
1

Computers in Engineering

COMP 208

Selection

Michael A. Hawker

Selection

�As we have seen:

�Every programming language must provide

a selection mechanism that allows us to

control whether or not a statement should

be executed

�This will depend on whether or not some

condition is satisfied (such as the

discriminant being positive)

Sept. 18th, 2007 2/41Selection

FORTRAN Selection

�Used to select an alternative sequence

of statements

�The keywords separate the block

statements

�Has Additional Forms to Provide More

Control

Sept. 18th, 2007 3/41Selection

2

IF-THEN-END IF

� Syntax:

IF (logical expression) THEN

block of statements, s1

END IF

� Semantics:

� Evaluate the logical expression

� If it evaluates to .TRUE. execute s1 and then

continue with the statement following the END IF

� If the result is .FALSE. skip s1 and continue with

the statement following the END IF

Sept. 18th, 2007 4/41Selection

Examples of IF-THEN-END IF

absolute_x = x

IF (x < 0.0) THEN
absolute_x = -x

END IF

WRITE(*,*) "The absolute value of ", x, &
" is ", absolute_x

Sept. 18th, 2007 5/41Selection

Examples of IF-THEN-END IF

INTEGER :: a, b, min
READ(*,*) a, b
min = a

IF (a > b) THEN
min = b

END IF

WRITE(*,*) "The smaller of ", &
a, " and ", b, " is ", min

Sept. 18th, 2007 6/41Selection

3

Logical IF

� An even simpler form is sometimes useful.

� Syntax:
IF (logical expression) single-statement

� Semantics:

� This statement is equivalent to
IF (logical expression) THEN

single-statement

END IF

� The single-statement cannot be an IF or we might

end up with an ambiguous statement

Sept. 18th, 2007 7/41Selection

Examples of Logical IF

absolute_x = x

IF (x < 0.0) absolute_x = -x

WRITE(*,*) "The absolute value of ", x, &
" is" ,"absolute_x

Sept. 18th, 2007 8/41Selection

Examples of Logical IF

INTEGER :: a, b, min

READ(*,*) a, b

min = a

IF (a > b) min = b

WRITE(*,*) "The smaller of ",&
a, " and ", b, " is ", min

Sept. 18th, 2007 9/41Selection

4

What’s Going On?

�What is a “logical expression” ?

�Where do the values .TRUE. and

.FALSE. come from?

�What are those periods around the

words true and false?

Sept. 18th, 2007 10/41Selection

Logical Data Type

� FORTRAN has a LOGICAL data type, just

like it has INTEGER and REAL types

� Each type has its associated values

� There are only two values in the type

LOGICAL, .TRUE. and .FALSE.

� To enable the compiler to distinguish these

values from variables, we represent them

with periods around the words

Sept. 18th, 2007 11/41Selection

Logical Data Type

�We can declare variables of type

LOGICAL
LOGICAL :: positive_x, condition

�We can assign values to them
condition = .TRUE.

positive_x = x > 0

�These variables can only take on one of

the two values of type logical

Sept. 18th, 2007 12/41Selection

5

Logical Expressions

�Logical expressions, such as those that

appear in IF statements, return a logical

value

�That is, they are expressions which

evaluate to .TRUE. or .FALSE.

�We have operators that return logical

values.

Sept. 18th, 2007 13/41Selection

Relational Operators

� Relational operators compare two values

and return the result .TRUE. or .FALSE.
<, <=, >, >=, ==, /=

� Relational operators are of lower

precedence than all arithmetic operators
2 + 7 >= 3 * 3 � .TRUE.

� There is no associativity
a < b < c � illegal

Sept. 18th, 2007 14/41Selection

== or = ?

� Note that == is the FORTRAN (and C) syntax

for a relational operator meaning “is equal to”

� The expression x == y has the value .TRUE.

if x and y are equal and .FALSE. if x and y

are not equal

� A single equal sign (=) is the FORTRAN

(and C) syntax for assignment

� The statement x = y means assign the value

of y to the variable x

Sept. 18th, 2007 15/41Selection

6

== or = ?

