
CS 760 Graph Theory Scribe: Matt Drescher
Instructor: Bruce Reed winter, 2006

add 1.10, hereditary.
Exam March 1st

Path: walk with no repeated vertices.
Cycle: closed walk with one repeated vertex.
d(v) : the degree of v in G.
d+(v) : the out degree of v in G.
d−(v) : the in degree of v in G.
G := (V,E)
D := (V,A)
G[S] := Induced subgraph of G by vertex set S
G− S := G[V − S]
G− w := G− {w}
Ḡ := the compliment of G
component : :maximal connected piece
Block: :maximal 2 connected piece
n := |V |
m := |E|

(near) Almost perfect matching: A matching with |V |
2 − 1 edges.

1 Konningsberg

see hand out and first chapter of text.

1.1 Necessary and Sufficient conditions for G to have a closed walk using each
edge exactly once.(Circuit)

1. Every vertex must have even degree .
2. Graph must be connected except for possibly some isolated vertices.

By # 1, E(G) decomposes into a set of cycles. show that a graph satisfying #1 has a cycle. rip
it out, and the result follows by induction.
Now take the set of cycles. If they all intersect, then we are done. If some cycles is disjoint then
the Graph is not connected.

G is Eulerian iff every vertex has even degree. ⇔ we can orient the edges of G so that ∀v ∈
G, d+(v) = d−(v).

this is called an Eulerian Orientation. We can find this in Linear time by just picking a vertex
and following a path orienting along until we cant, then pick a different starting point.



Theorem 1 1.Given a graph G, how many edges do we need to delete to make G Eulerian?
2.Given a graph G, how many edges do we need to add to make G Eulerian?
3.Given an orientation of an Eulerian G, how many edges do we need to reverse to obtain an
Eulerian orientation?

#3:
V = Vodd ∪ Veven ( |Vodd| is even).
Need to add(delete) ≥ |Vodd|

2 edges.
Can delete(add) exactly this many to get an Eulerian graph iff ∃ a perfect matching in the
subgraph of G induced by Vodd. Actually want a minimum size T − join for T = Vodd.

T − Join- Subgraph of G in which ∀v ∈ T , dH(v) is odd. ∀v /∈ T , dH(v) is even.
See 552 notes. T − joins are not important in this class.

*********
However this is important:
********
#3:
Drev : reverse every edge of D.
Choose (some subset of edges from)a subgraph H of Drev So that the net indegree of each vertex
of H is given by its label.

Flow from s to t in Drev whose volume is
∑

sv∈E cap(sv). All the edges of Drev have capacity
1.

So finding an eulerian orientation is trivial, given an orientation finding the closest Eurlerian
orientation is an application of maxflow.

2 Counting the number of Eulerian Orientations of an Eulerian
graph G

There exists a one to one correspondence between between Eulerian orientations of an (Eulerian)
graph G, and perfect matchings in an auxiliary bipartite graph : (E(G), d(v)/2 copies of each vertex v of G).
e = uv ∈ E(G) is joined to every copy of u and every copy of v.

one-to-one correspondence: e is joined to v in M iff e is directed towards v in the orientation.
expected to understand this correspondence!

G is k − edge − connected if there exists k internally disjoint s − t paths between every two
vertices of G.
D is k− strongly− edge− connected if ∃k internally disjoint directed paths from s to t ∀(s, t) ∈ V .

Theorem 2 Any 2k− connected Eulerian graph has a k− strongly − connected orientation.(any
Eulerian orientation will do).



Can ask same questions about Acyclic Orientations(look up definition) as we are asking about
Eulerian. Any graph G gas acyclic orientation. How do we test if an orientation is acyclic?
How many edges do we need to reverse to make an orientation acyclic?? NP complete(Feedback
Arc Set).

Approx Counting Acyclic Orientations –open.

2.1 Eulerian Cycles

we have seen

Theorem 1 G is Eulerian iff E(G) can be partitioned into cycles iff every vertex degree is even.

Theorem 2 G has an Eulerian cycle iff G is Eulerian and connected up to isolated vertices.

Theorem 3 how many edges do we need to reverse?

solved this by considering a min cost flow problem in auxiliary network with unit capacity 1 and
cost 1. and adding source and sink.

It is easy to see that for every perfect matching we have n/2 near perfect matchings, thus the
number of near perfect matchings ≥ # of perfect matchings ·n2 .

Assume G is Eulerian.
Perfect matchings correspond to Eulerian orientations of G.

Near perfect matchings correspond to orientations where edge e is not directed. One vertex v
has in degree d(v)/2− 1 all other w have degree d(w)

2 .
Orienting e we either get an Eulerian orientation or an orientation where d−(v) = d(v)

2 − 1
d−(u) = d(u)

2 + 1
≤ |E(t)||E(G)|+

∑
u,v AE(u, v)(d(u)

2 + 1)

Prove ∀u, v , |AE(u,v)|
|EO(G)| ≤ 1

(AE(u, v)× decomposition of directed graph) ≤ (EO(u, v)× decomposition)
decomposition of E(G) into set of directed closed walks disjoint from u→ v. plus walks from u to
v directed v to u internally , u to u disjoint, v to v from {u, v} .

for every orientation we have ∏
w∈V−u−v

(
d(w)

2
!)

join a to B if we can set a from b by reversing a b → u path of the decomposition. See paper on
web page. Don’t need to understand probabilistic stuff.



3 Hamilton Cycles

If G is a bipartite graph (A,B) with |A| + |B| odd, or more generally |A| 6= |B| then it does not
have a perfect matching. It is NP complete to check if G is Hamiltonian.

Dirac 1 Every vertex has degree at least n
2 G is Hamiltonian .

