
1

Computers in Engineering

COMP 208

First Look At Fortran

Michael A. Hawker

Sept 6th, 2007 First Look At Fortran 2/40

A First Look At Fortran

�Let’s have a look at Fortran

�We will examine a simple program

�How do we get it to run?

Sept 6th, 2007 First Look At Fortran 3/40

Our First Program

PROGRAM hello

IMPLICIT NONE

!This is my first program

WRITE (*,*) “Hello World!”

END PROGRAM hello

!Note the use of whitespace (indentation &

!blank lines) to make the program more

!readable

2

Sept 6th, 2007 First Look At Fortran 4/40

How Do I Run The Program?

�First, prepare the program using an
editor to enter the program text
�A plain text editor such as Notepad works,
but NOT Word

�An IDE (Integrated Development
Environment) such as SciTE helps layout
the program, compile, and run it

�Save the program text with the suffix
.f90 (e.g. Hello.f90)

Sept 6th, 2007 First Look At Fortran 5/40

How Do I Run The Program?

� Run the FORTRAN compiler taking its input
from this file and producing an executable
program
� If you used a plain text editor, run the following
from the command window.
gfortran –fimplicit-none –W hello.f90 -o hello.exe

� If you used SciTE, you can use the tool bar to
compile the program

� Run the executable program (in the .exe file)
� From the command window, just type “hello”

� From and IDE like SciTE, choose run from the tool
bar

Sept 6th, 2007 First Look At Fortran 6/40

The Program Block
PROGRAM hello

IMPLICIT NONE

!This is my first program

WRITE (*,*) “Hello World!“

END PROGRAM hello

� The bold keywords tell the compiler where
the program begins and ends.

� They bracket a section of code called a block

3

Sept 6th, 2007 First Look At Fortran 7/40

Some Observations

PROGRAM hello

IMPLICIT NONE

!This is my first program

WRITE (*,*) “Hello World!“

END PROGRAM hello

� Using uppercase is a convention to distinguish
keywords.

� FORTRAN is case insensitive. PROGRAM, program,
proGRAM, pRoGrAm are all the same.

� Keywords are not reserved in FORTRAN

Sept 6th, 2007 First Look At Fortran 8/40

The Program Block in General

� Syntax for the program block in general looks

like:

PROGRAM program-name

IMPLICIT NONE

{declarations}

{statements}

END PROGRAM program-name

{subprogram definitions}

Sept 6th, 2007 First Look At Fortran 9/40

A First Program -- Comments

PROGRAM hello

IMPLICIT NONE

!This is my first program

WRITE (*,*) “Hello World!“

END PROGRAM hello

� Comments are preceded by a “!”

� All characters following the exclamation mark
on that line are ignored by the compiler

� The “!” inside the Hello World! string is not
part of a comment

4

Sept 6th, 2007 First Look At Fortran 10/40

Comments

� Comments are used to signal the intent of the

programmer

� Improve readability and understanding

� An important aid to debugging and maintaining code

� Comments can appear anywhere in the program

� When the compiler encounters a “!” (that is not

contained inside a string) it ignores the rest of the line

� Comments are only there for someone reading the

program, not for the compiler to use.

� Make Useful Comments

Sept 6th, 2007 First Look At Fortran 11/40

Useful Comments

� Not Useful:

! Add 1 to a

a = a + 1

� More Useful:

! Increment to account for new user login

a = a + 1

� Sometimes, Not Necessary:

NumUsersLoggedIn = NumUsersLoggedIn + 1

Sept 6th, 2007 First Look At Fortran 12/40

A First Program -- Output
PROGRAM hello

IMPLICIT NONE

!This is my first program

WRITE (*,*) “Hello World!”

END PROGRAM hello

� The WRITE statement instructs the computer
to display values on the screen or on some
other output device

� The values to be displayed can be strings (as
in the example) or any other value (such as a
number).

5

Sept 6th, 2007 First Look At Fortran 13/40

The Write Statement

� The WRITE statement has one of the forms:

WRITE (*,*) exp1, exp2, exp3, ...,expn

WRITE (*,*)

� The second form outputs a blank line

� The expressions can be of any type

� Each expression is evaluated and the value is
displayed on the screen

Sept 6th, 2007 First Look At Fortran 14/40

Controlling Output

� The computer chooses how to display the output on

the screen

� We may want to control how the output appears

� Display monetary numbers with two decimal points

� Align data in columns

� Later we study FORMAT codes that give us that kind

of control

� We also will see how to put the output values into a

file or write to some device other than the screen

Sept 6th, 2007 First Look At Fortran 15/40

Let’s try solving a real problem

�Here’s a classical problem that arises in

many applications.

