Computers in Engineering COMP 208

Indefinite Loops Michael A. Hawker

Implicit Implied DO – LOOP

REAL :: A(1000)
INTEGER :: I, SIZE
READ(*,*) SIZE
READ (*,*) A

- Reads values sequentially like a regular do loop
- It must fill the entire array, not just the first SIZE values

Implied DO – LOOP

In our ISBN example, we could input the digits as follows:

READ (*,*) (digits(I), I=1,10)

- We could input all of the digits on one or more lines separated by blanks
- The first 10 digits would be read and stored in the digits array

Implied DO – LOOP

REAL :: A(1000)
INTEGER :: I, SIZE
READ (*,*) SIZE
READ (*,*) (A(I), I=1,SIZE)

Reads values sequentially from a line

- If there are not enough values on the line it starts a new line
- This is called an inline or implied DO loop

Why Use an Implied DO Loop

Faster, Easier, and More Convenient

 Allows for easier Access to Change Number of Loops

REAL :: A(1000)
INTEGER :: I, SIZE
READ (*,*) SIZE
READ (*,*) (A(I), I=1,SIZE)

Compute Sum of Array Elements

```
REAL :: Data(100)
REAL :: Sum
. . .
Sum = 0.0
DO k = 1, 100
Sum = Sum + Data(k)
END DO
```

Inner Product of Vectors

The inner product of two vectors is the sum of the products of corresponding elements.

```
REAL :: V1(50), V2(50)
REAL :: InnerProduct
INTEGER :: dim, n
READ(*,*) dim    !actual dimension of vector
InnerProduct = 0.0
DO n = 1, dim
InnerProduct = InnerProduct + V1(n)*V2(n)
END DO
```

Find Maximum Value

- How do we find the largest value in an array?
- Imagine a deck of cards that we look through one at a time
- Keep track of the largest value
- Start with the one on the first card
- Keep looking and note whenever a larger value is found

Find Maximum Value

```
PROGRAM FINDMAX
IMPLICIT NONE
INTEGER :: MARKS(210)
INTEGER :: MAX, I
READ(*,*) MARKS
MAX = MARKS(1)
DO I = 2, 210
IF (MARKS(I) > MAX) MAX = MARKS(I)
END DO
WRITE (*,*) "THE HIGHEST MARK IS: ", MAX
```

Indefinite Iterators

- For some applications, we do not know in advance how many times to repeat the computation
- The loop will need to continue until some condition is met and then terminate

Indefinite Iterator

The iterator we can use has the form
DO

statement block, s

END DO

The block, s, is evaluated repeatedly an indeterminate number of times

A Repetitive Joke

- Why did the Computer Scientist die in the Shower?
- The instructions on the shampoo label said:
 - 1. Rinse
 - 2. Lather
 - 3. Repeat

- A danger in using this construct is that the loop might never terminate.
- This loop computes the sum of a sequence of inputs

```
REAL :: x, Sum
Sum = 0.0
DO
READ(*,*) x
Sum = Sum + x
END DO
```


Terminating a Loop

- The general DO loop will go on forever without terminating
- How do we get out of it?
- The EXIT statement causes execution to leave the loop and continue with the statement following the END DO

Sum Positive Input Values

Read real values and sum them. Stop when the input value becomes negative.

```
REAL :: x, Sum
Sum = 0.0
DO
READ(*,*) x
IF (x < 0) EXIT
Sum = Sum + x
END DO
WRITE (*,*) "Sum is: ", Sum</pre>
```


GCD

- The greatest common divisor of two integers is the largest number that divides both of them
- There are numerous applications that require computing GCD's
- For example, reducing rational numbers to their simplest form in seminumeric computations
- We present a very simple (slow) algorithm

A GCD Algorithm

- The GCD is obviously less than or equal to either of the given numbers, x and y
- We just have to work backwards and test every number less than x or y until we find one that divides both
- We stop when we find a common divisor or when we get to 1

A Simple GCD Computation

```
PROGRAM gcd
INTEGER :: x, y, g
READ (*,*) x, y
g = y
DO
IF (mod(x,g)==0 .AND. mod(y,g)==0) EXIT
g = g - 1
END DO
```

WRITE (*,*) "GCD of ", x, " and ", y, " = ", g END PROGRAM gcd

Sept. 25th, 2007

Finding Square Roots

- Newton presented an algorithm for approximating the square root of a number in 1669
- The method starts with an initial guess at the root and keeps refining the guess
- It stops refining when the guess is close to the root, that is when it's square is close to the given number

Finding the Square Root

```
Use Newton's method to find the square root of a positive number.
                 _____
PROGRAM SquareRoot
 IMPLICIT NONE
 REAL :: A, R, NewR, Tolerance
 READ(*,*) A, Tolerance
 R = A
                                      ! Initial approximation
 DO
   NewR = 0.5*(R + A/R) ! compute a new approximation
   IF (ABS(R*R - A) < Tolerance) EXIT ! If close to result, exit
                                     ! Use the new approximation
   R = NewR
 END DO
 WRITE(*,*) " The estimated square root is ", NewR
 WRITE(*,*) " The square root from SQRT() is ", SQRT(A)
 WRITE (*, *) " Absolute error = ", ABS (SQRT (A) - NewR)
END PROGRAM SquareRoot
```


Exp(x)

The exponential function can be expressed as an infinite sum:

- A program to approximate the value can compute a finite portion of this sum
- We can sum terms until the final term is very small, say less then 0.00001 (or any other tolerance we might choose)

Compute Exp(x) (preamble)

Compute exp(x) for an input x using the infinite series of exp(x).

PROGRAM Exponential IMPLICIT NONE

INTEGER	::	Count	!	#	of	terms	used
REAL	::	Term					
REAL	::	Sum					
REAL	::	Х					
REAL	::	Tolerance = 0.00001	!	Тс	ler	ance	

READ(*,*) X

Compute Exp(x) (main part of program)

END PROGRAM Exponential