Proof. G is connected. Take a longest path p in G with end points u and v. N(v) ⊆ p, N(u) ⊆ p
(otherwise wouldn’t be longest). If there is a cycle through p then V (p) = V (G) or p is not
maximum, therefore G is Hamiltonian.

Ore 1 if for every pair of non adjacent vertices u, v d(u) + d(v) ≥ n⇒ Himilton cycle

Posa 1 ∀1 ≤ k ≤ n
2

|{v|d(v) ≤ k}| < k

then G has a Hamilton cycle.

3.1 Posa’s Extension-Rotation Technique

Count [ neighbours of u on path ≥ n
2 ]

and [ Vertices immediately following a neighbor of v on the path ≥ d(v) ]. These sets are disjoint
and neither contains u. Therefore |V (G)| ≥ n + 1

Proof. G is connected. Take p so that deg(v) + deg(u) is as large as possible. claim, d(v) ≥
n
2 , d(u) ≥ n

2 . wi are nodes on p such that we have edge pwi. ∀id(wi) ≤ k by our choice of p.

4 Euler’s Formula and Planar Graphs

|V |+ |F | = |E|+ 2

(cube, tetrahedron, dodecahedron, octahedron, icosahedron) Archimedian solids can only have
4, 6, 8, 12, 20 sides. See text.

In a regular polyhedra, every vertex has degree d, and every face has d ≥ 3, s ≥ 3 s sides.

d|V | = 2|E|

s|F | = 2|E|

therefore
2
d
|E|+ 2

|E|
s

= |E|+ 2

(
2
d

+
2
s
)|E| = |E|+ 2

So one of d or s is 3, and the other is 4 or 5.

3, 3 :
4
3
|E| = |E|+ 2, |E| = 6



3, 4 :
7
6
|E| = |E|+ 2, |E| = 12

3, 5 :
16
15
|E| = |E|+ 2, |E| = 30

d = 3, s = 4−−|V | = 8, |F | = 6

d = 4, s = 3−−|V | = 6, |F | = 8

d = 3, s = 5−−|V | = 20, |F | = 12

d = 5, s = 3−−|V | = 12, |F | = 20

4.1 Drawing of a graph G

Drawing of a graph Vertices are distinct points in R2. Edge e with endpoints x, y is a simple
arc from x to y. These arcs are disjoint except at common endpoints.

Face of a drawing: Connected region when edges and vertices are removed.

Embedding of a Graph: Set of face boundaries. For two connected graphs, this is a set of
directed cycles using each edge exactly once in each direction. if this holds and |E|+ |V | = |E|+ 2
then we have an embedding in the plane.

If G is connected then every face is a closed walk(possibly with repeated edges) . Every edge
appears twice in face boundaries. If G is 2− connected then face boundary is a cycle. Every edge
is in exactly 2 faces.

Euler 1 If G is planar then

|V |+ |F | = |E|+ 1 + # of components

Proof. Spanning forest–spanning tree of each component of G.
If G has k components (V1, ..., Vk and ni := |V [Vi]|

|V | =
k∑

i=1

ni

|E| =
∑
i=1

(ni − 1) = |V | − k

# of faces is 1.
add remaining edges one by one. every time we do this 1 face splits into two and it continues

to hold.



4.2 Which graphs are Planar?

If an induced cycle C of G is not a face then G − V [C] can not be connected. In a clique with 4
vertices , every triangle is a face. K3,3,K5 are not planar.

Subdivision–add vertices to edges. Any graph containing a subdivision of K3,3 or K5 is not
planar. This condition is necessary and sufficient.

Kuratowski 1 G is planar iff G contains neither K3,3 nor K5 as a subdivision.

Proof. Take a minimal counterexample M . M is connected(otherwise not minimal). Suppose
we have a cut vertex, a vertex who’s removal disconnects the graph(figure 8). then we can put v in
the infinite face of each embedding. Same is true for edge cut. If there is a 3 cut which is a triangle
we get a K3,3 subdivision. If we have a 3 cut that is not a triangle we induct on the number of non
edges. So it must be 4 connected. Contract an edge xy to obtain G∗. Need to show 1.that G∗ has
no K3,3 or K5 and is therefore planar. 2. From Every planar embedding of G∗ we can construct
one of
(a) a K3,3 or K5 subdivision in G.
(b) a planar embedding of G.

See handout Introduction to Routing for complete proof

4.3 How many embedding does a planar graph have?

Embedding: Set of directed cycles which are face boundaries (2-connected graphs).

Whitney’s 1 A 2− conencted planar graph has a unique embedding precisely if it is a subdivision
of a 3 connected graph or a cycle, or the subgraph x →p1 y, x →p2 y, x →p3 y where pi is a path.
(Faces are planar dual of triangle)

Need to show 3− connected graphs have unique embeddings. Proof. see notes.
If H has a vertex of degree 4, no subcubic(d(v) ≤ 3∀v ∈ V ) graph has a subdivision of H.
G has a minor if we can obtain from G via a sequence of edge contractions, edge deletions and

vertex deletions.
e := xy

Tutte 1 G is connected. the number of spanning trees of G = #spanning trees ofG−xy+#”G∗
xy

a model of H in G is a function from v(H)→ disjoint trees of G
We have a quasi-order if G has F as a minor and F has H as a minor then G has H as a minor.

G has no Hminor∀H ∈ O ⇒ G has a nice structure.
G has no Kl minor ⇒ ””””
Because for l = |V (H)|, if G has no H minor then G has no Kl minor. Every graph with no K5

minor is a subgraph of a graph obtained from planar graphs and an octagon with 4 diagonals by
pasting together on cliques (of size ≤ 3).