�Problem: Find the roots of the quadratic

ax2+bx+c

6

Sept 6th, 2007 First Look At Fortran 16/40

Roots of a Quadratic

�This problem, and partial solutions are

mentioned over 3500 years ago.

�We’ll use an algorithm developed in

India in the 8th century

�The roots are given by the formula

a

acbb

2

4
2
−±−

Sept 6th, 2007 First Look At Fortran 17/40

The Discriminant

�First we focus on computing the
discriminant

b2-4ac

�We will develop an algorithm for finding
the result

�The algorithm should work for any value
of a, b and c. That is, it should be
generic and robust.

Sept 6th, 2007 First Look At Fortran 18/40

What are a, b and c?

� The values a, b and c are called variables
since they can take on any numeric value.

� In Fortran, variables represent memory cells.
They are names mapped to memory
locations.

� Each cell can store a single value at any
given time.

� Each cell’s size is dependent on the type of
data you want to store there.

7

Sept 6th, 2007 First Look At Fortran 19/40

Memory “Cells”

A B C

Sept 6th, 2007 First Look At Fortran 20/40

How do these values get there?

� Any value stored in a variables (like a, b and
c) must be stored in memory

� The value stored can be something you
specify beforehand or input from outside the
program (user)

� Assignment statements can be used to tell
the computer to place values in these cells

� Every time your program runs, the physical
memory used by your computer can be
different.

Sept 6th, 2007 First Look At Fortran 21/40

What do we do with these values?

�We can use the values stored in

variables and perform basic operations

such as +, -, *, /, etc. on them

�We can store the result of an operation

into a memory cell

�We can output the value to the screen,

a file, or a printer

8

Sept 6th, 2007 First Look At Fortran 22/40

Basic Concept Review

� Algorithms are generic – that is, they must be
able to solve the problem in general, not just
for some specific values

�We input the values for a specific instance of
the problem

� Values are stored in memory cells named by
variables

� Algorithms are built using basic operations
available on the computer (+, -, *, /)

Sept 6th, 2007 First Look At Fortran 23/40

Algorithm for the Discriminant

�Back to our problem of computing
b2-4ac

�A psuedocode algorithm
input a, b, c

x <- b * b

y <- a * c

z <- 4 * y

d <- x - z

Sept 6th, 2007 First Look At Fortran 24/40

Actions

� Actions to be performed are specified by
statements

� A basic statement is an assignment:

x <- y op z

� Perform the operation op on the values stored
in y and z and then store the result in x

� Actions are performed in sequence.

� Lines of a program are executed First to Last.
� The first action is done, then the second, etc…

9

Sept 6th, 2007 First Look At Fortran 25/40

From pseudocode to FORTRAN

�Each language, including FORTRAN

has specific rules for expressing the

basic concepts we have discussed

�On the next slide, we look at a

FORTRAN version of our discriminant

algorithm

Sept 6th, 2007 First Look At Fortran 26/40

The Return of the Discriminant

�Our problem of computing:
b2-4ac

�A FORTRAN algorithm
READ(*,*) a, b, c

x = b * b

y = a * c

z = 4 * y

d = x - z

Sept 6th, 2007 First Look At Fortran 27/40

FORTRAN Variables

� FORTRAN variables are the names of

memory cells, programs or functions

� Each name refers to an object of the specified

type

� The variable can only hold values of that type

� Declaration statements are used to tell the

compiler what variables are to be used in the

program

10

Sept 6th, 2007 First Look At Fortran 28/40

Something New
! Compute B*B-4*A*C

PROGRAM Discriminant

IMPLICIT NONE

REAL :: a, b, c

REAL :: d

! read in the coefficients a, b and c

WRITE(*,*) 'A, B, C Please : '