� In FORTRAN you will get an error

message if you use either operator

incorrectly

�When we study C, we will see a

program can still work but give incorrect

results if you confuse these operators

Sept. 18th, 2007 16/41Selection

The Missing ELSE

�There is another more complex

selection mechanism we can use

�The IF-THEN-ELSE-END IF form allows

us to choose between two alternatives

� It allows us to choose whether or not to

perform a one set of actions or another

�We either perform one action or another

before we continue

Sept. 18th, 2007 17/41Selection

! ---

! Solve Ax^2 + Bx + C = 0

! ---
PROGRAM QuadraticEquation

IMPLICIT NONE

! **** Same old declarations and set up ****

! compute the square root of discriminant d

d = b*b - 4.0*a*c
IF (d >= 0.0) THEN ! is it solvable?

d = SQRT(d)

root1 = (-b + d)/(2.0*a)
root2 = (-b - d)/(2.0*a)

WRITE(*,*) "Roots are ", root1, " and ", root2

ELSE ! complex roots
WRITE(*,*) "There is no real root!"

WRITE(*,*) "Discriminant = ", d

END IF
END PROGRAM QuadraticEquation

Sept. 18th, 2007 18/41Selection

7

IF-THEN-ELSE-END IF

� Syntax:
IF (logical expression) THEN

block of statements, s1

ELSE

block of statements, s2

END IF

� Semantics:

� Evaluate the logical expression

� If it evaluates to .TRUE. execute s1 and then continue with

the statement following the END IF

� If it evaluates to .FALSE. execute s2 and continue with the

statement following the END IF

Sept. 18th, 2007 19/41Selection

Is a Number Even or Odd?

IF (MOD(number, 2) == 0) THEN

WRITE(*,*) number, " is even"

ELSE

WRITE(*,*) number, " is odd"

END IF

Sept. 18th, 2007 20/41Selection

Is A Number Even or Odd?

(alternate)

IF (number/2*2 == number) THEN

WRITE(*,*) number, " is even"

ELSE

WRITE(*,*) number, " is odd"

END IF

Sept. 18th, 2007 21/41Selection

8

Find Absolute Value

REAL :: x, absolute_x

x = ...

IF (x >= 0.0) THEN

absolute_x = x

ELSE

absolute_x = -x

END IF

WRITE(*,*) “The absolute value of “,&

x, “ is “, absolute_x

Sept. 18th, 2007 22/41Selection

Which value is smaller?

INTEGER :: a, b, min

READ(*,*) a, b

IF (a <= b) THEN
min = a

ELSE
min = b

END IF
WRITE(*,*) “The smaller of “, a, &

“ and “, b, “ is “, min

Sept. 18th, 2007 23/41Selection

Quadratic Roots Revisited

�The problem of finding the roots of a

quadratic is a bit more complicated than

we have been assuming

� If the discriminant is zero there is only a

single root

Sept. 18th, 2007 24/41Selection

9

! ---

! Solve Ax^2 + Bx + C = 0

! Detect complex roots and repeated roots.

! ---

PROGRAM QuadraticEquation

IMPLICIT NONE

! **** same old declarations and setup statements omitted ****

d = b*b - 4.0*a*c

IF (d > 0.0) THEN ! distinct roots?

d = SQRT(d)

root1 = (-b + d)/(2.0*a) ! first root

root2 = (-b - d)/(2.0*a) ! second root

WRITE(*,*) 'Roots are ', root1, ' and ', root2

ELSE

IF (d == 0.0) THEN ! repeated roots?