Robertson -Seymore perhaps the most important theorem in graph theory



Theorem 3 If G has no Kl minor then it is a subgraph of a graph nearly embeddable on a
surface which Kl cannot be embedded by pasting together on (small) clique cutsets

nearly − embeddable: bounded extension.
F is a minor-closed family if ∀G ∈ F , H a minor of G⇒ H ∈ F . OF = {H|H ∈ F but not all minors of H are in F}

G ∈ F iff G has no OF as a minor.

Wagner’s Conjecture 1 (proved by Robertson-symore ) In any infinite sequence G1, G2, ... ∃i 6= j
such that Gi is a minor of Gj

They also proved that for all H there exists a poly-time algorithm to test if G has a minor.
There is a polytime membership test for any minor closed family.

4.4 Routed Routing

Given S := {s1, ..., sk}, T := {t, ..., tk}

Menger(undirected) 1 Either ∃k vertex disjoint S − T paths in G, or ∃X ⊂ V, |X| < k such
that there is no S − T path in G−X.

Proved as an application of max flow min cut directing edges in both directions.
Poly Time Algorithm for finding v vertex disjoint paths from s to t
Given S := {s1, ..., sk}, T := {t, ..., tk} Determine if ∃k vertex disjoint paths p1, ..., pk such that

si, ti are the end points of pi.
PTA algorithm for k −DRP for fixed k.

Can use this algorithm to test if G contains H as a subdivision, and hence as a minor. ∀H,∃Z(H)
such that G has H as a minor iff ∃F ∈ Z(H) s.t. G has a subdivision
F has H as a minor but does not contain a subgraph which contains H as a minor, and is not
a subdivision of a graph which contains H as a minor. model of H in F every edge of F is an
edge-image or an edge of a vertex image. Vertex image contains a vertex of degree 2 im(v) ≤ d(v)
leafs, no vertex of degree 2 ⇒≤ 2d(v) vertices.

Responsible for the one chapter of the text, and up to page 36.
the minor relation H <m G if H is a minor of G.
if H is cubic then H = Z(H). G has at least one of K3,3 or K5 as a minor iff G has a subdivision

of K3,3 or K5.

Lemma 4 If G is obtained by identifying a clique of G1 with a clique of G2 then

max{l|Kl <m G} = max(max(l|Kl <m G1),max(l|Kl <m G2))

l is known as Had(G) or Hadwiger number of G. Proof. Case 1: Had(G) = |C1|.

Case 2: Had(G) > |C1|, in this case there exists a vertex image disjoint from G1 ∩ G2. By
symmetry say it is contained in G1−C1, this implies all vertex images disjoint from C1 in G1−C1.
We claim that restricting each vertex to its intersection with G, yields a clique minor of the same
order.



Theorem 5 G has no K5 minor iff G is a subgraph of a graph which can be built up from planar
graphs and octagon with 4 diagonals by pasting graphs together on cliques

Proof. we have ⇐ by the above lemma. If G has no K5 minor, consider a minimal counter
example M . M is 3 connected. It has no 3 − cut X such that G −X has ≥ 3 components. Add
triangles to each component... in notes.

Lemma 6 If G contains L as a minor but no K5 minor then it is not 3 connected.

Lemma 7 If G contains K3,3 as a minor but K5is not <m G, L is not <m G. Then there exists
a cutset X of size 3 in G such that G−X has at least 3 components.

these lemmas help in the proof of the above theorem.

5 2-DRP

Theorem 8 given G with disjoint {s1, t1, s2, t2} Paths exists iff there is a K5 minor attached to
A = {s1, t1, s2, t2} in G′.

If X ⊆ V satisfies |X| ≤ 3 then for any K5 model(minor) . There exists a component of G−X
which completely contains a vertex image. Large-component of G −X. The K5 is attached to A
if A intersects the large component of G−X ∀X ⊆ V eith |X| ≥ 3

Lemma 1 Suppose G is l connected, C is a clique cutset of size at least l in G and U is a component
of G− C then G− C is l connected.

Proof. ⇒ rr.
⇐
Consider a minimal counter example.(K5 minor attached, paths do not exist, |V | minimum). Con-
nected, 2-connected. 3 connected. No 3 cuts with one component disjoint from A. No 3 cuts
separating A either.

Every 4− cut X in G′ satisfies one of
(i) X = A
(ii) there exists exactly one component u of G −X disjoint from A and |U | = 1 Proof. Suppose
not, take a bad X(X is a 4-cut in G not satisfying ∃4 paths from A to X because either (i),(ii) ).
G′ is 3− connected. –in the notes

6 Coloring

6.1 basic definitions

coloring,edge coloring, total coloring, list coloring. total coloring partitions the graph into stable
sets and matchings such that the vertices in the matching are disjoint from the vertices in the stable
set.



6.2 2 coloring

Build a DFS tree, take a pre-order.For any connected G and any vn there exists an ordering v1, ..., vn

of V such that ∀i < n, vi, vn ∈ E for some j > i.

6.3 3 coloring

NP - complete.

6.4 bounding the chromatic number

χ ≥ ω
χ ≤ ∆ + 1 using greedy coloring.

Both bounds are tight if G is a clique.

Brook’s 1 χ ≤ ∆ unless ∆ = 2 and some component is an odd cycle or some component of G is
a ∆ + 1 clique.

Proof. Consider a minimum counter example G. G is connected(or a component is a smaller
counter example). If its one connected we can label 1 vertex separator and then paste the compo-
nents to it.

Lemma 2 In any 2 connected graph G which is not a clique and has maximum degree 3 ∃x, y, z
such that x ∼ y, x ∼ z
xy, xz ∈ E(G), yz /∈ E(G), and G− y − z is connected.

