
Computers in Engineering

COMP 208COMP 208

Formatting Input and Output

Michael A. Hawker

Verifying ISBN Numbers
program isbn

implicit none

integer :: digits(10)

integer :: pos, sum

logical :: valid

read (*,"(10I1)") (digits(pos), pos = 1,10)

sum = 0

do pos = 1,10do pos = 1,10

sum = sum + (11-pos)*digits(pos)

end do

valid = mod(sum,11) == 0

if (valid) then

write(*,*) "ISBN is valid"

else

write(*,*) "ISBN is invalid"

end if

end program isbn

Sept. 27th, 2007 Formatting Input and Output 2

The second *

�The second * in the read was replaced

by a format string

�A format string can be used to specify

where to look for the inputwhere to look for the input

�The format (10I1) means we expect

� 10 values

�Each value is an integer (I)

�Each value is one digit in length (1)

Sept. 27th, 2007 Formatting Input and Output 3

FORTRAN Formats

� The READ and WRITE statements we have

seen so far are called free-format

statements.

� They are easy to use but we have no control � They are easy to use but we have no control

over the placement of the input or

appearance of the output.

� To control the appearance of the input and

output, Fortran allows us to use format

specifications

Sept. 27th, 2007 Formatting Input and Output 4

How much was that?

PROGRAM cost

IMPLICIT NONE

REAL :: price, gst, pst

READ(*,*) price

gst = 0.07*pricegst = 0.07*price

pst = 0.075*(price + gst)

WRITE(*,*) "Price: ",price

WRITE(*,*) "GST: ", gst

WRITE(*,*) "PST: ", pst

WRITE(*,*) "Total Cost: ",price+gst+pst

END PROGRAM cost

Sept. 27th, 2007 Formatting Input and Output 5

The results aren’t very pretty.

136.95

Price: 136.9500

GST: 9.586500 GST: 9.586500

PST: 10.99024

Total Cost: 157.5267

Sept. 27th, 2007 Formatting Input and Output 6

Wouldn’t this be nicer?

136.95

Price: 136.95

GST: 9.59GST: 9.59

PST: 10.99

Total Cost: 157.53

Sept. 27th, 2007 Formatting Input and Output 7

Formats

� FORTRAN formats allow us to specify the

placement of values both in output and input

� Using format descriptors we can control the

appearance of output valuesappearance of output values

� Format descriptors specify

� The appearance of output values

� Repetition

� Vertical positioning

� Horizontal positioning

Sept. 27th, 2007 Formatting Input and Output 8

Fortran Formats – Method 1

There are two possible ways to specify a

format.

In the first, we write the format as a

character string and use it to replace the character string and use it to replace the
second asterisk in WRITE(*,*).

WRITE(*,"(A15,F7.2)") "Total Cost: ", &

price+gst+pst

Sept. 27th, 2007 Formatting Input and Output 9

Fortran Formats – Method 2

The most common method uses a

FORMAT statement

A FORMAT statement has the syntax:
label FORMAT format-codelabel FORMAT format-code

To use the format, we specify its label in

the WRITE statement
WRITE(*,100) "Total Cost: ", price+gst+pst

100 Format (A15,F7.2)

Sept. 27th, 2007 Formatting Input and Output 10

Cost With Formatting
PROGRAM cost

IMPLICIT NONE

REAL :: price, gst, pst

READ(*,*) price

gst = 0.07*price

pst = 0.075*(price + gst)pst = 0.075*(price + gst)

WRITE(*,100) "Price: ",price

WRITE(*,100) "GST: ", gst

WRITE(*,100) "PST: ", pst

WRITE(*,100) "Total Cost: ",price+gst+pst

100 FORMAT (A15,F7.2)

END PROGRAM cost

Sept. 27th, 2007 Formatting Input and Output 11

Fortran Formats

The FORMAT statement in the previous
example specifies a format

100 FORMAT (A15,F7.2)

A format is list of descriptors inside
parentheses

(desc1, desc2, desc3, . . .)

Sept. 27th, 2007 Formatting Input and Output 12

Format Codes

� We will look at some of the many
format codes available in FORTRAN
for specifying:

1. Real values1. Real values

2. Integer values

3. Character values

4. Horizontal spacing

5. Vertical spacing

Sept. 27th, 2007 Formatting Input and Output 13

Real Values

Fixed Point Notation

100 Format (A15,F7.2)

�The second format code in the list

specifies that we are to print a real

number using two decimal pointsnumber using two decimal points

�The in the code tells the computer to

allow seven spaces to fit the number

into

Sept. 27th, 2007 Formatting Input and Output 14

Real Numbers – Fixed Point

� The general format code for has the form
Fw.d

� The d specifies the number of decimal
places

� The w specifies the field width and includes � The w specifies the field width and includes
space for

1. d decimal digits

2. The decimal point

3. The whole number

4. The sign, if the number is negative

Sept. 27th, 2007 Formatting Input and Output 15

F Format Example

Example
REAL :: x=1.0, y=1100.1003

WRITE(*, 900) x, y

900 FORMAT (F3.1, F10.4)

F3.1 is format code for x and F10.4 is for

y
1.0#1100.1003

Sept. 27th, 2007 Formatting Input and Output 16

Variations on a Theme

real :: x=1.0, y=1100.1003

write (*,"(F3.1,F11.4)") x, y

write (*,"(F3.1,F10.4)") x, y

write (*,"(F3.1,F9.4)") x, y

write (*,"(F3.1,F8.4)") x, y

� Results:

1.0 1100.1003

1.0 1100.1003

1.01100.1003

1.0********

Sept. 27th, 2007 Formatting Input and Output 17

Oops!

