

Selection

- * As we have seen:
 - Every programming language must provide a selection mechanism that allows us to control whether or not a statement should be executed
 - This will depend on whether or not some condition is satisfied (such as the discriminant being positive)

Selection

Sept. 18th, 2007

FORTRAN Selection

- Used to select an alternative sequence of statements
- The keywords separate the block statements
- Has Additional Forms to Provide More Control

Selection

Sept. 18th, 2007

3/41

2/41

「日本の	Examples of IF-TH	EN-END IF
1	INTEGER :: a, b, min READ(*,*) a, b min = a	
5	<pre>IF (a > b) THEN min = b END IF</pre>	
K	WRITE(*,*) "The smaller of a, " and ", b,	E ", & " is ", min
Sint 7	Sept. 18th, 2007 Selection	6/41

Logical Data Type

Sept. 18th, 2007

- FORTRAN has a LOGICAL data type, just like it has INTEGER and REAL types
- Each type has its associated values
- * There are only two values in the type LOGICAL, .**TRUE.** and .**FALSE.**
- To enable the compiler to distinguish these values from variables, we represent them with periods around the words

Selection

11/41

== or = ?

- Note that == is the FORTRAN (and C) syntax for a relational operator meaning "is equal to"
- The expression x == y has the value .TRUE.
 if x and y are equal and .FALSE. if x and y are not equal
- A single equal sign (=) is the FORTRAN (and C) syntax for assignment
- The statement x = y means assign the value of y to the variable x

Selection

```
Sept. 18th, 2007
```

== or = ?

Sept. 18th, 2007

- In FORTRAN you will get an error message if you use either operator incorrectly
- When we study C, we will see a program can still work but give incorrect results if you confuse these operators

Selection

The Missing ELSE

- There is another more complex selection mechanism we can use
- The IF-THEN-ELSE-END IF form allows us to choose between two alternatives
- It allows us to choose whether or not to perform a one set of actions or another
- We either perform one action or another before we continue

Selection

Sept. 18th, 2007

17/41

16/41

a all				
1 MA				
10 CO.	! Solve $Ax^2 + Bx + C = 0$			
and the second	! Detect complex roots and repeated roots.			
1000	!			
	PROGRAM QuadraticEquation			
120.00	IMPLICIT NONE			
	! **** same old declarations and setup statements omitted ****			
8	d = b*b - 4.0*a*c			
	IF (d > 0.0) THEN	! distinct roots?		
1.00	d = SQRT(d)			
A. B.	root1 = (-b + d) / (2.0*)	a) ! first root		
1000	root2 = (-b - d) / (2.0*)	a) ! second root		
1.10	WRITE(*,*) 'Roots are ', root1, ' and ', root2			
- 199	ELSE			
100	IF (d == 0.0) THEN	<pre>! repeated roots?</pre>		
	WRITE(*,*) 'The repeated root is ', -b/(2.0*a)			
- Te	ELSE	! complex roots		
0	<pre>WRITE(*,*) 'There is no real root!'</pre>			
100	<pre>WRITE(*,*) 'Discriminant = ', d END IF</pre>			
Sec. 1				
100	END IF			
1000	END PROGRAM QuadraticEquation			
10 × 10 × 10				
100	Sept. 18th, 2007	Selection	25/41	

<section-header><list-item><list-item><list-item><list-item><table-container>

.TRUE., execute se and then go on to the statement that follows the END IF Sept. 18th, 2007 Selection 28/41

Solve $Ax^2 + Bx + C = 0$ Detect complex roots and repeated roots. PROGRAM QuadraticEquation IMPLICIT NONE ! **** same old declarations and setup statements omitted **** d = b*b - 4.0*a*cIF (d > 0.0) Then ! distinct roots? WRITE(*,*) 'The repeated root is ', -b/(2.0*a) SE ! complex roots WRITE(*,*) 'There is no real root!' ELSE WRITE(*,*) 'Discriminant = ', d END IF END PROGRAM QuadraticEquation Sept. 18th, 2007