Proof. homework

we have ∆(G) ≥ 3
we have x, y, z as in the lemma. Order G− y − z as

v1, ..., vn = x

so that ∀i < n there exists j > i such that vi, vj ∈ E. and then we can ”‘intelligently greedy color”’

For a ‘typical’ graph on n vertices, w(G) ≈ 2logn, χ ≈ n
2logn ,∆(G) ≈ n

2

6.5 ‘Intelligent Greedy coloring’

Let vi be min degree vertex in the subgraph of G induced by {v1, ..., vi}

χ(e) ≤ max1≤i{δ(Hi) + 1} = maxH⊆G{δ(H) + 1}

For any H let iH be maximum i such that vi ∈ H, δ(H) ≤ δH(viH ) ≤ dHiH (viH ) = δ(HiH )
See early chapter of coloring book..

Tait 1 4 vertex(face) coloring of every planar triangulations equivalent to 3 edge coloring of every
bridge less cubic planar graph.



Theorem 4 Every Hamilton cubic graph is 3− edge colorable

Proof.
Even number of vertices. 2-edge-color cycle, then rest is matching.

Tutte proved that every 4 connected planar graph is Hamiltonian.
Barnette conjectured that every cubic 3−edge connected bipartite planar graph is Hamiltonian–

still open.

Conjecture: Every 2 edge connected graph without the Peterson graph as a minor has a
nowhere zero 4-flow

7 Factoring Graphs

r − factor = r − regular graph Partitioning an r − factor into r 1− factors. χe(G)

7.1 Motivations

Every bridgeless planar 3-factor can be partitioned into 3 one factors . Equivalent to 4CC.

Peterson 1 Factors in several graphs. Given an r − factor F does there exist set s + t = r and
disjoint factor Fs t− factor , F = Fs + Ft

on assignment we might want to show that every 2r factor can be partitioned into r 2−factors
Konig: Every bipartite r − factor can be partitioned into r 1 factors

Theorem 5 A bipartite graph G = (A,B) . Has a matching using all the vertices of A iff there
does not exist X ⊆ A such that N |(X)| < |X|. Halls theorem equivelent to Mengers

def(G): deficiency of G. |V | − 2|M | for a maximum matching M in G.
For bipartite graph (A,B), def(A) = |A| − |M | for maximum matching M .

Theorem 6 Let G(A,B) be a bipartite graph. Then

def(A) = maxX⊆A(|X| − |N(X)|, 0)

def(A) ≥ maxX⊆A(|X| − |N(X)|, 0)

Proof. by Induction: Take a maximum matching in G, and a vertex x ∈ A missed by M . Take a
maximum augmenting path tree.

|A ∩ T | = |B ∩ T |+ 1

All edges from A ∩ T go to B ∩ T .

Theorem 7 Let G be a graph , then

def(G) = maxZ⊆v(# of odd components of G− Z)− |Z|)



Proof. Induction on |E| rip out an edge e = xy . Consider Z demonstrating the theorem in
G − e chosen with |Z| maximum. Every component of G − Z is odd. ∀X ∈ V (Ui), Ui −X has a
perfect matching. –take a minimal counter example rip it out, then the components are like ’super
vertices’ and we are basically in the bipartite case since each has a near perfect mathing.

Vizing 1 Every graph G with ∆(G) ≤ k satisfies χe(G) ≤ k + 1

Proof. by induction e = vw1 color G− e with k + 1 colors. k + 1 > ∆ therefore a color α misses
at v. There exists a color B1 missing at w1. For i ≥ 2, vwi has color Bi−1, Bi is missing at wi.
Distinct B1, ..., Bk uses Kempe Chains

8 Ideas from Linear Programming

(P)
max cx

s.t. Ax ≤ b

x ≥ 0

(D)
min bx

yA ≥ c

y ≥ 0

8.1 s-t Paths

Ps,t = Ps,t(G): set of paths from s to t.

max
∑

p∈Ps,t

xp

s.t. ∀v ∈ V
∑
p3v

xp ≤ 1

xp ≥ 0, xp ∈ Z

8.2 Coloring

S(G)- set of stable sets of G

min
∑

s∈S(G)

xs

s.t.∀v ∈ V,
∑
v∈S

xs ≥ 1

xs ≥ 0 xs ∈ Z



Dual
max

∑
v∈V

yv

s.t. ∀s ∈ S(G) :
∑
v∈S

≤ 1

yv ≥ 0, yv ∈ Z

Can we solve the LPs efficiently? if we can separate we can use ellipsoid.
Integrality gap: optimal primal IP = optimal dual IP ?

optimal dual IP ≤ function of primal LP.

The Erdos Posa property: ∃f s.t. F − cover number ≤ f(F − packing number)

Fractional V.C NP complete to approximate.

χf (G) ≤ χ(G) ≤ log(n)χf (G)

how do we get a ∆ + 3 total coloring? take a ∆ + 1 edge coloring M1, ...,M∆+1 (which we
can by Vizing), take a ∆ + 3 vertex coloring S1, ..., S∆+3. So for 1 ≤ i ≤ ∆ + 1, 1 ≤ j ≤ ∆ + 3,
Ti,j = Mj − {e|e ∩ Sj 6= 0} ∪ Sj

8.3 s-t Paths

there exists an optimum solution to the fractional matching problem where each xe ∈ {0, 1/2, 1}

max
∑
e∈E

xe

s.t. ∀v ∈ V
∑
e3v

xe ≤ 1

xe ≥ 0

Theorem 8 For Bipartite graphs, max matching = min cover, so have integer optimum

G′ is bipartite, size of max fractional matching in G′ is equal to the max fractional matching in
G. G′ := ∀vivj ∈ E(G), viv

′
j , vjv

′
i ∈ E(G) .