WRITE(*,*) 'The repeated root is ', -b/(2.0*a)

ELSE ! complex roots

WRITE(*,*) 'There is no real root!‘

WRITE(*,*) 'Discriminant = ', d

END IF

END IF

END PROGRAM QuadraticEquation

Sept. 18th, 2007 25/41Selection

IF-THEN-ELSE IF-END IF

�The nested IF statements in the last

example are a bit complicated

�When we use IF to select between

several (not just two) alternatives, we

end up with more than a single END IF,

one for each of the branches

�Let’s simplify this

Sept. 18th, 2007 26/41Selection

Syntax of

IF-THEN-ELSE IF-END IF
IF (logical-exp, e1) THEN

statement block, s1
ELSE IF (logical-exp, e2) THEN

statement block, s2
ELSE IF (logical-exp, e3) THEN

statement block, s3
.

ELSE

statement block, se
END IF

Sept. 18th, 2007 27/41Selection

10

Semantics of

IF-THEN-ELSE IF-END IF

� Evaluate e1

� If the result is .TRUE., execute s1 and go on

to the statement that follows the END IF

� If the result is .FALSE., evaluate e2. If it is

.TRUE., execute s2 and go on to the

statement that follows the END IF

� If the result of e2 is false, repeat this process.

� If none of the expressions ei evaluate to

.TRUE., execute se and then go on to the

statement that follows the END IF

Sept. 18th, 2007 28/41Selection

! ---

! Solve Ax^2 + Bx + C = 0

! Detect complex roots and repeated roots.

! ---

PROGRAM QuadraticEquation

IMPLICIT NONE

! **** same old declarations and setup statements omitted ****

d = b*b - 4.0*a*c

IF (d > 0.0) THEN ! distinct roots?

d = SQRT(d)

root1 = (-b + d)/(2.0*a) ! first root

root2 = (-b - d)/(2.0*a) ! second root

WRITE(*,*) 'Roots are ', root1, ' and ', root2

ELSE IF (d == 0.0) THEN ! repeated roots?

WRITE(*,*) 'The repeated root is ', -b/(2.0*a)

ELSE ! complex roots

WRITE(*,*) 'There is no real root!‘

WRITE(*,*) 'Discriminant = ', d

END IF

END PROGRAM QuadraticEquation

Sept. 18th, 2007 29/41Selection

Quadratic Roots Final Version

�The problem of finding the roots of a

quadratic has some more complications

�What if a is zero. Dividing by 2.0*a

would cause an error.

� If a is zero, the equation is linear, not

quadratic

� If a and b are zero but c isn’t there is no

solution

Sept. 18th, 2007 30/41Selection

11

! ---

! Solve Ax^2 + Bx + C = 0

! Now, we are able to detect the following:

! (1) unsolvable equation
! (2) linear equation
! (3) quadratic equation
! (a) distinct real roots
! (b) repeated root
! (c) no real roots
! ---

PROGRAM QuadraticEquation

IMPLICIT NONE

REAL :: a, b, c

REAL :: d

REAL :: root1, root2

! read in the coefficients a, b and c

READ(*,*) a, b, c

Sept. 18th, 2007 31/41Selection

IF (a == 0.0) THEN ! could be a linear equation
IF (b == 0.0) THEN ! the input becomes c = 0

IF (c == 0.0) THEN ! all numbers are roots
WRITE(*,*) 'All numbers are roots‘

ELSE ! Unsolvable
WRITE(*,*) 'Unsolvable equation‘

END IF
ELSE ! linear equation

WRITE(*,*) 'This is linear equation, root = ', -c/b
END IF

ELSE ! ok, we have a quadratic equation
d = b*b - 4.0*a*c
IF (d > 0.0) THEN ! distinct root

d = SQRT(d)

root1 = (-b + d)/(2.0*a) ! first root
root2 = (-b - d)/(2.0*a) ! second root
WRITE(*,*) 'Roots are ', root1, ' and ', root2

ELSE IF (d == 0.0) THEN ! repeated roots?

