
9/27/2007

1

Computers in Engineering

COMP 208

DO WHILE

Michael A. Hawker

Sept. 27th, 2007 1Do While

DO-WHILE

� DO ... WHILE loops are a special case used
when a condition is to be tested at the top of
a loop

� This is a looping structure provided in many
different programming languages

� Syntax:
DO WHILE (logical expression)

statement block, s

END DO

Sept. 27th, 2007 Do While 2

DO-WHILE

�Semantics:

�Test the logical expression

� If it evaluates to .TRUE., execute the

statement block and go back to step 1.

� If it evaluates to .FALSE., go to the

statement after the END DO

Sept. 27th, 2007 Do While 3

9/27/2007

2

DO-WHILE

DO-WHILE loops are equivalent to

DO

IF .NOT.(logical expression) EXIT

statement block s

END DO

Sept. 27th, 2007 Do While 4

Example

The DO loop of the program to compute exp(x)
can be rewritten using a DO-WHILE
DO

IF (ABS(Term) < Tolerance) EXIT

Sum = Sum + Term

Count = Count + 1

Term = Term * (X / Count)

END DO

DO WHILE (ABS(Term) >= Tolerance)

Sum = Sum + Term

Count = Count + 1

Term = Term * (X / Count)

END DO

Sept. 27th, 2007 Do While 5

Warning!

�The loop only executes if the logical
expression evaluates to .TRUE.

� If the value of this expression doesn't
change, we will get an infinite loop

�The values of variables that the logical
expression depends on must be modified
within the loop

� (It still might not terminate, but at least we
have a chance)

Sept. 27th, 2007 Do While 6

9/27/2007

3

Nested DO-Loops

�A DO-loop can contain other DO-loops

in its body.

�This nested DO-loop, must be

completely inside the containing DO-

loop.

�Note that an EXIT statement transfers

control out of the inner-most DO-loop

that contains the EXIT statement.

Sept. 27th, 2007 Do While 7

Nested DO-Loop Example

The outer loop has i going from 1 to 7 with step size 1.

For each of the seven values of i, the inner loop iterates
9 times with j going from 1 to 9.

INTEGER :: i, j

DO i = 1, 7

DO j = 1, 9

WRITE(*,*) i*j

END DO

END DO

There are 63 values printed in total

Sept. 27th, 2007 Do While 8

Table of Exp(x)

(preamble)
! --

! This program computes exp(x) for a range of values of x using the

! Infinite Series expansion of exp(x)

! The range has a beginning value, final value and step size.

! --

PROGRAM Exponential

IMPLICIT NONE

INTEGER :: Count

REAL :: Term

REAL :: Sum

REAL :: X

REAL :: ExpX

REAL :: Begin, End, Step

REAL :: Tolerance = 0.00001

WRITE(*,*) "Initial, Final and Step please --> "

READ(*,*) Begin, End, Step

Sept. 27th, 2007 Do While 9

9/27/2007

4

Table of Exp(x)

(body)

X = Begin ! X starts with the beginning value

DO

IF (X > End) EXIT ! if X is > the final value, EXIT

Count = 1

Sum = 1.0

Term = X

ExpX = EXP(X) ! the exp(x) from Fortran's EXP()

DO

IF (ABS(Term) < Tolerance) EXIT

Sum = Sum + Term

Count = Count + 1

Term = Term * (X / Count)

END DO

WRITE(*,*) X, Sum, ExpX, ABS(Sum-ExpX), ABS((Sum-ExpX)/ExpX)

X = X + Step

END DO

END PROGRAM Exponential

Sept. 27th, 2007 Do While 10

GCD Revisited

�A more efficient way of computing the

GCD of two integers is possible

� It doesn’t even use division!!

Sept. 27th, 2007 Do While 11

Some GCD Facts

� The trivial cases:
gcd(k,k) = k , for nonzero k

gcd(0,k) = gcd(k,0) = k, for nonzero k

� The general case:
For i >= j, gcd(i,j) = gcd(i-j,j)

� Using this, we can work backwards from the

general case by reducing the larger of the two

arguments until we reach one of the trivial

cases

Sept. 27th, 2007 Do While 12

9/27/2007

5

A GCD Program
INTEGER :: I, J, G

DO WHILE (I /= 0 .and. J /= 0 .and. I /= J)

IF (I>J) THEN

I = I - J

ELSE

J = J - I

END IF

END DO

IF (I == 0) THEN

G = J

ELSE

G = I

END IF

Sept. 27th, 2007 Do While 13

Verifying ISBN Numbers
program isbn

implicit none

integer :: digits(10)

integer :: pos, sum

logical :: valid

READ (*,”(10I1)”) (digits(pos), pos = 1,10)

sum = 0

do pos = 1,10

sum = sum + (11-pos)*digits(pos)

end do

valid = mod(sum,11) == 0

if (valid) then

write(*,*) "ISBN is valid"

else

write(*,*) "ISBN is invalid"

end if

end program isbn

Sept. 27th, 2007 Do While 14

