
Computers in Engineering

COMP 208COMP 208

Repetition and Storage

Michael A. Hawker

Repetition

�To fully take advantage of the speed of

a computer, we must be able to instruct

it to do a lot of work

�The program must be relatively short or �The program must be relatively short or

it would take us too long to write

�To get the computer to do a lot of work,

we must be able tell it to do some

computations many times, perhaps with

different data values each time

Sept. 20th, 2007 Repetition and Storage 2

A Table of Values

� Problem: Output a table of numbers from 1
to 100 with their squares and cubes

1 1 1

2 4 8

3 9 273 9 27

4 16 64

. . .

� We have to be able to repeat a computation
over and over for the different numbers
without writing 100 WRITE statements

Sept. 20th, 2007 Repetition and Storage 3

A Table of Values

INTEGER :: Num

DO Num = 1, 100

WRITE(*,*) Num, Num*Num, Num*Num*Num

END DOEND DO

Sept. 20th, 2007 Repetition and Storage 4

Loops that Count

� The syntax of a definite iterator (often called a

counted DO loop) is:

DO var = initial, final, step-size

statement block, sstatement block, s

END DO

� var is an INTEGER variable called the control

variable

� initial and final are INTEGER expressions

� step-size is an optional INTEGER expression.

If omitted the default value is 1

Sept. 20th, 2007 Repetition and Storage 5

Semantics of Counted DO Initialisation

�Evaluate the initial, final and step-size

expressions.

� These can be any expressions that give an

integer valueinteger value

� They are evaluated only once before the

loop is entered

�The step-size should not be 0.

� The value if the step size is omitted is 1

Sept. 20th, 2007 Repetition and Storage 6

Semantics of Counted DO

(Counting Up)

� If the step-size is > 0, the loop counts

up

1. var = initial value

2. If (var <= final value) then2. If (var <= final value) then

� Execute the statement block, s

� var = var + step-size

� Repeat step 2

3. When var > final value, the loop ends and

the statement after the END DO is

executed
Sept. 20th, 2007 Repetition and Storage 7

Semantics of Counted DO

(Counting Down)

� If the step-size is < 0, the loop counts

down

1. var = initial value

2. If (var >= final value) then2. If (var >= final value) then

� Execute the statement block, s

� var = var + step-size (negative)

� Repeat step 2

3. When var < final value, the loop ends and

the statement after the END DO is

executed
Sept. 20th, 2007 Repetition and Storage 8

Table of Odd Numbers

�Output the odd numbers between 1 and

100, their squares and cubes.

INTEGER :: Num INTEGER :: Num

DO Num = 1, 100, 2

WRITE(*,*) Num, Num*Num, Num*Num*Num

END DO

Sept. 20th, 2007 Repetition and Storage 9

Temperature Conversions

� Print a table of Celsius to Fahrenheit
conversions:

INTEGER :: Celsius

REAL :: FahrenheitREAL :: Fahrenheit

DO Celsius = -40, 40

Fahrenheit = 1.8 * Celsius + 32.0

WRITE(*,*) Celsius, “ degrees Celsius = “, &

Fahrenheit, “ degrees Fahrenheit”

END DO

Note the negative initial value. Step size is 1.

Sept. 20th, 2007 Repetition and Storage 10

Table in Descending Order

INTEGER :: Celsius

REAL :: Fahrenheit

DO Celsius = 40, -40, -1DO Celsius = 40, -40, -1

Fahrenheit = 1.8 * Celsius + 32.0

WRITE(*,*) Celsius, “ degrees Celsius = “, &

Fahrenheit, “ degrees Fahrenheit”

END DO

Note the negative step size.