8.4 Fractional edge coloring in P

min
∑

M∈M(G)

xM

s.t. ∀e ∈ E
∑
e∈M

xM = 1

xM ≥ 0

G has a fractional C − coloring iff (1
c ,

1
c ,

1
c , ...,

1
c ) is a convex combination of incidence vectors

of matchings.



Edmond’s Characterization of MPP(G) 1 (Convex combination of incidence perfect match-
ings)
x ∈MPP (G) iff ∀v ∈ V

∑
e3v xe = 1

∀S ⊆ V, |S| is odd,
∑

e∈E(S,V−S) xe ≥ 1

Proof. Consider a minimal counter example (G, x) we have ∀e ∈ E(G), xe > 0 Claim 1: ∃ a perfect
matching M in G–easy consequence of when a graph does not have a perfect matching.
Claim 2: there exists a tight non-trivial odd cut (S, V − S). ... See Vempala

9 Matchings

Tutte-Berge Formula 1

def(G) = maxZ⊆V {#of odd components of G− Z − |Z|}

Bipartite G := (A,B)
max size of matching = min size of a cover.

def(A) = max{|x| − |N(X)|} X ⊆ A

ǐf ∆(G) ≤ k then χe(G) ≤ k + 1.

9.1 Consequences

Theorem 9 For any set S ⊂ V there is a matching M saturating S ∃Z ⊆ V such that G − Z
contains more then |Z| odd components completely contained in S.

f : V → Z≥0 we want to find a subgraph H of G such that ∀v ∈ V , dH(v) = f(v)
G′ has a perfect matching M ′ iff G has a matching M saturating S.

Tutte’s f-factor theorem 1 G has no f − factor precisely if disjoint X, Y ⊆ V such that∑
v∈X

f(v)+
∑
v∈Y

(d(v)−f(v)) < |E(X, Y )|+# ofcomponents K of G−Y−Y such that
∑
v∈K

f(v)−|E(K, Y )| is odd

Proof. ∀v ∈ V make f(v) copies of v, ∀e = vw ∈ E add vertices ev, ew with an edge between
them and add an edge from ev to every copy of v ”‘ ”‘ ”‘ every copy of w has neighbours w1−−wd(v)

G has an f − factor H iff Gf has a perfect matching M . e = vw ∈ H iff evew /∈M .
G has no f − factor iff ∃Z ⊆ V (G) such that # of odd components of Gf − Z > |Z|
Choose Z minimal with this property. Therefore if one copy of v is in Z, every copy of v is in

Z. Therefore if ev is in Z for some edge e containing v, then fv is in Z for every edge f containing
v. and every copy of v is not in Z.

|Z| =
∑
v∈X

f(v) +
∑
v∈Y

d(v)

X = {v|all copies of v in Z}, Y = {v|every ev is in Z}

Z = all copies of v ∈ X plus all ev v ∈ Y



Cycle Basis 1 If G is connected with n vertices and medges we need m − n + 1 fundamental set
of cycles.

proof is in text.
rip out the edges in G. Subgraph H∗ of G∗ with

|E(H∗)| − |V (H∗)|+ 1 = r

then the number of components increases by r.

Matroid 1 Ground set X, A family I of independent subsets of X :
(A) I 6= Ø
(B) S ∈ I, I ⊆ S ⇒ T ∈ I
(C) X, Y ⊆ I, |X| = |Y |+ 1,∃x inX − Y s.t.Y ∪ {x|isinI}
therefore all independent sets have the same size.

uniform matroid: I = S ⊆ X, |S| ≤ r, r > 1, x 6= Ø

Set of acyclic subgraphs of a non-empty undirected graphs. Graphic Matroids.
Matroid Duality: Circuit: minimal non-independent set. Dual m∗ of m: the circuits of m∗

are the minimum sets hitting all maximal independent sets of G.
remember cycle basis not matroids...

10 Perfect Graphs

G is perfect if and only if ∀H ⊆i G χ(H) = ω(H). if and only if the polytope:

∀S ∈ S(G)
∑

v∈S,x≥0

xv ≤ 1

has integer vertices. Proof used the replication lemma. (replication preserves perfection.) G is
perfect iff ∀H ⊆i G ∃ a stable set meeting every maximum clique of H.

Two conjectures:
WPGC: G is perfect iff Ḡ is perfect.

SPGC: G is perfect iff C2k+1 is not ⊆ Gi or Ḡ k ≥ 2.

10.1 Classes of perfect Graphs

Bipartite Graphs. Comparability Graphs. Triangulated graphs: Ck not ⊆i G k ≥ 4

Lemma 3 Every triangulated graph contains a simplicial vertex.



10.2 Proof of the Weak perfect graph conjecture(Lovasz 72)

Need to show if G is perfect ∀H ⊆i Ḡ. There exists a stable set meeting all the maximum cliques
of H.

Enough to show: (F = H̄) F is perfect ⇒ there exists a clique of F meeting all the maximum
stable sets of F .

Let T be the number of α(G) stable sets, and tx be the number of α(F ) stable sets containing
x (∀x ∈ V ). Obtain F ′ by replicating x ∈ V , tx − 1 times. F ′ is perfect(replication lemma)

|V (F ′)| = T |α(G)|

T ≤ χ(F ′) ≤ T in other words omega(F ′) = χ(F ′) = T

shrink it down to a clique of F

G is called Berge if C2k+1 not ⊆ G, or Ḡ k ≥ 2
G is i− triangulted iff every odd cycle of G has 2 non-crossing chords⇔i G k ≥ 2. No C5 ⇒ C̄5

No P5 ⇒ no P̄5

hereditary Clique-Separable
Every H ⊆i G either H has a clique cutset or H is one of two base classes: Complete multipartite
graphs:S1, ..., Sk stable all edges fromSi to Sj for i 6= j

Set of universal vertices(vertices that see all other vertices of G) added to a bipartite graph.
i− triangulated graphs are clique separable and hence perfect.

