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Computers in Engineering

COMP 208

DO WHILE

Michael A. Hawker
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DO-WHILE

� DO ... WHILE loops are a special case used 
when a condition is to be tested at the top of 
a loop

� This is a looping structure provided in many 
different programming languages 

� Syntax:
DO WHILE (logical expression) 

statement block, s

END DO 
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DO-WHILE

�Semantics:

�Test the logical expression

� If it evaluates to .TRUE., execute the 

statement block and go back to step 1.

� If it evaluates to .FALSE., go to the 

statement after the END DO
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DO-WHILE

DO-WHILE loops are equivalent to

DO

IF .NOT.(logical expression) EXIT

statement block s

END DO
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Example

The DO loop of the program to compute exp(x) 
can be rewritten using a DO-WHILE
DO 

IF (ABS(Term) < Tolerance)  EXIT 

Sum   = Sum + Term 

Count = Count + 1 

Term  = Term * (X / Count) 

END DO

DO WHILE (ABS(Term) >= Tolerance) 

Sum   = Sum + Term 

Count = Count + 1 

Term  = Term * (X / Count) 

END DO
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Warning!

�The loop only executes if the logical 
expression evaluates to .TRUE.

� If the value of this expression doesn't 
change, we will get an infinite loop

�The values of variables that the logical 
expression depends on must be modified 
within the loop

� (It still might not terminate, but at least we 
have a chance) 
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Nested DO-Loops

�A DO-loop can contain other DO-loops 

in its body.

�This nested DO-loop, must be 

completely inside the containing DO-

loop. 

�Note that an EXIT statement transfers 

control out of the inner-most DO-loop 

that contains the EXIT statement. 
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Nested DO-Loop Example

The outer loop has i going from 1 to 7 with step size 1.

For each of the seven values of i, the inner loop iterates 
9 times with j going from 1 to 9. 

INTEGER :: i, j 

DO i = 1, 7 

DO j = 1, 9 

WRITE(*,*) i*j 

END DO 

END DO 

There are 63 values printed in total
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Table of Exp(x)

(preamble)
! --------------------------------------------------------------

! This program computes exp(x) for a range of  values of x using the

! Infinite Series expansion of exp(x)

! The range has a beginning value, final value and step size.

! --------------------------------------------------------------

PROGRAM  Exponential

IMPLICIT  NONE

INTEGER         :: Count          

REAL            :: Term          

REAL            :: Sum            

REAL            :: X              

REAL            :: ExpX          

REAL            :: Begin, End, Step 

REAL            :: Tolerance = 0.00001

WRITE(*,*)  "Initial, Final and Step please --> "

READ(*,*)   Begin, End, Step
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Table of Exp(x)

(body)

X = Begin                      ! X starts with the beginning value

DO

IF (X > End)  EXIT          ! if X is > the final value, EXIT

Count = 1                           

Sum   = 1.0                       

Term  = X                       

ExpX  = EXP(X)              ! the exp(x) from Fortran's EXP()

DO                                   

IF (ABS(Term) < Tolerance)  EXIT  

Sum   = Sum + Term               

Count = Count + 1              

Term  = Term * (X / Count)       

END DO

WRITE(*,*)  X, Sum, ExpX, ABS(Sum-ExpX), ABS((Sum-ExpX)/ExpX)

X = X + Step

END DO

END PROGRAM  Exponential
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GCD Revisited

�A more efficient way of computing the 

GCD of two integers is possible

� It doesn’t even use division!!
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Some GCD Facts

� The trivial cases:
gcd(k,k) = k , for nonzero k

gcd(0,k) = gcd(k,0) = k, for nonzero k

� The general case:
For i >= j, gcd(i,j) = gcd(i-j,j)

� Using this, we can work backwards from the 

general case by reducing the larger of the two 

arguments until we reach one of the trivial 

cases
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A GCD Program
INTEGER :: I, J, G

DO WHILE (I /= 0 .and. J /= 0 .and. I /= J)

IF (I>J) THEN

I = I - J

ELSE

J = J - I

END IF

END DO

IF (I == 0) THEN

G = J

ELSE

G = I

END IF
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Verifying ISBN Numbers
program isbn

implicit none

integer :: digits(10)

integer :: pos, sum

logical :: valid

READ (*,”(10I1)”) (digits(pos), pos = 1,10)

sum = 0

do pos = 1,10

sum = sum + (11-pos)*digits(pos)

end do

valid = mod(sum,11) == 0

if (valid) then

write(*,*) "ISBN is valid"

else

write(*,*) "ISBN is invalid"

end if

end program isbn
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