Sept. 20th, 2007 Repetition and Storage 11

Average Value

� Input 1000 real numbers and compute the average
value:
INTEGER :: Count, Number=1000

REAL :: Sum, Input

REAL :: Average

Sum = 0.0

DO Count = 1, Number

READ(*,*) Input

Sum = Sum + Input

END DO

Average = Sum / Number

Sept. 20th, 2007 Repetition and Storage 12

Definite Iterator

� The DO loop we have looked at is called a
definite iterator

� The body of the loop is executed a fixed
number of times

The control variable, , takes on the values � The control variable, i, takes on the values
x, x+s, x+2s, …, x+ks where
� x is the initial value,

� s is the step size and

� x+ks ≤ final value < x+(k+1)s

Sept. 20th, 2007 Repetition and Storage 13

Processing Lists

�Counted do loops are used extensively

in processing lists of data

� In the next application, we will see how

to represent a list of data in a way that to represent a list of data in a way that

allows us to go through each value in

the list using a do loop

Sept. 20th, 2007 Repetition and Storage 14

ISBN Numbers

� ISBN numbers assign a unique

identification number to every book

published

�As with many such identification �As with many such identification

numbers, such as UPC codes, Postal

Money Order serial numbers, Credit

card numbers, there is a self checking

code that allows us to reduce scanning

and transmission errors

Sept. 20th, 2007 Repetition and Storage 15

10 Digit ISBN Codes

An ISBN consists of 10 digits (newer standards

will have 13 digits)

For example: 0-7872-9390-3

1. The first digit is a country or language code1. The first digit is a country or language code

2. The next group of digits is the publisher

3. The next group is the item number

4. The final digit is a check digit

(The lengths of groups 2 and 3 may vary)

Sept. 20th, 2007 Repetition and Storage 16

The Check Digit

To calculate the check digit the International

ISBN Agency specifies that

1. For each of the first nine digits, we multiply the

digit by a weight depending on the position of

the digit that goes from 10 down to 1 the digit that goes from 10 down to 1

2. We then sum these products

3. The check digit is the number that, if added, will

make this sum a multiple of 11

Sept. 20th, 2007 Repetition and Storage 17

Verifying ISBN Numbers
PROGRAM isbn

IMPLICIT NONE

INTEGER :: digits(10)

INTEGER :: pos, sum

INTEGER :: check

READ (*,*) digits

sum = 0

DO pos = 1,10DO pos = 1,10

sum = sum + (11-pos)*digits(pos)

END DO

check = mod(sum,11)

IF (check == 0) THEN

write(*,*) "ISBN is valid"

ELSE

write(*,*) "ISBN is invalid"

END IF

END PROGRAM isbn

Sept. 20th, 2007 Repetition and Storage 18

Verifying ISBN Numbers

(with Logical Variables)
PROGRAM isbn

IMPLICIT NONE

INTEGER :: digits(10)

INTEGER :: pos, sum

LOGICAL :: valid

READ (*,*) digits

sum = 0

DO pos = 1,10DO pos = 1,10

sum = sum + (11-pos)*digits(pos)

END DO

valid = mod(sum,11) == 0

IF (valid) THEN

write(*,*) "ISBN is valid"

ELSE

write(*,*) "ISBN is invalid"

END IF

END PROGRAM isbn

Sept. 20th, 2007 Repetition and Storage 19

Compound Data Structures

� We often want to process groups of data values in a

uniform way

� Digits in an ISBN

� Grades in a class

� Vector of real numbers� Vector of real numbers

� Using individual variables is cumbersome
� INTEGER :: digit1, digit2, digit3, … ,digit11

� There is no way to uniformly examine or process the

values stored in these variables

Sept. 20th, 2007 Repetition and Storage 20

Arrays

� FORTRAN provides an array data type to

support grouping related data together

� This allows them to be processed in a

uniform wayuniform way

� An array is a collection of data of the same

type.

� The entire collection has a single name

� Individual values in the array are accessed by

an index

Sept. 20th, 2007 Repetition and Storage 21

Declaring an Array

Example:
INTEGER :: DIGITS(10)

Visualizing an array:Visualizing an array:

Sept. 20th, 2007 Repetition and Storage 22

0 7 8 7 2 9

1 2 43 65

3 9 0

7 8 9

3

10

DIGITS

contents

indices

name

Declaring an Array

Syntax for an array declaration:

type :: a(bound), b, c(bound)

Semantics
type is the type of the values that can be stored in type is the type of the values that can be stored in
each element of the array

bound specifies the range of indices for the
subscript

There is an array element of the specified type
corresponding to each integer index between 1
and bound

Sept. 20th, 2007 Repetition and Storage 23

What happens when we declare an array?