READ(*,*) a, b, c

! compute the discriminant d

d = b*b - 4.0*a*c

! display the results

WRITE(*,*) ‘The discriminant is ', d

END PROGRAM Discriminant

Sept 6th, 2007 First Look At Fortran 29/40

Declarations

�Allocate space in memory for a variable

�The size the memory cell will be based

on the type of value to be stored

�Create a name for the program to use to

refer to that location

� IMPLICIT NONE – Forces Declaration,

A Good Thing, Trust Me…

Sept 6th, 2007 First Look At Fortran 30/40

Type Statements

� Declarations are made using type statements
type-specifier :: list of names

� The type-specifier can be
� INTEGER

� REAL

� COMPLEX

� LOGICAL

� CHARACTER

� INTEGER variables can hold integer values
and REAL variables can hold decimal values

11

Sept 6th, 2007 First Look At Fortran 31/40

Names in FORTRAN

�Computer languages have rules for how
to form names

� In FORTRAN, names must start with a
letter and can be made up of letters,
digits and “_” characters

� It is not safe to use the same name as a
FORTRAN keyword

�Create Meaningful Names

Sept 6th, 2007 First Look At Fortran 32/40

User Input
! Compute B*B-4*A*C

PROGRAM Discriminant

IMPLICIT NONE

REAL :: a, b, c

REAL :: d

! read in the coefficients a, b and c

WRITE(*,*) 'A, B, C Please : '

READ(*,*) a, b, c

! compute the discriminant d

d = b*b - 4.0*a*c

! display the results

WRITE(*,*) ‘The discriminant is ', d

END PROGRAM Discriminant

Sept 6th, 2007 First Look At Fortran 33/40

The READ Statement

� Syntax:
READ (*,*) var1, var2, . . ., varn

� Semantics:

� Starts a new line to contain the user input

� Input values must be the same type as the

corresponding variables

� Data must be separated by commas or blanks

� Extra input values on that line are ignored

12

Sept 6th, 2007 First Look At Fortran 34/40

The Expression Returns
! Compute B*B-4*A*C

PROGRAM Discriminant

IMPLICIT NONE

REAL :: a, b, c

REAL :: d

! read in the coefficients a, b and c

WRITE(*,*) 'A, B, C Please : '

READ(*,*) a, b, c

! compute the discriminant d

d = b*b - 4.0*a*c

! display the results

WRITE(*,*) ‘The discriminant is ', d

END PROGRAM Discriminant

Sept 6th, 2007 First Look At Fortran 35/40

Expressions

�We can combine basic operations into more
complex expressions

REAL :: a, b, c, d

d = b*b – 4*a*c

� The computer can still only do one operation
at a time

� The compiler breaks this down into basic
operations

� Each language has its own rules to determine
the sequence of basic actions

Sept 6th, 2007 First Look At Fortran 36/40

Operations

� An arithmetic expression is formed using the
operations:

+ (addition)

- (subtraction)

* (multiplication)

/ (division)

** (exponentiation)

�We will discuss these in much more detail in
the next lecture.

� Usually the result is stored in another variable

13

Sept 6th, 2007 First Look At Fortran 37/40

The Final Result…
! Compute B*B-4*A*C

PROGRAM Discriminant

IMPLICIT NONE

REAL :: a, b, c

REAL :: d

! read in the coefficients a, b and c

WRITE(*,*) 'A, B, C Please : '

READ(*,*) a, b, c

! compute the discriminant d

d = b*b - 4.0*a*c

! display the results

WRITE(*,*) ‘The discriminant is ', d

END PROGRAM Discriminant

Sept 6th, 2007 First Look At Fortran 38/40

Assignment Statement

�The assignment statement has syntax:

variable = expression

�Semantics

�Evaluates the expression

�Stores the result in the variable

Sept 6th, 2007 First Look At Fortran 39/40

The Complete Example
! Compute B*B-4*A*C

PROGRAM Discriminant

IMPLICIT NONE

REAL :: a, b, c

REAL :: d

! read in the coefficients a, b and c

WRITE(*,*) 'A, B, C Please : '

READ(*,*) a, b, c

! compute the discriminant d

d = b*b - 4.0*a*c

! display the results

WRITE(*,*) ‘The discriminant is ', d

END PROGRAM Discriminant

14

Sept 6th, 2007 First Look At Fortran 40/40

“Old” & New Topics

� Familiar Things

� Program Block

� Comments

� Write Statement

� New Things

� Declarations

� Expressions

� Assignment Statement

� Read Statement