WRITE(*,*) 'The repeated root is ', -b/(2.0*a)
ELSE ! complex roots

WRITE(*,*) 'There is no real root!‘
WRITE(*,*) 'Discriminant = ', d

END IF
END IF
END PROGRAM QuadraticEquation

Sept. 18th, 2007 32/41Selection

What Day is Tomorrow?

� Here is a new problem to solve.

� Given today’s date (day,month,year)

� Compute and output tomorrow’s date

� What’s the problem?

� If the date is the last day of the month, we

have to update the day and month

� If it is the last day of the year, we also have to

update the year

Sept. 18th, 2007 33/41Selection

12

First Validate the Data
PROGRAM nextday

IMPLICIT NONE
INTEGER :: day, month, year

INTEGER :: lastday

WRITE (*,*) "Please enter the date, day month and year:"

READ (*,*) day, month, year

! validate month

IF (month < 1 .OR. month > 12) THEN
WRITE (*,*) "Invalid month"

STOP
END IF

! Validation of year and day omitted to save space

Sept. 18th, 2007 34/41Selection

Compute the last day of the month

IF (month == 1 .OR. month == 3 .OR. month == 5 .OR. &
month == 7 .OR. month == 8 .OR. month == 10 .OR. &
month == 12) THEN

lastday = 31

ELSE IF (month == 4 .OR. month == 6 .OR. month == 9 .OR. &
month == 12) then

lastday = 30

ELSE IF ((mod(year,4) == 0 .AND. mod(year,100) /= 0) .OR. &

mod(year,400) == 0) THEN
lastday = 29

ELSE
lastday = 28

END IF

Sept. 18th, 2007 35/41Selection

Compute Tomorrow’s Date
! The usual case

day = day + 1

! Handling the end of the month or year

IF (day > lastday) THEN
day = 1

month = month + 1

IF (month > 12) THEN
month = 1

year = year + 1

END IF
END IF

WRITE (*,*) day, month, year

END PROGRAM nextday

Sept. 18th, 2007 36/41Selection

13

Logical Operators

More complex logical expressions can be
formed using logical operators

The Logical Operators listed in order of
decreasing precedence are:
.NOT.

.AND. (or &&)

.OR. (or ||)

.EQV. (or ==), .NEQV. (or /=)

The precedence of all logical operators is lower
than all relational operators

They all associate from left to right

Sept. 18th, 2007 37/41Selection

Area of a Triangle

Heron’s formula gives the area of a triangle in
terms of the lengths of its sides.

Where a, b, and c are the lengths of the sides
and

))()((csbsassarea −−−=

2

cba
s

++
=

Sept. 18th, 2007 38/41Selection

Area of a Triangle

�To use it, we must make sure that the

sides form a triangle.

�There are two necessary and sufficient

conditions:

�All side lengths must be positive

�The sum of any two sides must be greater

than the third

Sept. 18th, 2007 39/41Selection

14

Area of a Triangle

(program preamble)
! ---

-
! Compute the area of a triangle using Heron's formula
! ---

-

PROGRAM HeronFormula
IMPLICIT NONE

REAL :: a, b, c ! three sides
REAL :: s ! half of perimeter
REAL :: Area
LOGICAL :: Cond_1, Cond_2
READ(*,*) a, b, c

Sept. 18th, 2007 40/41Selection

Area of a Triangle

(main body of program)

Cond_1 = (a > 0.) .AND. (b > 0.) .AND. (c > 0.0)
Cond_2 = (a+b > c) .AND. (a+c > b) .AND. (b+c > a)
IF (Cond_1 .AND. Cond_2) THEN

s = (a + b + c) / 2.0
Area = SQRT(s*(s-a)*(s-b)*(s-c))
WRITE(*,*) "Triangle area = ", Area

ELSE
WRITE(*,*) "ERROR: this is not a triangle!"

END IF

END PROGRAM HeronFormula

Sept. 18th, 2007 41/41Selection