10.3 Polynomial time algorithm for determining and finding if G gas a clique
cutset(Sue Whitesides)

First find either a clique cutset of G or an induced Ck, k ≥ 4. can assume that there is a v that is
not universal. let U be a component of G − v −N(v). If {x|x ∈ N(v),∃y ∈ U s.t. xy ∈ E(G)} is
a clique C, C is a clique cutset. Set H1 to be this subgraph. Iteration 1: Hi ⊆i G with no clique
cutset which is not a clique. If Hi = G, we are done(no clique cutset in G). (Otherwise) let U
be a component of G − V (Hi). If the attachments of U in V (Hi) induce a clique C then C is a
clique cutset, separating U from Hi −C. Otherwise add a shortest path p through U between two
non-adjacent attachments. Consider any clique C of Hi + P . C ∩ P is an edge or vertex of P .
and all of P − C is in the same component of Hi+1 − C as x or y. therefore Hi − C has only one
component.

this gives us an On3 algorithm for testing if G has a clique cutset. Rooted tree- every node
labeled by a subgraph of G. internal nodes also labeled by cliques. G is clique separable iff leafs
are in one of the base classes for a clique cutset.

11 Clique separable graphs. Clique cutset trees.

Comparability graphs. G is a comp graph if it can be given an orientation which is transitive.



12 Comp Graphs

Determine if G gas an orientation without a→ b→ c
ab directed forces cb ba directed forces bc cb directed forces ab bc directed forces ba
Auxiliary digraph G′

V (G′) = { ~ab|(a, b) ∈ E(G)}
( ~ab, ~cd) ∈ E(G)iff ab directly forces ~cd E.C. are connected components.

Determine if G gas an orientation without a → b → c. If not then it is not a comp. graph.
If yes then check if it contains a directed triangle. If not we are done, if yes decompose. A
homogeneous set(module) in a graph G is a subset H of V such that ∀x ∈ V −H, either {xy ∈

E ∀y ∈ E} or {xy /∈ E∀y ∈ E} with 2 ≤ |H| < |V |. If G has a homogeneous set H then for any
v ∈ H, G is a comp graph iff G[H] is a comp graph and G− (H − v) is a comp graph.

Lemma 4 If G has an orientation with no a → b → c, a → c but have a directed triangle then it
has a homogeneous set.

Proof. No ∀eV − x − y − z sees only one of {x, y, z}. If ∃v seeing exactly 2 of {x, y, z} we have
a homogeneous set or V = {x, y, z}. By symmetry can assume there exists a v with vx, vy ∈
E(G), vz /∈ E(G) Let F be the set of vertices which see both x and y. Let H be the connected
component of G[F ]. Algorithm
Build a homogeneous set decomposition for G. Claim H is a homogeneous set. Otherwise there
exists a vertex v of G− F and an edge sz of ¯G[H] such that t sees s but not z.

Furthermore there is a polytime algorithm to find such a set.
Algorithm

Check if there is a orientation with no →→. No ⇒ G not comp. Yes ⇒ check if triangle:No ⇒
Done. Yes⇒ find a homogeneous set H . Solve recursively on G[H] and on G− (H − v).

Homogeneous set tree: G[H] ← (G, H) → G − (H − v). dont decompose if |V | = 2. ∀G with
|V | ≥ 2 have at most |V | − 2 nodes in a h.s decomposition tree with atleast 2 nodes.

G is perfect iff the leaves of homogeneous set decomposition tree are. ≡ No min graph has a
homogeneous set.

Star Cutset Cut set C containing a center v such that vx ∈ E∀v ∈ C − x.

13 Tree Decompositions

starting with chapter 9 in hand hout.

13.1 Helly Property for Trees

If F is a family of subtrees of a tree T s.t. , s′ ∈ F, S ∩ S′ 6= Ø then

∩S∈F SØ

Proof. By Induction. Let l be a leaf of T . If l = N(T ) then we are done. If ∃S ∈ F such
that N(S) = {l} then we are done. Otherwise ∀S ⊆ F, S − l is a subtree of T − l. Furthermore if
l ∈ S ∩ S′ for S, S′ ∈ F , then (S − l) ∩ (S′ − l) contains the unique neighbor of l in T and hence is
non empty.



13.2 S.I.R

A subtree intersection representation for G is a tree T and a family {Sv|v ∈ V (G)} of subtrees of
T such that Su ∩ Sv 6= Ø⇔ uv ∈ E(G)

Theorem 10 G has a S.I.R iff G is chordal (triangulated).

Proof. ⇐ if G is a clique use a 1 node tree T . Otherwise G has a clique cutset GA has a S.I.R
{T 1, {S1

v |v ∈ A ∪ C}}, {T 2{S2
v |c ∈ B ∪ C}} ...proof in handout.

Width of a tree decomposition: maxt∈N(t){Sv|t ∈ Sv} − 1 = ω(G)− 1.

13.3 Subtree Decompositions

A subtree decomposition for G consists of a tree T and a family {S − [v|v ∈ V } of subtrees of T
such that uv ∈ E ⇒ Su ∩ Sv 6= Ø.