� When an array is declared, the computer

allocates storage for a contiguous block of

memory cells

� This block has the name we specify� This block has the name we specify

� Each cell in the block has the “shape” for

holding values of the type that was specified

� The individual cells in the block can be

referenced by an index

� The index starts at 1

� The index ranges up to the size we specify
Sept. 20th, 2007 Repetition and Storage 24

How Do We Access The Cells?

To access individual variables in the collection, we use
a subscript

SUM = SUM + (11-POS)*DIGITS(POS)

Syntax:

array-name (integer-expression)array-name (integer-expression)

Semantics:

array-name is the name of the array, and

integer-expression is an expression that

evaluates to an integer. The value of this integer
must be between 1 and the declared array size

Sept. 20th, 2007 Repetition and Storage 25

Out of Bounds?

� What happens if the index expression

evaluates to 0? A negative number? A value

greater than the array size?

� Who knows?� Who knows?

� What might happen:

� Processor generates a run time error and stops

(expensive to check)

� Processor might just reference a memory cell near

the array (dangerous)

Sept. 20th, 2007 Repetition and Storage 26

Out of Bounds?

�What do I do?

�Most compilers have a bounds checking

option

� Turn it on during testing� Turn it on during testing

� Turn it off when program fully developed to

make execution more efficient

Sept. 20th, 2007 Repetition and Storage 27

Using Arrays

�A natural mechanism for processing

arrays is the DO-loop

� It allows us to go through and process

each element in the arrayeach element in the array

� It also allows us to put values into the

array to begin with

Sept. 20th, 2007 Repetition and Storage 28

Initialize an Array to Zero

INTEGER :: UPPER = 100

INTEGER :: a(UPPER)

INTEGER :: i

DO i = 1, UPPER

a(i) = 0

END DO

Sept. 20th, 2007 Repetition and Storage 29

Back to Counted Do Loops

� There are a few

things we have to be

careful about when

using counted do

Sept. 20th, 2007 Repetition and Storage 30

using counted do

loops

Don’ts of DOs

� Changing the values of the control variable or

any variables involved in the controlling

expressions of an iterator is risky.

� Some compilers will not allow this and will � Some compilers will not allow this and will

halt and signal an error. Others may allow it

with unpredictable results.

� Programs should be portable. That is they

should run on many different systems. Using

features that are handled differently in

different environments is not good.

Sept. 20th, 2007 Repetition and Storage 31

Changing Changes…

Do not change the value of the control-var.
DO a = b, c

a = b + c

END DO

Does the loop ever terminate?Does the loop ever terminate?
DO a = b, c

READ(*,*) a

END DO

What does this do?

Sept. 20th, 2007 Repetition and Storage 32

Warned…

� Do not change the value of any variable
involved in initial-value, final-value and step-
size.

DO a = b, d, e DO a = b, d, e

READ(*,*) b ! initial-value changed

d = 5 ! final-value changed

e = -3 ! step-size changed

END DO

� The results are unpredictable!

Sept. 20th, 2007 Repetition and Storage 33

Watch Your Step

�What happens if the step size is zero?

DO count = -3, 4, 0

...

END DO END DO

� It seems to be an infinite loop.

�Some compilers might consider it an
error and abort the program.

Sept. 20th, 2007 Repetition and Storage 34

Input Values into an Array

REAL :: A(1000)

INTEGER :: I, SIZE

READ(*,*) SIZE

DO I = 1, SIZEDO I = 1, SIZE

READ (*,*) A(I)

END DO

� Reads one value per line

� (Each READ starts a new line)

� What happens if size is greater than 1000?

Sept. 20th, 2007 Repetition and Storage 35

Input Values into an Array

In our ISBN example, we could input the
digits as follows:

DO I = 1, 10

Sept. 20th, 2007 Repetition and Storage 36

DO I = 1, 10

READ (*,*) digits(i)

END DO

We would have to input 10 lines.

The first value on each line would be read

