
1

Computers in Engineering

COMP 208

Computer Structure

Michael A. Hawker

Sept 6th, 2007 Computer Structure 2/27

Computer Structure

�We will briefly look at the structure of a 

modern computer

�That will help us understand some of 

the concepts that occur in Fortran and C

Sept 6th, 2007 Computer Structure 3/27

Computer Architecture

�At the lowest level a computer is just a 

collection of switches that can be on or 

off (representing 1 and 0).

�The circuitry is organized into 

components that serve different 

functions such as decoding bit 

sequences, carrying out simple 

arithmetic operations, etc.



2

Sept 6th, 2007 Computer Structure 4/27

Von Neumann Machines

�Modern computers are called Von 
Neumann Machines

�John Von Neumann is credited with the 
idea that programs can be encoded and 
stored in the memory just like data

�A control unit transfers instructions from 
the memory into registers so that a 
processing unit can execute them

Sept 6th, 2007 Computer Structure 5/27

The 5 Classic Components

CPU

Computer

Control

Registers

Memory

Input
Devices

Output
Devices

Sept 6th, 2007 Computer Structure 6/27

The Intel Pentium Processor

Schematic Layout

Branch 

Control

Data 

cache

Instruction 

cache

Bus Integer 

data- 

path

Floating- 

point 

datapath



3

Sept 6th, 2007 Computer Structure 7/27

The Von Neumann Model

�Programs and data are both stored in 

the main memory of the machine

�There is one CPU (Central Processing 

Unit)

�The CPU has a control unit that fetches 

program instructions from memory, 

decodes them and executes them

Sept 6th, 2007 Computer Structure 8/27

The Von Neumann Model

�Data is loaded from memory into 
registers in the CPU

�The CPU contains circuitry to perform 
basic arithmetic operations and to 
compare values, placing the results into 
registers

�The values in the registers can be 
stored in main memory

Sept 6th, 2007 Computer Structure 9/27

Input / Ouput

Input Output

PDA

PDA

Digitizing pad

Printer

Keyboard

Mouse
Scanner



4

Sept 6th, 2007 Computer Structure 10/27

The Von Neumann Model

� Input devices (keyboard, pda, cell 

phone, . . .) allow us to place data (and 

programs) into memory

�Output devices allow us to display 

values stored in memory (on screen, 

pda, cell phone, . . .)

Sept 6th, 2007 Computer Structure 11/27

Low Level Programming

� Programmers in the late 1940’s had to use binary 

numbers to encode the instructions and the data

� This was very time consuming and error prone so 

written mnemonic codes were created. Programs 

were written using these codes and then translated 

into binary by hand

� Soon programs were written to convert the coded 

symbols to binary and called assemblers

� The instruction names were called assembly 

language

Sept 6th, 2007 Computer Structure 12/27

Assembly Language

�Low level language

�Simple instructions of the form

op result, arg1, arg2

�Machine dependent – each 

processor has its own assembler



5

Sept 6th, 2007 Computer Structure 13/27

Assembler Example

� We may want to evaluate the expression
f = (g + h) – (i + j)

� Assembly program (where all the names refer 
to registers)
add t0, g, h

add t1, i, j

sub f, t0, t1

� Load and Store instructions are part of the 
assembly language and allow transferring 
data values between memory and registers

Sept 6th, 2007 Computer Structure 14/27

High Level Languages

�Programming in assembly language is 

still difficult and tedious

�Programs are very rigid and tied to 

specific machines

�High level languages provide a more 

natural mathematically based formalism 

for expressing algorithms

Sept 6th, 2007 Computer Structure 15/27

High Level Languages

�Hide details of memory allocation

�Allow expressing complex operations 

together, not just one step at a time

�Provide a more natural way of 

programming

�Allow programs to be ported from one 

machine to another



6

Sept 6th, 2007 Computer Structure 16/27

High Level Languages

�These languages make it easier to write 

programs but they are still very formal, 

precisely structure languages that follow 

very specific syntax rules

� In addition to learning how to formulate 

algorithms for the computer, we will 

have to learn the rules for these 

languages

Sept 6th, 2007 Computer Structure 17/27

How Does This Work

�Programs written in a high level 
language are translated into 
assembly/machine level programs

�A program called a compiler does this 
translation

�This program is stored in memory by a 
loader

�We can then execute the program

Sept 6th, 2007 Computer Structure 18/27

The Translation Process

compiler

source program

assembly program

linker/loader

native code



7

Sept 6th, 2007 Computer Structure 19/27

Source Program

�A program written in a high level 

language (FORTRAN, C, C++, Ada)

�Created with a text editor in human 

readable form

�File name extension often says what 

language is used (a1.f90, a4.c, 

test.java)

Sept 6th, 2007 Computer Structure 20/27

The Translation Process

compiler

source program

assembly program

linker/loader

native code

Sept 6th, 2007 Computer Structure 21/27

Compiler

�A program that analyses the source 

program and translates it into a form the 

computer can understand

�Result is not readable by humans

�Each high level language requires its 

own compiler



8

Sept 6th, 2007 Computer Structure 22/27

The Translation Process

compiler

source program

assembly program

linker/loader

native code

Sept 6th, 2007 Computer Structure 23/27

The Translation Process

compiler

source program

assembly program

linker/loader

native code

Sept 6th, 2007 Computer Structure 24/27

Linker/Loader

�The Linker combines the assembler 

code with other programs that were 

compiled another time or are standard 

programs available in libraries (sin, sqrt, 

etc)

�The Loader puts the complete program 

in memory and begins execution with 

the first instruction



9

Sept 6th, 2007 Computer Structure 25/27

The Translation Process

compiler

source program

assembly program

linker/loader

native code

Sept 6th, 2007 Computer Structure 26/27

Native Code

�The final program built for the specific 

platform it was compiled on

�Will only work on the same type of 

machine (i.e. Windows, Mac, Linux, 

etc…)

�Not “Portable”

Sept 6th, 2007 Computer Structure 27/27

JIT – Just-in-time Compiler

�Some High Level Languages like Java 
or Python use a “Just-in-time” compiler

�This allows code to be portable to 
different platforms

� It dynamically at runtime translates a 
program to the native machine code

�Usually the language will compile down 
to an intermediary “bytecode” as well.