Every graph has a subtree decomposition where T has one node and Sv = T ∀v ∈ V .

width = maxt∈N(t)|Wt| − 1 = minH⊇G,H−chordal = tree width of t min width of a tree decomp

where Wt = {v|Sv 3 t}

Minimum Weight Stable set problem: Graph G, W (v) ∈ Z+∀v ∈ V find a stable set

S maximizing
∑

v∈S W (v). Root the tree at r. ∀t ∈ T T − t is the subtree rooted at t. we use
dynamic programming. See handout(wendsday feb 8th).

Min wight stable set for a chordal graph G(weights f(v)) S.I.R [T, {Sv|v ∈ V }] root T at r. Tt as
before. Gt = G[{v|Sv∩Tt 6= Ø} ∀t ∈ T, v ∈Wt we will compute F (t, v) = max(f(S)|S is stable, S ⊆
Gt, S ∩Wt = v} − F (t, Ø).

traverse in post order: If t is a leaf, F (t, v) = f(v), F (t, Ø) = 0 if t is not a eaf

F (t, v) = f(v) +
∑

C a child of T,v∈Wc∩Wt

(F (c, v)− f(v))

+
∑

c a of t v /∈Wc∩Wt

max(max(F (c, w)|w ∈Wc −Wt)F (c,Ø)

14 Subtree Decompositions

[T, {Sv|v ∈ V (G)}]uv∈E⇒Su∩Sv 6=Ø

wt = {v|t ∈ Sv} ⇔ [T, {wt|t ∈Mt}]

Each edge corresponds to a cutset separating G ’like‘ the edge separates the tree.
∀H ⊆ G, H connected then SH = ∪v∈HSv is a subtree of T . Width of [T, {Sv|v ∈ V }] =

maxt∈N(t)|Wt|−1. Tree width of G TW (G) is min width of a tree decomp of G. = maxH⊇G,H chordalω(H)−
1.



14.1 MWSS on Graphs of BTW

Root T at some r, Tt =maximal subtree rooted at t.

Gt = G[{v|Sv ∩ Tt 6= Ø}]

∀S∗ ⊆Wt, F (S∗, T ) = maxv∈S{
∑

f(v)|S stable, S ∩Wt = S∗}

If t is a leaf F (S∗, T ) =
∑

v∈S∗ f(v) Otherwise∑
v∈S∗

f(v) +
∑

c a child of v

max(F (S′, c)−
∑

v∈S”′∩S∗

f(v))

Time Taken(if G has tree width k) :∑
t∈T 2k+1(

∑
c is a child of T O(2k+1k))

=
∑

c

∑
t|c is a child of t

O(22k+2k)

= O(22k+2k|V |)

because can choose T so
|N(T )| ≤ 2|V (G)|

coloring as an example might be on exam...

Bramble B: Set of cennected subgraphs of G every two of which touch: intersect or are joined
by an edge. node images in a Kl model. For any S ⊆ V

BS = {H ⊆ G|H connected, |H ∩ S| > 1
2
|S|}

Order of B = min size of a hitting set for B: H ⊆ V s.t.∀b ∈ B H ∩ b 6= Ø
node images in a Kl model.

BN(G) := max order of a bramble in G

Theorem 9 TW (G) = BN(G)− 1

Proof. of TW (G) ≥ BM(G)− 1 (easy direction) For any tree decomposition [T, {Sv|v ∈ V }] of G
and bramble B of G, ∃ a node t of T such that wt is a hitting set for B.

BN(G) = ord(B) ≤ |wt| ≤ width of tree dec + 1 = TW (G) + 1

One proof: ∀b ∈ B,Sb is a subtree of T . ∀b1, b2 ∈ B Sb1 ∩ Sb2 6= Ø because b1, b2 touch. By
Helly property there exists t such that t ∈ ∩b∈BSb

Other direction in 10.2

Theorem 10 TW (G) ≤ 3BN(G) + 2



Algorithmic Proof. ( 4BN(G) + 3)

TW (G) ≤ 3(maxS⊆V order(BS)) + 2

Theorem 11 If ∀S ⊆ V,∃X ⊆ V, |X| ≤ k such that every component U of G−X satisfies

|U ∩ S| ≤ 1
2
|S|

Then G has a tree decomposition of width ≤ 3k − 1

X is a hitting set for BS iff every component U of G−X satisfies

|U ∩ S| ≤ 1
2
|S|

15 tree decompositions

[T, {Sv|v ∈ V }]w∈E⇒Su∩Sv 6=0

width = max|Wt| − 1(wt = {v|t ∈ Sv})

Bramble: Set of B connected subgraphs every two of which touch.

Order of B = min size of a hitting set for B. max order of a bramble in G = min width of a
tree decomposition for G + 1.

We Proved:
BN(G) ≤ tree width of G ≤ 4 maxS⊆V order(BS)

BS = {H ⊆ G, H connected |H ∩ S| > 1
2
|S|}

gave a linear time algorithm to find tree decomposition of width k for graphs of tree width k(k −
fixed). = using this decomposition can optimize on these graphs in linear time.

h(G) = max{k|G has k × k grid minor}

h(G) ≤ TW (G) ≤ 220h(G)5

Does G gave a planar graph H as a minor??
Erdos - Posa property holds for cycles.
Either k vertex disjoint cycles OR f(k) vertices which intersect all cycles.