�What happened in the last example?

�Whenever a value to be output does not

fit into the allocated field width, w, the

computer just outputs w *’s\computer just outputs w *’s\

�This is true of any type of value, not just

real numbers

Sept. 27th, 2007 Formatting Input and Output 18

Real Numbers

Exponential Notation

� The E format descriptor has the form

Ew.d

� They are displayed as a normalized number
between 0.1 and 1.0, multiplied by a power of
1010

� The output is in the form
±0.ddddE±ee

� The number of significant digits is specified
by d, the exponent uses two places

� We must have w≥d+7

Sept. 27th, 2007 Formatting Input and Output 19

E Code Variants

Example:
real :: y=1100.1003

write (*,"(E15.8)") y

write (*,"(E15.4)") y

write (*,"(E15.2)") y

write (*,"(E12.8)") y

Results:
0.11001003E+04

0.1100E+04

0.11+E04

Sept. 27th, 2007 Formatting Input and Output 20

Integer Numbers

“I” Format Codes

�The general format code for has the

form

Iw

�The w specifies the field width

�Numbers are right justified

� If a number doesn’t fit, *’s are output

Sept. 27th, 2007 Formatting Input and Output 21

Character Values

“A” Format Code

� The general format code for has the form

Aw

� The w specifies the field width

� Strings are right justified� Strings are right justified

� If a number doesn’t fit, the first w characters

are output

� If w is left out, the entire character string is

printed

Sept. 27th, 2007 Formatting Input and Output 22

Cost With Formatting
PROGRAM cost

IMPLICIT NONE

REAL :: price, gst, pst

READ(*,*) price

gst = 0.07*price

pst = 0.075*(price + gst)pst = 0.075*(price + gst)

WRITE(*,100) "Price: ",price

WRITE(*,100) "GST: ", gst

WRITE(*,100) "PST: ", pst

WRITE(*,100) "Total Cost: ",price+gst+pst

100 FORMAT (A15,F7.2)

END PROGRAM cost

Sept. 27th, 2007 Formatting Input and Output 23

Repetition Factors

�A format code or group of codes can be

repeated by putting a value in front

�For example:

10I1 means output (or input) 10 digits10I1 means output (or input) 10 digits

5(A3, I5)is equivalent to

A3, I5, A3, I5, A3, I5,

A3, I5, A3, I5

Sept. 27th, 2007 Formatting Input and Output 24

Horizontal Spacing

� To skip a space horizontally, we have the

format code X

� Using a repetition factor, nX, indicates “skip n

spaces”spaces”
INTEGER :: a=1000

WRITE (*,100) “a=“, a

100 FORMAT(A, 4X, I4)

� Output
a= 1000

! ####

Sept. 27th, 2007 Formatting Input and Output 25

Vertical Spacing

� To skip a space vertically, we have the format code /

� Using a repetition factor, n/, indicates “skip n lines”

INTEGER::a=1000

WRITE(*,100) “a=“, a

100 FORMAT(A, 2/, I4)100 FORMAT(A, 2/, I4)

� Output

a=

#

#

1000

Sept. 27th, 2007 Formatting Input and Output 26

Format on Input

�When using format with a READ

statement, the input values must be

positioned according to the format

specificationsspecifications

Sept. 27th, 2007 Formatting Input and Output 27

Format on Input

� Example

INTEGER :: a,b

READ(*,100) a,b

100 FORMAT(2I5)100 FORMAT(2I5)

� This reads the first 5 characters on the input

line, converts them to an integer and stores

the result in a.

� It then reads the next five characters,

converts them and stores the result in b

Sept. 27th, 2007 Formatting Input and Output 28

Formatted Read

Correct inputs for Format code 2I5:
1234567890 � a=12345, b=67890

123456 � a=12345, b=6

####12345# � a=1, b=2345

�###1234567890 � a=12, b=34567

Incorrect inputs:
1234,5678

123456789a

12, 14

Sept. 27th, 2007 Formatting Input and Output 29

Reading Fixed Point Reals

Example
READ(*, "(F5.1)") x

Results Results
##3.4 � x=3.4

123.456 � x=123.4

12345 � x=1234.5

Sept. 27th, 2007 Formatting Input and Output 30

