
1

Computers in Engineering

COMP 208

Expressions

Michael A. Hawker

Sept. 13th, 2007 Expressions 2

The Speed of Light

�How long does it take light to travel from

the sun to earth?

�Light travels 9.46 x 1012 km a year

�A year is 365 days, 5 hours, 48 minutes

and 45.9747 seconds long

�The average distance between the

earth and sun is 150,000,000 km

Sept. 13th, 2007 Expressions 3

Elapsed Time
PROGRAM light_travel

IMPLICIT NONE

REAL :: light_minute, distance, time

REAL :: light_year = 9.46 * 10.0 ** 12

light_minute = light_year / (365.25 * 24.0 * 60.0)

distance = 150.0 * 10.0 ** 6

time = distance / light_minute

WRITE (*,*) "Light from the sun takes ", time, &

"minutes to reach earth."

END PROGRAM light_travel

2

Sept. 13th, 2007 Expressions 4

Arithmetic Expressions

�An arithmetic expression is formed

using the operations:

+ (addition)

- (subtraction)

* (multiplication),

/ (division)

** (exponentiation)

Sept. 13th, 2007 Expressions 5

Watch out for Ambiguity

�Let’s look at two expressions from our

program
� light_minute = light_year / (365.25 * 24.0 * 60.0)

� distance = 150.0 * 10.0 ** 6

�What value is assigned to distance?

� (150.0 * 10.0) ** 6 ?

� 150.0 * (10.0 ** 6) ?

Watch out for ambiguity

� Let’s look at an expression from our program

light_minute = light_year / (365.25 * 24.0 * 60.0)

� What if the expression didn’t have parentheses?

light_minute = light_year / 365.25 * 24.0 * 60.0

Sept. 13th, 2007 Expressions 6

3

Watch out for ambiguity

�How about another expression?

distance = 150.0 * 10.0 ** 6

�What value is assigned to distance?

(150.0 * 10.0) ** 6 ?

150.0 * (10.0 ** 6) ?

Sept. 13th, 2007 Expressions 7

Precedence Rules

�Every language has rules to determine

what order to perform operations

�These rules try to mimic the

conventions we learn growing up

�For example, in FORTRAN ** comes

before *

� In an expression, all of the **’s are

evaluated before the *’s

Sept. 13th, 2007 Expressions 8

Precedence Rules

�First evaluate operators of

higher precedence
� 3 * 4 – 5 � ?

� 3 + 4 * 5 � ?

Sept. 13th, 2007 Expressions 9

4

Precedence Rules

�First evaluate operators of

higher precedence
� 3 * 4 – 5 � 7

� 3 + 4 * 5 � 23

Sept. 13th, 2007 Expressions 10

Precedence Rules

�For operators of the same precedence,

use associativity. Exponentiation is right

associative, all others are left

associative
� 5 – 4 – 2 � ?

� 2 ** 3 ** 2 � ?

Sept. 13th, 2007 Expressions 11

Precedence Rules

�For operators of the same precedence,

use associativity. Exponentiation is right

associative, all others are left

associative
� 5 – 4 – 2 � -1 (not 3)

� 2 ** 3 ** 2 � 512 (not 64)

�Expressions in Parenthesis are

Evaluated First
� (5 – 3) * 4 � 8

Sept. 13th, 2007 Expressions 12

5

Precedence of Operators in FORTRAN

�Operators in order of precedence and

their associativity:
Arithmetic

** right to left

*, / left to right

+, - left to right

Relational

<, <=, >, >=, ==, /= no associativity

Logical

.NOT. right to left

.AND. left to right

.OR. left to right

.EQV., .NEQV. left to right

Sept. 13th, 2007 Expressions 13

Another Example

�Last lecture we looked at the problem of

finding the roots of a quadratic equation

�We focused on the discriminant

�Here is a program that computes the

roots

Sept. 13th, 2007 Expressions 14

Sept. 13th, 2007 Expressions 15

! Solve Ax^2 + Bx + C = 0

! --

PROGRAM QuadraticEquation

IMPLICIT NONE

REAL :: a, b, c

REAL :: d

REAL :: root1, root2

! read in the coefficients a, b and c

WRITE(*,*) 'A, B, C Please : '

READ(*,*) a, b, c

! compute the square root of discriminant d

d = SQRT(b*b - 4.0*a*c)

! solve the equation

root1 = (-b + d)/(2.0*a) ! first root

root2 = (-b - d)/(2.0*a) ! second root

! display the results

WRITE(*,*) 'Roots are ', root1, ' and ', root2

END PROGRAM QuadraticEquation

6

Data Types

� In the examples we have declared the

variables to be of type REAL

�That is, each memory cell can hold a

real number

�What is a real number?

� In Mathematics?

� In FORTRAN?

Sept. 13th, 2007 Expressions 16

Real Numbers (examples)

3.14159

10.0

10.

-123.45

+1.0E-3 (0.001)

150.0E6

But Not:

1,000.000

123E5

12.0E1.5

Sept. 13th, 2007 Expressions 17

Real Numbers (representation)

�A real value is stored in two parts

�A mantissa determines the precision

�An exponent determines the range

�Real numbers are typically stored as

either

� 32 bits (4 bytes): type REAL

� 64 bits (8 bytes): type DOUBLE

� (This varies on some computers)

Sept. 13th, 2007 Expressions 18

7

Accuracy of Real Numbers

�REAL numbers:

�Mantissa represented by 24 bits gives

about 7 decimal digits of precision

�Exponent represented by 8 bits gives

range from 10-38 to 1038

�DOUBLE numbers:

�Mantissa represented by 53 bits gives

about 15 decimal digits of precision

�Exponent represented by 11 bits gives

range from 10-308 to 10308
Sept. 13th, 2007 Expressions 19

Rounding Errors

�Be careful not to expect exact results

with real numbers
PROGRAM roundoff

IMPLICIT NONE

REAL :: x, y

x = 100.00002

y = x*x - x

WRITE (*,*) x/y * (x - 1)

END PROGRAM roundoff

Sept. 13th, 2007 Expressions 20

2.0 + 2.0 = ???