True if TW (G) > w = 220(2k)5 Proof. by induction for graphs with tree width ≤ w. f(k) =
3kw



16 Random Graphs and the Probabilistic Method

Gn,1/2 : uniformly chosen graph on V = {1, ..., n}

P = 2−(n
2)

E(# of edges) = p

(
n

2

)

E(# of triangles) = p3

(
n

3

)
=

∑
x 6=y 6=z⊆V

∏
∆(x,y,z)

Theorem 12 Markov: if X ≥ 0 then P (X ≥ tE(X)) ≤ 1
t

Theorem 13 Chebyshev
P (|Z − EX(Z)| ≥ t) ≤ ( t2

E(Z2)−E(Z)2
)−1

BIN(n, p) := sum of n independent 0, 1 random variables

Theorem 14 Chernoff Bounds

P (|BIN(n, p)− pn| ≥ t) ≤ e
− tt

3np

E(# of k cliques in Gn, 1
2
) =

(
n

k

)
2−(k

2)

assume k ≤ 3logn

≈ (1 + o(1))
nk

k!
2−(k

2)

= (1 + o(1))2klog(n)+klogk−log2ek+(1/2)logk+o(1)−k(k−1)/2

= 2k(logn+logk−log2e+1/2+o(1/k)−(k−1)/2)thisgoesbelow

1.

k − 1 = 2logn + 2logk − 2log2e + 1 + O(1/k)

k = 2logn + 2loglogn + O(1)

For n large enough, Almost every graph on n vertices satisfies

α(G) ≤ 3logn, ω(G) ≤ 3logn



⇒ χ(G) ≥ n

3log(n)

Hajos’s Conjecture:

χ(G) ≥ l⇒

G contains a subdivision of Kl.
asymptotically almost surely χ(Gn,1/2) ≥ n

3logn a.a.s Gn,1/2 does not contain a K10
√

n subdivi-
sion.

Gn,1/2 is a.a.s. Hamiltonian
Gn,1/2 a.s.s. satisfies (1) ∀u, v N(u) ∪N(v) ≥ 2n

3
(2)∀u N(v) ≥ n

3 + 4

E(#of vertices of degree ≤ n

3
+ 4)→ 0 as n→∞

= nP (1 has degree ≤ n

3
+ 4)→ 0 as n→∞

≤ nP (|BIN(n− 1,
1
2
)− n− 1

2
| ≥ n

6
− 9

2

≤ neblah

E(# of bad pairs) ≤
(

n

2

)
P (|BIN(n− 2, 3/4)− 3/4(n− 2)| ≥ n/12− 3/2)

Gn,1/2 a.a.s has chromatic index ∆
Gn,1/2 a.a.s. has a unique vertex of maximum degree.

E(degree =
n− 1

2
)

P (∃ a vertex of degree ≥ n

2
√

nlogn

≤ E(# of vertices”‘)

≤ n(P (1”′)

≤ nP (|BIN(n− 1, 1/2)− n− 1
2
|) ≥

√
nlogn

≤ nn2e
− (

√
nlogn)2

something

Markov’s Inequality: X ≥ 0, P (X ≥ t) ≤ E(X)
t

In particular if X is integer valued P (X 6= 0) ≤ E(X).

Chernoff’s Bound: P (|BIN(n, p)− np| ≥ t) ≤ 2e
− t2

3np

∃kn = 2logn− 2loglogn + O(1)



such that E(# of cliques of size kn) < 1 but the expected number of cliques of size kn − 3 > n
⇒ a.a.s.ω(G), α(G) ≤ 2logn⇒ a.a.s. χ(G) ≥ n

2logn

a.a.s not existC ⊆ V does not contain s.t. |E(G[C]| ≥ 48n

|C| = d10
√

ne

therefore a.a.s. G contains no K10
√

n subdivision. So almost every graph is a counter example to
Hajos’ conjecture.
∃ Triangle free graph with arbitrarily large chromatic number ∀k there exists a graph with no

K3 and no stable set of size ≥ |V |
k .

Proof.
G

n,n
−2
3

has ≤ n
2 triangles (in book ) and no stable set of size n

2k

expected number of triangles in G
n,n

−2
3

is
(n
3

)
(n−2/3)3 ≤ n

6 .

P (G
n,n

−2
3

has > n/2 triangles) ≤ 1
3

P (G
n,n

−2
3

has a stable set of size
n

2k
)

≤ E(# of stable sets of size d n

2k
e in G

n,n
−2
3

)

=

(
n

n/2k

)
(1−p)(

n/2k
2 ) ≤ 2ne−p n2

16k2 for n≥2 large=2ne−n4/3/(16k2) if n>(16k2)3<2ne−n< 1
3

for n large enough

see book

Hadwiger’s Conjecture: χ(G) ≥ l⇒ Kl minor

We will show
(G) ≥ 100l · log(l)⇒ col(G) ≥ 100l · log(l)

col = max H⊆G(δ(H) + 1)

min(deg(G)) ≥ 100l · log(l)⇒ Kl minor

avg degree(G) ≥ 100 l · log(l)⇒ Kl minor

see chapter 6 .

16.1 Maximum degree of Gn, 1
2

Chebychev: P (|Z − E(Z)| ≥ t) = P ((Z − E(Z))2 ≥ t2) ≤ (E(Z2)−E(Z)2)
t2

Suppose Z is the sum of symmetric indicator variables in some set U of events.



∑
{X,Y,Z}⊆V

∏
∆(X,Y,Z)

Z2 =
∑

outcomes X

∑
A∈U

∑
B∈U

P (X)
∏
A

∏
B

=
∑
A∈U

∑
B∈U

∑
outcomes X

p(X)
∏
A

∏
B

=
∑
a∈U

∑
B∈U

P (A ∩B)

=
∑
A∈U

∑
B∈U

PAP (B|A)

=A∈U P (A)(
∑
B∈U

P (B|A))

=
∑
A∈U

P (A)(E(Z|A))

∑
A∈U

P (A)E(Z|A0)

A0 := specific event in U
E(Z)E(Z|A0) if E(Z|A) is (1 + o(1))E(Z).


