(A15,F7.2)") "Total Cost: ", & 

price+gst+pst
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Fortran Formats – Method 2

The most common method uses a 

FORMAT statement

A FORMAT statement has the syntax:
label FORMAT format-codelabel FORMAT format-code

To use the format, we specify its label in 

the WRITE statement
WRITE(*,100) "Total Cost: ", price+gst+pst

100 Format (A15,F7.2)
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Cost With Formatting
PROGRAM cost

IMPLICIT NONE

REAL :: price, gst, pst

READ(*,*) price

gst = 0.07*price

pst = 0.075*(price + gst)pst = 0.075*(price + gst)

WRITE(*,100) "Price: ",price

WRITE(*,100) "GST: ", gst

WRITE(*,100) "PST: ", pst

WRITE(*,100) "Total Cost: ",price+gst+pst

100 FORMAT (A15,F7.2)

END PROGRAM cost
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Fortran Formats

The FORMAT statement in the previous 
example specifies a format

100 FORMAT (A15,F7.2)

A format is list of descriptors inside 
parentheses

( desc1, desc2, desc3, . . . )
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Format Codes

� We will look at some of the many 
format codes available in FORTRAN 
for specifying:

1. Real values1. Real values

2. Integer values

3. Character values

4. Horizontal spacing

5. Vertical spacing
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Real Values

Fixed Point Notation

100 Format (A15,F7.2)

�The second format code in the list 

specifies that we are to print a real 

number using two decimal pointsnumber using two decimal points

�The in the code tells the computer to 

allow seven spaces to fit the number 

into
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Real Numbers – Fixed Point

� The general format code for has the form
Fw.d

� The d specifies the number of decimal 
places

� The w specifies the field width and includes � The w specifies the field width and includes 
space for

1. d decimal digits

2. The decimal point

3. The whole number

4. The sign, if the number is negative
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F Format Example 

Example
REAL :: x=1.0, y=1100.1003

WRITE(*, 900) x, y

900  FORMAT (F3.1, F10.4) 

F3.1 is format code for x and F10.4 is for 

y
1.0#1100.1003
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Variations on a Theme

real :: x=1.0, y=1100.1003

write (*,"(F3.1,F11.4)") x, y

write (*,"(F3.1,F10.4)") x, y

write (*,"(F3.1,F9.4)") x, y

write (*,"(F3.1,F8.4)") x, y

� Results:

1.0  1100.1003

1.0 1100.1003

1.01100.1003

1.0********
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Oops!

�What happened in the last example?

�Whenever a value to be output does not 

fit into the allocated field width, w, the 

computer just outputs w *’s\computer just outputs w *’s\

�This is true of any type of value, not just 

real numbers
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Real Numbers

Exponential Notation

� The E format descriptor has the form

Ew.d

� They are displayed as a normalized number 
between 0.1 and 1.0, multiplied by a power of 
1010

� The output is in the form
±0.ddddE±ee

� The number of significant digits is specified 
by d, the exponent uses two places

� We must have w≥d+7
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E Code Variants

Example:
real :: y=1100.1003

write (*,"(E15.8)") y

write (*,"(E15.4)") y

write (*,"(E15.2)") y

write (*,"(E12.8)") y

Results:
0.11001003E+04

0.1100E+04

0.11+E04

************
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Integer Numbers

“I” Format Codes

�The general format code for has the 

form

Iw

�The w specifies the field width

�Numbers are right justified

� If a number doesn’t fit, *’s are output
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Character Values

“A” Format Code

� The general format code for has the form

Aw

� The w specifies the field width

� Strings are right justified� Strings are right justified

� If a number doesn’t fit, the first w characters 

are output

� If w is left out, the entire character string is 

printed
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Cost With Formatting
PROGRAM cost

IMPLICIT NONE

REAL :: price, gst, pst

READ(*,*) price

gst = 0.07*price

pst = 0.075*(price + gst)pst = 0.075*(price + gst)

WRITE(*,100) "Price: ",price

WRITE(*,100) "GST: ", gst

WRITE(*,100) "PST: ", pst

WRITE(*,100) "Total Cost: ",price+gst+pst

100 FORMAT (A15,F7.2)

END PROGRAM cost
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Repetition Factors

�A format code or group of codes can be 

repeated by putting a value in front

�For example:

10I1 means output (or input) 10 digits10I1 means output (or input) 10 digits

5(A3, I5)is equivalent to 

A3, I5, A3, I5, A3, I5, 

A3, I5, A3, I5
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Horizontal Spacing

� To skip a space horizontally, we have the 

format code X

� Using a repetition factor, nX, indicates “skip n 

spaces”spaces”
INTEGER :: a=1000

WRITE (*,100) “a=“, a

100  FORMAT(A, 4X, I4)

� Output
a=    1000

! ####
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Vertical Spacing

� To skip a space vertically, we have the format code /

� Using a repetition factor, n/, indicates “skip n lines”

INTEGER::a=1000

WRITE(*,100) “a=“, a

100  FORMAT(A, 2/, I4)100  FORMAT(A, 2/, I4)

� Output

a=

#

#

1000
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Format on Input

�When using format with a READ 

statement, the input values must be 

positioned according to the format 

specificationsspecifications
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Format on Input

� Example

INTEGER :: a,b

READ(*,100) a,b

100 FORMAT(2I5)100 FORMAT(2I5)

� This reads the first 5 characters on the input 

line, converts them to an integer and stores 

the result in a.

� It then reads the next five characters, 

converts them and stores the result in b
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Formatted Read

Correct inputs for  Format code 2I5:
1234567890    � a=12345, b=67890

123456        � a=12345, b=6

####12345#    � a=1, b=2345

�###1234567890 � a=12, b=34567

Incorrect inputs:
1234,5678

123456789a

12, 14

Sept. 27th, 2007 Formatting Input and Output 29



Reading Fixed Point Reals

Example 
READ(*, "(F5.1)") x

Results Results 
##3.4       � x=3.4

123.456     � x=123.4

12345       � x=1234.5
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