�What result do we expect?

�What result do we get?
>gfortran -fimplicit-none -W –Wall

"roundoff.f90" -o "roundoff.exe“

>Exit code: 0

>roundoff

0.9999999

>Exit code: 0

Sept. 13th, 2007 Expressions 21

)1(
2

−×

−

x
xx

x

8

Back to The Speed of Light

�How long does it take light to travel from

the sun to earth?

�The result we got was a decimal

number of minutes

�We’d rather have the number of minutes

and seconds

Sept. 13th, 2007 Expressions 22

Minutes and Seconds
PROGRAM light_travel

IMPLICIT NONE

REAL :: light_minute, distance, time

REAL :: light_year = 9.46 * 10.0**12

INTEGER :: minutes, seconds

light_minute = light_year / (365.25 * 24.0 * 60.0)

distance = 150.0 * 10**6

time = distance / light_minute

minutes = time

seconds = (time - minutes) * 60

WRITE (*,*) "Light from the sun takes ", minutes, &

" minutes and ", seconds, " seconds to reach earth."

END PROGRAM light_travel

Sept. 13th, 2007 Expressions 23

Integer Numbers

� Integers are whole numbers

represented using 32 (or 16 or 64 bits)

�For 32 bit numbers whole numbers

between -2147483648 and 2147483647

can be represented

0

-987

+17

123456789

Sept. 13th, 2007 Expressions 24

9

Sept. 13th, 2007 Expressions 25

Integer Arithmetic

� The result of performing an operation on two

integers is an integer

� This may result in some unexpected results

since the decimal part is truncated

12/4 � ?

13/4 � ?

1/2 � ?

2/3 � ?

Sept. 13th, 2007 Expressions 26

Integer Arithmetic

� The result of performing an operation on two

integers is an integer

� This may result in some unexpected results

since the decimal part is truncated

12/4 � 3

13/4 � 3

1/2 � 0

2/3 � 0

Sept. 13th, 2007 Expressions 27

Some Simple Examples

2 + 2 � 4

1.25 - 0.45 � 0.80

4 * 8 � 32

7.4/1.25 � 5.92

9.6/4.8 � 2.0 (not 2)

-5**2 � -25 (not 25 - precedence)

3/5 � 0 (not 0.6)

3./5. � 0.6

(4 + 8) * 2 / 3 � 8

10

Sept. 13th, 2007 Expressions 28

Another Example
2 * 4 * 5 / 3 ** 2

--> 2 * 4 * 5 / [3 ** 2]

--> 2 * 4 * 5 / 9

--> [2 * 4] * 5 / 9

--> 8 * 5 / 9

--> [8 * 5] / 9

--> 40 / 9

--> 4

The result is 4 rather than 4.444444 since the operands are all
integers.

Mixed Mode Assignment

� In the speed of light example, we assigned an

real value to an integer variable
minutes = time

� The value being assigned is converted to an

integer by truncating (not rounding)

�When assigning an integer to a real variable,

the integer is first converted to a real (the

internal representation changes)

Sept. 13th, 2007 Expressions 29

Mixed Mode Expressions

� In the speed of light example, we subtracted the

integer value, minutes, from the real value, time
seconds = (time - minutes) * 60

� If an operation involves an integer and a real, the

integer is first converted to a real and then the

operation is done.

� The result is real.

� The example has two arithmetic operations, an

assignment and forces two type conversions

Sept. 13th, 2007 Expressions 30

11

Sept. 13th, 2007 Expressions 31

Mixed Mode Examples

1 + 2.5 � 3.5

1/2.0 � 0.5

2.0/8 � 0.25

-3**2.0 � -9.0

4.0**(1/2) � 1.0 (since 1/2 � 0)

Sept. 13th, 2007 Expressions 32

Another Example

25.0 ** 1 / 2 * 3.5 ** (1 / 3)

� [25.0 ** 1] / 2 * 3.5 ** (1 / 3)

� 25.0 / 2 * 3.5 ** (1 / 3)

� 25.0 / 2 * 3.5 ** ([1 / 3])

� 25.0 / 2 * 3.5 ** 0

� 25.0 / 2 * [3.5 ** 0]

� 25.0 / 2 * 1.0

� [25.0 / 2] * 1.0

� 12.5 * 1.0

� 12.5

Something’s Not Right Here
PROGRAM light_travel

IMPLICIT NONE

REAL :: light_minute, distance, time

REAL :: light_year = 9.46 * 10**12

light_minute = light_year/(365.25 * 24.0 * 60.0)

distance = 150.0 * 10**6

time = distance / light_minute

WRITE (*,*) "Light from the sun takes ", time, &

"minutes to reach earth."

END PROGRAM light_travel

Sept. 13th, 2007 Expressions 33

12

What Happened?

�Look at this assignment:

light_year = 9.46 * 10**12

�Precedent rules tell us that 10**12 is

evaluated first

�Type rules tell us that the result is an

integer

� Integers can only have about 9 digits,

not 12

Sept. 13th, 2007 Expressions 34

How do we fix it?

�Let’s change

light_year = 9.46 * 10**12

� to

light_year = 9.46 * 10.0**12

�That works, but why?

�REAL numbers can represent much larger

exponents

Sept. 13th, 2007 Expressions 35

Where Are We

�We have seen

�Expressions

�Types and declarations

�Coming up

�Selection Mechanisms

�Looping

Sept. 13th, 2007 Expressions 36

